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Thin viscous fluid threads falling onto a moving belt behave in a way reminiscent of a sewing
machine, generating a rich variety of periodic stitch-like patterns including meanders, W-patterns,
alternating loops, and translated coiling. These patterns form to accommodate the difference be-
tween the belt speed and the terminal velocity at which the falling thread strikes the belt. Using
direct numerical simulations, we show that inertia is not required to produce the aforementioned
patterns. We introduce a quasi-static geometrical model which captures the patterns, consisting of
three coupled ODEs for the radial deflection, the orientation and the curvature of the path of the
thread’s contact point with the belt. The geometrical model reproduces well the observed patterns
and the order in which they appear as a function of the belt speed.

PACS numbers: 47.54.-r, 47.20.-k, 47.85.Dh, 46.32.+x

No-one who has played with pouring honey from a
spoon onto toast can fail to have been fascinated by the
peculiar dynamics of coiling and folding of the viscous
stream on impact. This surprisingly complex behavior
can be reproduced in a simple yet well-controlled exper-
iment, where a viscous thread falls onto a moving belt:
the patterns laid down by the thread are diverse, and
include meanders, alternating loops, W-pattern, coiling
(Fig. 1), as well as various resonant patterns such as dou-
ble coils and double meanders [1–3]. This system has
been thoroughly studied [1–5] but lacks a simple expla-
nation until now. The resemblance of these patterns to
the stitch patterns of a sewing machine led [1] to call the
system the “fluid mechanical sewing machine” (FMSM).
Some patterns (see Fig. 1a) produce evenly spaced self-
intersections which can serve as sacrificial bonds [6]: so-
lidified fibers containing such a micro-structure display
a combination of high toughness and stretchability, re-
vealed by mechanical tests [7], as they effectively repro-
duce nature’s design for spider silk [8]. Similar coiling
patterns can be found in a number of industrial or mun-
dane situations, such as the production of non-woven tex-
tiles [9], the laying down of “squiggles” of icing on cakes,
Jackson Pollock’s action painting, in which paint from a
moving brush dribbles onto a stationary horizontal can-
vas [10], or when transoceanic fiber-optic cables are de-
posited from a vessel onto the ocean bed [11]. The latter
are elastic rather than viscous [12–14], showing that the
patterns are robust with respect to a change in the thread
rheology.

In this Letter, we show that the patterns can be de-
scribed quantitatively by a non-linear ordinary differ-
ential equation which depends on three state variables
only, and is geometric in essence. This model builds
upon previous work which revealed a connection between

FIG. 1. (a) Direct numerical simulation, with no inertia, of a
thin thread of viscous fluid falling from a heightH∗ onto a belt
of velocity V ∗. Shown are four periodic orbits of the contact
point of the thread on the belt, and the corresponding spatial
patterns. (b) Phase diagram showing the distribution of pat-
terns in the dimensionless parameter plane (H,V ). The speed
Uc(H) at which the fluid coils in the absence of advection
(V = 0) is shown by the dashed line. Inset: same diagram,
with belt velocity rescaled by coiling velocity Uc(H). The
yellow dots correspond to experimentally measured thresh-
olds [3].
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the FMSM patterns and the well-studied case of steady-
coiling: in the laboratory frame, the motion of the point
where the thread makes contact with the belt involves
multiples or simple ratios of the steady-coiling frequency
Ωc [5]. Accordingly, our geometric model uses the po-
sition of this point as a state variable, as well as the
direction of the tangent to the thread. Before deriving
the model we perform direct simulations of the FMSM
with the Discrete Viscous Rods algorithm (DVR) [4, 5]
to propose a rationalization of the FMSM phase diagram
when inertia is negligible, i.e. for moderate fall heights.
Since this DVR algorithm is known to accurately pre-
dict the experimental FMSM patterns [4, 5], we will not
repeat a detailed comparison with experiments here.

