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We combine experiments and theory to study the mechanics of overhand knots in slender elastic
rods under tension. The equilibrium shape of the knot is governed by an interplay between topology,
friction, and bending. We use of precision model experiments to quantify the dependence of the
mechanical response of the knot as a function of the geometry of the self-contacting region, and
for different topologies as measured by their crossing number. An analytical model based on the
nonlinear theory of thin elastic rods is then developed to describe how the physical and topological
parameters of the knot set the tensile force required for equilibrium. Excellent agreement is found
between theory and experiments for overhand knots over a wide range of crossing numbers.

Shoelaces are commonly tied using the reef knot,
which comprises two trefoil knots: the first is left-handed
and the other right-handed. Mistakenly tying two con-
secutive left-handed trefoil knots leads to the mechani-
cally inferior granny knot [1], whose lower performance
illustrates the important interplay between topology and
mechanics. From polymer chains [2] to the shipping
industry, knots are ubiquitous across length scales [3].
Whereas they can appear spontaneously [4] and are some-
times regarded as a nuisance (e.g. in hair and during knit-
ting), knots as fasteners of filamentary structures have
applications in biophysics [5], surgery [6, 7], fishing [8],
sailing [9], and climbing [10]. Frictional knots have also
been added to fibers for increased toughness [11].

Even if the quantitative study of knots has remained
primarily in the realm of pure mathematics [12], there
have been empirical attempts to characterize their me-
chanical properties according to strength or robust-
ness [13]. However, these metrics rely strongly on
material-specific properties and are therefore of lim-
ited applicability across different systems and length
scales [3]. Recent studies have addressed the mechanics
of knots from a more fundamental perspective [14]. For
example, existing theories on flexible strings (with zero
bending stiffness) [15, 16] treat friction using the capstan
equation [17]. Finite element simulations of knots have
also been performed in instances where bending cannot
be neglected [18] and friction has been treated perturba-
tively for trefoil knots tied in elastic rods [19, 20]. Still,
predictively understanding the mechanics of knots re-
mains a challenging endeavor, even for the simplest types
of elastic knots, due to the complex coupling of the vari-
ous physical ingredients at play.

Here, we perform a systematic investigation of elastic
knots under tension and explore how their mechanical
response is influenced by topology. We perform precision
model experiments and rationalize the observed behavior
through an analysis based on Kirchhoff’s geometrically

nonlinear model for slender elastic rods. Our theory takes
into account regions of self-contact, where friction domi-
nates. Focus is given to open overhand knots (Fig. 1a-d).
These knots comprise a braid with arc-length `, a loop
with arc-length λ, and two tails onto which a tensile load
is applied. The topology of the braid is quantified by the
unknotting number n = (χ − 1)/2 (number of times the
knot must be passed through itself to untie it), where
χ is the crossing number (number of apparent crossing
nodes). In Fig. 1e, we plot the traction force, F , as a
function of the end-to-end shortening, e (e = 0 corre-
sponds to a straight configuration, without a knot) for a

0 2 4 6 8
10-1

100

101

(b)

0 100 200 300 400 500

10-2

10-1

100

101

102
(f)

(a)

(c)

(e)

(d)

FIG. 1. (a-d) Photographs of overhand knots with different
unknotting numbers n. A piece of rope (5 mm diameter) is
used here for illustration purposes, although all the exper-
iments described in the text used Nitonol rods (see Fig. S2
in [21]). (e) Traction force vs. end-to-end shortening for over-
hand knots in Nitonol rods with radius h = 0.127 mm and
1 ≤ n ≤ 10. (f) Normalized traction force, FR2/B, as a func-
tion of unknotting number, n, at e = {150, 500}mm (dashed
and dotted lines in (e)). The horizontal solid line at 1/2 cor-
responds to the frictionless case.



2

variety of knots in the range 1 ≤ n ≤ 10. We find that F
depends nonlinearly on e and varies significantly with n.
We shall provide an analytical solution for the relation
between the knot topology (defined by n) and the braid
geometry. We then extend our analysis to identify the
underlying physical ingredients and predictively capture
the experimental mechanical response.

Our experiments consisted of tying overhand knots on
Nitinol rods (662 mm long) of circular cross-section with
radius, h = 0.127 mm, density, ρ = 6450 kg/m3, and
Young’s modulus, E = 67.50± 0.25 GPa. One extremity
of the rod was clamped. The other end was attached to
the load cell of a universal testing machine (Instron) and
displaced slowly to tighten the initially loose knot from
estart = 531 mm, at a rate of (−ė) = 1 mm/s (such that
inertial effects are negligible). During the process, we
recorded the resulting tensile force, F , required to main-
tain the equilibrium configuration; more details in [21].
In Fig. 1e, we present a series of F (e) curves for knots
with unknotting numbers in the range 1 ≤ n ≤ 10, and
find that the mechanical response is dramatically affected
by n. During these tests, we also make use of digital
imaging to record the braid geometry and the shape of
the loop.

In prior work, the mechanics of knots has been ana-
lyzed using a string model with the assumptions of fi-
nite friction but neglecting bending [15], using the cap-
stan equation [17]. These theories for ‘ideal knots’ on
a perfectly flexible filament under tension predict the
end-to-end shortening to be e = hf(n), where the func-
tion f depends only on the topology of the knot (e.g.,
see Ref. [16]). By contrast, in our experiments, a string
model is clearly inappropriate since the bending stiffness,
B = Eπh4/4, plays a key role in setting the shape of the
loop, such that e � h. More subtly, we shall show that
the bending stiffness is also important in the braid, where
both strands adopt an approximately helical configura-
tion of radius h. The curvature of each strand scales as
∼ hk2, where k is its wavenumber, and equilibrium un-
der a tension F requires a normal force per unit length
∼ Fhk2 (arising from contact with the other braid) that
is correctly captured by the string model. However, the
bending rigidity neglected in the string model leads to
an additional contribution to the normal force per unit
length that can be shown to scale as ∼ Bhk4, as our
analysis below will confirm. If the string model were to
be applicable, the first contribution would have to dom-
inate and the ratio F/(Bk2) would be large. In Fig. 2d,
we plot this ratio for our experiments and find that it is
always lower than 1, thereby showing that the stiffness
of the filament must be accounted for (the rationale for
2πnhk on the x-axis of Fig. 2d is provided below).

Knots in stiff filaments have been previously ana-
lyzed [19] but only in the perturbative limit of µ → 0
(and B 6= 0). This approach is also not applicable for
our experiments as the following dimensional analysis
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FIG. 2. (a–b) Geometry of the braid. (a) The two centerlines
r1 and r2 effectively wrapped around a flexible cylinder with
diameter 2h. (b) The difference braid effectively winds around
a rigid cylinder, with both ends subjected to a moment Q ∼
B/(2R). (c) Wavelength of the braid, `/n = 2π/k, as a

function of
√
hR. (d) Traction force, F , normalized by Bk2

as a function of 2πhkn.

demonstrates. Each strand in the braid is subject to
three forces: i) the traction force F due to the tensile
load exerted on the tails, ii) the pulling force B/(2R2)
applied by the elastic loop of radius R [2, 19], and iii)
the friction force resulting from self-contact in the braid.
In the absence of friction, the first two forces balance each
other and FR2/B = 1/2. In Fig. 1f, we revisit the raw
data for F (e) and plot the dimensionless force FR2/B.
For n = 1, FR2/B ≈ 2, the same order of magnitude as
the value of 1/2 for the frictionless case (horizontal solid
line in Fig. 1f). In this particular case of trefoil knots,
the weak friction assumption used by [19] is acceptable.
However, FR2/B � 1/2 for all other higher-order knots
(n ≥ 2, which from now on we shall refer to as long
knots), indicating that friction is important and must be
taken into account, in full. Motivated by these findings,
and in contrast with prior work, we seek to develop a
theory to describe long knots that incorporates both the
bending rigidity, B, and the strong effect of friction, µ.

A schematic diagram of the configuration of the braid
region, for n > 1, is shown in Fig. 2a. We shall use an
elastic curve model where twisting forces are ignored and
assume that the aspect-ratio between the cross-sectional
radius of the rod, h, and the radius of curvature at the
exit from the braid towards the loop, R, is small, i.e.
ε =

√
h/R � 1. This results in a separation of length

scales, h� `
n � R, such that the theory of slender rods

is applicable [21]. The braid can then be modeled by
two linear beams in mutual contact whose centerlines are
represented by r1(z) and r2(z), with the z-axis aligned
along the traction force.
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We now consider the difference problem by focusing on
the relative position of the two strands: δ(z) = (r1(z)−
r2(z))/2 + z ez, shown schematically in Fig. 2b. In the
limit of ε → 0, δ(z) can be determined through asymp-
totic analysis of the braid by mapping the problem to the
winding of a linear beam around a rigid cylinder [19]. The
non-penetration condition implies δ2

x+δ2
y ≥ h2, which ef-

fectively represents a cylindrical obstacle with radius h.
Given the invariance of δ(z) by a rotation about the y-
axis with angle π, we further simplify the analysis by
only considering the half-braid (z > 0). Far away from
the braid, the curvatures of the strands should match
those in the tail and in the loop, (r′′1 , r

′′
2)→ (ey/R,0) for

z � `/2, where the primes refer to differentiation with
respect to s. This yields δ′′(z) → ey/(2R), meaning
that in the difference problem a remote bending moment
−B/(2R) ex needs to be applied.