Consider a thread with kinematic viscosity ν falling at
a volumetric rate Q∗ from a nozzle of dimensional height
H∗ onto a conveyor belt moving horizontally at speed
V ∗. The thread is stretched by gravity (denoted g) dur-
ing its fall so that the speed of the fluid increases with
distance from the nozzle. Balancing the gravitational
stretching with the viscous dissipation yields a typical
length scale (ν2/g)1/3 and time scale (ν/g2)1/3 that we
use to nondimensionalize our equations. In particular,
H = H∗(g/ν2)1/3 and V = V ∗/(νg)1/3 are the dimen-
sionless height of fall and belt velocity, respectively. By
varying these two parameters, one generates a phase dia-
gram for the FMSM [5]. Herein, we work with the typical
parameter values used in the literature [2, 3] such that
0.5 6 H 6 1.4. We artificially omit inertia in our simula-
tions, an assumption which is valid in almost this entire
range (specifically, for H 6 1.2, see §1 in S.I.) By doing
so, we find that all the simple patterns survive in this
quasi-static limit, see Fig. 1, thereby confirming that in-
ertia is irrelevant for moderate fall heights.

When the belt has velocity V = 0 the thread coils
steadily with a radius Rc, frequency Ωc and speed Uc =
RcΩc (steady coiling) [15]. When gradually increasing
the belt velocity while keeping other parameters con-
stant, the coiling pattern is first simply translated on the
belt (translated coiling) up to a certain critical value of
V where loops form alternatively on one side of the belt
and then the other (alternating loops). For higher belt
speeds the thread exhibits some meanders [16, 17] which
collapse to a straight line for a critical value of the belt
velocity Vc. For velocities higher than Vc the thread has a
catenary shape and its contact point with the belt is sta-
tionary in the laboratory frame. In the rest of the Letter
we concentrate on belt speeds in the range 0 6 V 6 Vc.
Three points are of particular interest. First, no double
patterns [5] such as the double coiling or double mean-
ders were found in these quasi-static conditions. This was
anticipated since such resonant patterns are typically ob-
served for large values of H where inertia is dominant in
normal conditions [5]. Second, we found hysteresis in the
critical belt velocity values corresponding to the transi-
tion between patterns. The data shown in Fig. 1b are for
a slowly accelerating belt. The case of a decelerating belt
is discussed at the end of the Letter. Third, we report

the presence of another pattern, the W-pattern, which
we found in limited portions of the diagram (see overlay
in Fig. 1b). It appears in competition with the mean-
ders after the alternating loops become unstable when
the belt speed is increased, and only then.

FIG. 2. The thread’s radius distribution a(z) normalized by
the nozzle’s radius a0 is identical for any pattern in the range
V < Vc. Stretching is limited to the upper part of the thread,
and the radius is constant near the belt.

For any height H, we can compute the steady coil-
ing velocity Uc ≡ RcΩc using the method of [18]. This
yields the dashed curve in Fig. 1b. The curve matches
the lower boundary of the grey region (straight pattern),
which reveals that the onset of steady coiling matches
accurately the critical velocity Vc = Uc. The central role
played by the reduced velocity V/Uc in the formation of
the patterns becomes even more evident when one plots
the phase diagram in terms of V/Uc, see inset in Fig 1b:
then, all boundaries between patterns become horizon-
tal straight lines. This important finding shows that the
only influence of the height of fall on the patterns is to set
the value of the reduced velocity V/Uc(H): the patterns
can be rationalized strictly in terms of the parameter
V/Uc(H). This is confirmed by the collapse of the exper-
imental measurements from Ref. [3] (for low fall heights
hence negligible inertia) onto horizontal bands in Fig 1b.

The reason why V/Uc is the only relevant parameter
may be understood by analyzing the thread’s radius pro-
file a(z) for different V while keeping H constant, i.e.
moving vertically in the phase diagram and browsing
through the different patterns. We do so in Fig 2 and
find that all the curves a(z) collapse onto a single master
curve. In the upper part of the master curve, called the
tail, the thread is accelerated and stretched by gravity
until it reaches a terminal radius ac. Both this radius
and the speed Q/(πa2c) at which the thread arrives on
the belt are found to be approximately independent of V
in the range 0 6 V 6 Vc. As a consequence the thread
speed may be called the free-fall speed [1] and is equal
to the coiling speed Uc (observed when V = 0) which
solely depends on H. In general Uc and V do not match
and there is a small region near the lower end of the
thread, called the heel in Fig.1, where the thread bends
and twists while keeping a constant radius. The patterns
are produced as the heel is set in motion to satisfy the
no-slip boundary condition at the contact point between
thread and belt:

Uc t + V ex = ṙ (1)