The total energy of the braid can now be obtained by
doubling the energy of the half braid:

Ebraid = 2

(
B

2

∫ L

0

|δ′′|2 dz − B

2R
δ′(L) · ey

)
. (1)

This linear beam model can be derived from the non-
linear Kirchhoff rod model in the limit h � `

n � R
(see [20]): the first term is an elastic beam energy and
the second term arises from the moment that enforces the
asymptotic curvature 1/(2R) far from the braid. The in-
tegration in Eq. (1) is done over a segment of the rod
enclosing one half-braid, i.e. L > `/2, but the particular
choice of L does not affect the solution δ. The config-
uration of the braid can then be determined by mini-
mizing Eq. (1) with respect to δ, subject to the non-
penetration constraint δ2

x+ δ2
y ≥ h2, as well as the condi-

tions that capture the topology of the knot: ϕ(0) = −nπ
and 0 ≤ ϕ(L) ≤ π, where ϕ(z) is the polar angle of the
projection of δ(z) in the perpendicular plane (Oxy).

The above minimization problem with inequality con-
straints has previously been solved numerically for trefoil
and cinquefoil knots (n = 1 and n = 2) [19]. Our goal
is to now obtain an analytical solution that is applicable
for long knots. For n� 1, we can ignore the inner layers
present near the endpoints of the braid, z = ±`/2. In
this limit, we consider an approximation δ(z) obtained
by patching a helix of radius h that winds n/2 turns
around the z > 0 semi-axis (half-braid), together with a
parabola in the (Oyz) plane of the loop with curvature
1/(2R), as prescribed by the end moment

δ(z) =


(
h cosϕ, h sinϕ, z

)
if 0 ≤ z ≤ `

2(
h,
(
z − `

2

) (
kh+

z− `
2

4R

)
, z
)

if `
2 ≤ z ≤ L,

(2)
where ϕ = −nπ+kz. The helical wavenumber k = dϕ/dz
is a free parameter that is still to be determined, from
which the braid length can eventually be computed as

` = 2nπ/k, implying ϕ(`/2) = 0. Note that this ap-
proximation is kinematically admissible; it satisfies the
non-penetration condition, it has the correct unknotting
number, and both the position δ(z) and the tangent δ′(z)
are continuous at z = `/2. The 2D assumption in this
solution is in agreement with the nearly planar loop ob-
served in the experiments [21].

Inserting the approximation of Eq. (2) into Eq. (1) and
eliminating ` in favor of k, we find an energy of the braid

Ebraid = − BL
4R2 + ε3

h BnπĒ(k̄), where Ē = k̄3+ 1
4k̄

and k̄ =

kh/ε = k
√
hR. Terms of order 1/n have been neglected

in Ē. The optimal wavenumber k is found by solving
∂kEbraid = 0, which yields ∂k̄Ē = 0 and consequently
k̄ = 1/ 4

√
12, or equivalently in physical variables,

k =
(√

12 (hR)
)−1/2

. (3)

In Fig. 2c, we compare the predicted wavelength,
2π/k = `/n = 2π 4

√
12
√
hR, against our experimental

data and find good agreement between the two, thereby
validating the analysis thus far. The total braid length
then reads ` = 2nπ/k = 2wc

√
2hR, where wc(n) =

π n/(
√

2 k̄) = 4
√

3π n in the large-n limit under consider-
ation. Extrapolating this formula to trefoil and cinque-
foil knots, even if not valid a priori since the assump-
tion of n � 1 is violated, yields wc(n = 1) = 4.13 and
wc(n = 2) = 8.27. These values are within 20% and 10%,
respectively, of the exact values of w∗c (n = 1) = 3.51 and
w∗c (n = 2) = 7.60, calculated by a numerical solution
that accounts for the boundary layers [19]. This sup-
ports the appropriateness of the helical approximation in
Eq. (2), even for small n.

Having characterized the geometry of the braid, we
proceed by evaluating the scalar contact force, P , in-
tegrated along the entire region of contact. Following a
variational approach, we consider a virtual increase, from
h to h+ dh, of the radius of the effective cylinder around
which the braid winds. The work done by the contact
force is Pdh. Since P appears to be the force conju-
gate to the cylinder radius h, its equilibrium value can
be calculated as P = ∂hEbraid = Ē(k̄)Bnπ/

√
4hR3, with

Ē(k̄) = 4/123/4 = 4k̄3 at equilibrium. This yields the
contact pressure P = 2nπBhk3 for large n, which can be
interpreted as the product of the braid length ` = 2nπ/k
with the lineic density of contact force, Bhk4, that is re-
quired to deform an elastic curve into a helix with radius
h and pitch 2π/k.

Using Coulomb’s law of friction, the integrated contact
force, P , can now be connected to the traction force, F ,
measured in the experiments. We further assume that
the braid remains nearly straight, and that the internal
force in the loop, ∼B/R2, is negligible compared to the
traction force, F , applied by the operator on the tails
(supported by our experimental data, since FR2/B & 20
for n ≥ 3, see Fig. 1f). Under these assumptions, the
main contribution to the traction force, F , arises pri-
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marily from friction. As such, F = µP , which after com-
bining with the expression for P derived above, yields

F

Bk2
= µ2πnhk. (4)

In Fig. 2d, we test this prediction against experiments by
plotting F/(Bk2) versus 2πnhk. All the data for knots
with different values of n collapse onto a linear master
curve. The slope is a measure of the dynamic friction
coefficient, µ = 0.119± 0.001, obtained by fitting.

Thus far, we have found two equations, Eqs. (3) and
(4), for the three unknowns (k, F,R) in terms of the pa-
rameters (n,B, h, µ). To close the system, we derive a
third equation by solving the non-linear planar Elastica
problem for the shape of the loop and obtain its arc-
length, λ, (and consequently also the end-to-end short-
ening, e = λ + `) as a function of both ` and R. Ow-
ing to scale invariance, this dependence is of the form
`2/(eR) = g(`/R), where the function g is expressed
in terms of elliptic integrals; see Supplemental Informa-
tion [21]. As a result of this analysis, we obtain the as-
pect ratio of the width to height of the loop, a = W/H,
as a function of n2h/e. In Fig. 3, we juxtapose this result
(dashed line) on top of our experimental data for all knots
(1 ≤ n ≤ 10) and find good agreement. The slight offset
of 16% may be attributed to the fact that in the exper-
imental knots, the boundary condition at the exit point
from the braid into the loop is not exactly θ(0) = π [21]
when ε is small but non-zero.

Compiling the various results obtained above – namely,
R = h/ε2, ` = 2nπ/k, `2 = eR g(`/R), as well as the
relation between k and F through Eqs. (3) and (4) – we
arrive at a complete solution for our knot problem:

n2h

e
=

1

8
√

3π2
g

[96
√

3π2

µ
· n

2Fh2

B

]1/3
 . (5)
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FIG. 3. Aspect ratio of the loop, a = W/H, as a function
of n2h/e. The dashed line (theory) was calculated by solving
the nonlinear planar Elastica problem of the loop [21].
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FIG. 4. When plotted using the dimensionless variables sug-
gested by the theory, the experimental traction curves (from
Fig. 1e.) for knots in the range 1 ≤ n ≤ 10 collapse onto a
master curve predicted by Eq. (5) (dashed line).

This expression captures the equilibrium of the loop
through the known non-linear function g, and offers a
self-contained (albeit implicit) prediction for the force F
as a function of the end-to-end shortening, e, which is the
control parameter. In Fig. 4, we compare this prediction
to our experimental results, for knots with 1 ≤ n ≤ 10,
using the value µ = 0.119 determined earlier. We find
that all the data collapse onto the master curve predicted
by Eq. (5) (dashed line) [21]. It is important to highlight
that, even though the analysis assumed n� 1, the agree-
ment is excellent for n ≥ 2 (and reasonable for n = 1).

This is the first time, to the best of our knowledge,
that precision model experiments and theory have been
tied together to untangle the influence of topology on the
mechanics of knots. Our predictive framework provides
concrete design guidelines for the choice of specific knot
topologies depending on targeted load bearing capacities.
Our work could potentially be extended to obtain stress-
strain relations in the braid to provide failure criteria.
Beyond overhand knots, we believe that the formalism
we have developed may be built upon to study the me-
chanics of more complex knot topologies and bundles,
where frictional interactions play a major role.
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