Here we use the notation introduced in Fig. 3: t is the
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FIG. 3. Geometrical model, in the plane of the belt: trace
q (thick black curve) with arc-length s, orbit of the contact
point (dashed red curve), and projection O of the nozzle onto
the belt’s plane. The curvature of the thread is assumed to
be a function of the polar coordinates (r, φ) of the point of
contact r.

unit tangent to the thread at the point of contact r with
the belt, ṙ is the velocity in the laboratory frame of this
non-material point, and ex is a unit vector in the direc-
tion of belt motion. The limiting case of steady coil-
ing corresponds to V = 0 and ṙ = Uc t, and the case
of a straight (catenary) pattern corresponds to ṙ = 0,
t = −ex and V = Uc. In the general case V/Uc < 1, the
speed at which the thread arrives at the belt exceeds the
belt’s ability to carry it away in a straight line (ṙ 6= 0
in equation above). This excess length of thread is ac-
cumulated on the belt in the form of patterns produced
as the heel lays down on the belt. This agrees with our
initial observation that the critical velocity at which the
straight pattern appears is Vc = Uc, see Fig 1b.

We now turn to the task of characterizing and model-
ing the heel boundary layer where the deposition takes
place. Since bending stresses are dominant in the heel,
we anticipate that the curvature κ of the thread at the
point of contact plays a key role in the pattern formation.
Working in the quasi-static (inertialess) limit, we assume
that the shape of the hanging thread (and in particular
its curvature near the point of contact) is only a function
of the current boundary conditions applied to the thread.
The boundary conditions at the nozzle are time-invariant
as the fall height and flow rates are fixed. Therefore, we
view the curvature κ at the bottom of the hanging thread
as a function of the position r of the point of contact
and the orientation of the tangent t. The equations for
the hanging thread are cylindrically invariant, and there-
fore we have κ = κ(r, φ), where φ is the direction of the
tangent relative to the line joining the projection of the
nozzle O to the point of contact r (Fig. 3). The function
κ(r, φ) is found by fitting DVR simulations of translated
coiling for the case H = 0.6 and 0 < V/Uc < 0.4 (darker
red bar in the lower left corner of Fig. 1b). As explained
in the S.I., §2.1, time series of (r, φ, κ) for the translated
coiling pattern are well approximated by the heuristic fit

κ(r, φ) =
1

Rc

√
r

Rc

(
1 +A(φ)

r

Rc

)
sin φ (2)

FIG. 4. Collapse of the DVR simulation data for the rescaled
curvature as a function of φ, for the translated coiling pattern
(H = 0.6 and 0 < V/Uc < 0.4, see darker red bar in the lower
left corner of Fig. 1b). See Supplementary Information for
details.

where A(φ) = b2 cosφ/(1 − b cosφ) and b = 0.715 and
Rc is the radius of steady coiling [15]. Fig 4 shows the
collapse of the numerical data obtained from Eq. (2). The
result of this fitting procedure is robust with respect to
the particular value of H chosen (see §2.2 in the S.I.)

Building on our previous observations, we now derive
a quasi-static geometric model for the formation of the
trace. The heel is modeled as a filament of uniform ra-
dius falling towards the belt at a velocity Uc, which is
bent and laid down quasi-statically onto the belt. Let s
be the arc-length along the trace, with s = 0 correspond-
ing to the point which contacted the moving belt at time
t = 0 and s = Uct corresponding to the current point of
contact r. We label material points in the trace by their
(Lagrangian) coordinate s. We also use s as a time-like
variable and write r(s) for the contact position at time
t = s/Uc. Let q(s, t) be the position on the belt of the
point s at time t, with 0 ≤ s ≤ Uct. This point was
deposited at time s/Uc at position r(s), and has subse-
quently been advected at velocity V ex by the belt. Thus

q(s, t) = r(s) + V (t− s/Uc) ex. (3)

In our model of the thread, the dynamical quantities of
interest are the contact position r, and the tangent vector
t and curvature κ at the point of contact. At any point
s, the tangent to the trace is ∂q/∂s. In particular, at the
point of contact t(s) = ∂q/∂s|s=Uc t

= r′(s) − V/Uc ex,

and we recover Eq. (1) with r′ = ṙ/Uc. Now let
(r(s), ψ(s)) denote the polar coordinates of the contact
point r(s) as shown in Fig. 3, and let θ(s) denote the an-
gle from the x-axis to t(s). We resolve r′, t and ex into
the polar basis (er, eψ), and use φ = θ − ψ to eliminate
the dependence on φ:

r′ = cos(θ − ψ) +
V

Uc
cosψ (4a)

r ψ′ = sin(θ − ψ)− V

Uc
sinψ. (4b)

Finally, θ′ is the curvature of the trace at the contact
point, which has been found in Eq. (2) in terms of a
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FIG. 5. (a) The four periodic orbits r(s) obtained with the
GM and (b) the corresponding patterns q(s, t) (green), com-
pared to the pattern obtained with DVR simulations (brown)
for identical ratios V/Uc. (c) Patterns encountered with DVR
while quasi-statically increasing the ratio V/Uc (resp. de-
creasing, as indicated by the arrows) along with the stabil-
ity domains and bifurcation analysis computed with the GM
(green): period doubling (PD), fold point (LP), torus bifur-
cation (TR).

fitting function κ:

θ′ = κ(r, θ − ψ). (4c)

Equations (4a–4c) are a set of coupled ordinary non-
linear differential equations for the functions r = r(s),
ψ = ψ(s) and θ = θ(s), depending on a single dimen-
sionless parameter V/Uc — the parameter Rc in equa-
tion (2) sets a lengthscale for r and s, and can be re-
moved by rescaling. We refer to this system of differential
equations as the geometrical model (GM). The kinematic
equations (4a–4b) capture the coupling with the moving
belt, while equation (4c) captures the shape of the hang-
ing thread as set by the balance of viscous forces and
gravity. We integrated the GM numerically, varying the
velocity parameter in the range 0 6 V/Uc 6 1 (Fig 5).
The solutions r(s) were found to settle into periodic or-

bits, see Fig. 5a. The patterns corresponding to the dif-
ferent orbits can be identified by reconstructing the com-
plete trace q from Eq. (3), and then compared to those
obtained by DVR simulations, see Fig. 5b. With the aim
to calculate the bifurcation thresholds accurately and to
identify the nature of the bifurcations, we also investi-
gated the stability domains of the periodic solutions of
the GM using the continuation software AUTO 07p [19],
see Fig. 5c.

All the patterns originally observed with DVR in the
quasi-static (non-inertial) limit are captured by the GM.
They appear in the correct order when V/Uc is varied,
and there is a good agreement on the values of the pat-
tern boundaries, see Fig. 5c. Their shapes are accurately
captured as well, see Fig. 5b. Alternating loops and me-
anders are symmetric about y = 0 in their full domain
of existence, both in DVR simulations and in the GM.
The alternating loops, and the amplitude of meanders
both decrease as the belt velocity increases and the latter
tends to zero when V = Uc, as expected. Coils are sym-
metric at zero belt velocity, but then turn asymmetric
at larger velocities. W-patterns are, on the other hand,
always asymmetric.

Interestingly, the GM sheds light on two subtle features
of the FMSM. First, it accounts for the hysteresis ob-
served in DVR when transitions between patterns occur
at different values depending on whether the belt veloc-
ity is increasing or decreasing: the domains of stability of
the various patterns predicted by the GM do indeed over-
lap, see Fig. 5c. Second, it explains why the W-pattern
can be observed in DVR with an increasing belt velocity,
but not with a decreasing one. Indeed, the layout of the
stability diagram of the GM in Fig. 5c predicts that me-
anders will destabilize directly into alternated loops for
a decreasing belt velocity, skipping the W-pattern.

The geometrical model is formulated as an evolution
problem for the position of the contact point, with an
additional dependence on the tangent orientation. This
dependence induces a memory effect which explains the
complexity of the patterns, even in the absence of inertia.
The central role of geometry explains the robustness of
the patterns with respect to the rheology of the thread.
By condensing the dynamics of the spatially extended
thread to that of a single point, we could interpret the
patterns using methods from the field of dynamical sys-
tems, rather than pattern formation [20]. From an ap-
plicative point of view, the FMSM suits the inertialess
environment associated with fabrication at the micro-
scale [21]. Modulating the orientation and lateral po-
sition of the belt or nozzle offers an interesting avenue to
extend the library of patterns, thereby offering a possible
alternative to 3D printing [22] and electro-spinning [23]:
our GM allows these modulations to be designed in a
rational way.
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