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ABSTRACT
In this paper we propose to generalize Jaccard and related measures,

often used as similarity coefficients between two sets. We define

Jaccard, Dice-Sorensen and Tversky edge weights on a graph and

generalize them to account for vertex weights. We develop an effi-

cient parallel algorithm for computing Jaccard edge and PageRank

vertex weights. We highlight that the weights computation can

obtain more than 10× speedup on the GPU versus CPU on large re-

alistic data sets. Also, we show that finding a minimum balanced cut

for modified weights can be related to minimizing the sum of ratios

of the intersection and union of nodes on the boundary of clusters.

Finally, we show that the novel weights can improve the quality

of the graph clustering by about 15% and 80% for multi-level and

spectral graph partitioning and clustering schemes, respectively.
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1 INTRODUCTION
Many processes in physical, biological and information systems are

represented as graphs. In a variety of applications we would like to

find a relationship between different nodes in a graph and partition

it into multiple clusters. For example, graph matching techniques
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can be used to build an algebraic multigrid hierarchy and graph

clustering can be used to identify communities in social networks.

In this paper we start by reviewing the Jaccard, Dice-Sorensen

and Tversky coefficients of similarity between sets [7, 11, 27, 29].

Then, we show how to define graph edge weights based on these

measures [26]. Further, we generalize them to be able to take advan-

tage of the vertex weights and show how to compute these using

the PageRank algorithm [24]. These modified weights can help to

naturally express the graph clustering information. For instance,

the graph representing the Amazon book co-purchasing data set

[2, 19, 23] with original weights is shown on Fig. 1, while the effect

of using modified weights is illustrated on Fig. 2, where thicker

connections and larger circles indicate larger Jaccard and PageR-

ank weights, respectively. The graph has two apparently distinct

clusters, which are easier to visually identify with Jaccard weights.

We will show that they are also algorithmically easier to compute.

Figure 1: Amazon book co-purchasing original graph

Figure 2: Amazon book co-purchasing graph with Jaccard

https://doi.org/10.1145/3148226.3148231
https://doi.org/10.1145/3148226.3148231
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We develop an efficient parallel algorithm for computing Jaccard

edge and PageRank vertex weights. We highlight that the Jaccard

weights computation can obtain more than 10× speedup on the

GPU versus CPU. Also, we show that the modified weights, when

combined with multi-level partitioning [15, 16] and spectral clus-

tering schemes [21, 22], can improve the quality of the minimum

balanced cut obtained by these schemes by about 15% and 80%, re-

spectively. Finally, we relate the Jaccard weights to the intersection

and union of nodes on the boundary of clusters.

In Sections 2 and 3, we define Jaccard and related measures

as edge weights. We show how to compute them in parallel in

Section 4. In Section 5, we propose to account for vertex weights,

which can be computed by PageRank. In Section 6, we show that

the combination of these novel weights can improve the spectral

clustering of large networks. Finally, we present the experimental

results in Section 7.

2 JACCARD AND RELATED COEFFICIENTS
The Jaccard coefficient is often used as a measure of similarity

between sets S1 and S2 [11, 20]. It is defined as

J (S1,S2) =
|S1 ∩ S2 |

|S1 ∪ S2 |
(1)

where |.| denotes the cardinality of a set. Notice that J (S1,S2) ∈
[0,1], with minimum 0 and maximum 1 achieved when the sets are

disjoint S1∩S2 = {∅} and the same S1 ≡ S2, respectively. It is closely
related to the Tanimoto coefficient for bit sequences [25, 28].

Also, Jaccard coefficient is related to the Dice-Sorensen coeffi-

cient [7, 27] often used in ecology and defined as

1

2

D (S1,S2) =
|S1 ∩ S2 |

|S1 | + |S2 |
=

|S1 ∩ S2 |

|S1 ∪ S2 | + |S1 ∩ S2 |
(2)

and Tversky index [29] used in psychology and defined as

Tα ,β (S1,S2) =
|S1 ∩ S2 |

α |S1 − S2 | + β |S2 − S1 | + |S1 ∩ S2 |
(3)

where S1 − S2 is a relative complement of set S2 in S1 and scalars

α ,β ≥ 0. Notice that we may write T1
2
, 1
2

(S1,S2) = D (S1,S2) and

T1,1 (S1,S2) = J (S1,S2).

3 JACCARD AND RELATED EDGEWEIGHTS
Let a graph G = (V ,E) be defined by its vertex V and edge E
sets. The vertex set V = {1, ...,n} represents n nodes and edge set

E = {(i1, j1), ..., (im , jm )} representsm edges. Also, we associate a

nonnegative vertex vi ≥ 0 and edge wi j ≥ 0 weights with every

node i ∈ V and edge (i, j ) ∈ E in a graph, respectively.

Let the adjacency matrix A = [ai j ] corresponding to a graph

G = (V ,E) be defined through its elements

ai j =

{
wi j ∈ E
0 otherwise

(4)

We will assume that the graph is undirected, withwi j ≡ w ji , and

therefore A is a symmetric matrix.

Let us define a neighbourhood of a node i as the set of nodes
immediately adjacent to i , so that

N (i ) = {j | (i, j ) ∈ E} (5)

For example, for the unweighted graph shown on Fig. 1 the

neighbourhood N (3) = {2,4,5}.

1 2

3

4

5

Fig. 3: An example graph G = (V ,E)

In order to setup Jaccard-based clustering, we propose to de-

fine the following intermediate edge weights in the graph. The

intersection weight

w
(I )
i j =

∑
k ∈N (i )∩N (j )

vk (6)

the sum weight

w
(S )
i j =

∑
k ∈N (i )

vk +
∑

l ∈N (j )

vl (7)

the complement weight

w
(C )
i j =

∑
k ∈N (i )

vk −w
(I )
i j (8)

and the union weight

w
(U )
i j = w

(S )
ji −w

(I )
i j (9)

= w
(C )
i j +w

(C )
ji +w

(I )
ji (10)

For instance, for the special case of unweighted graphs, with

vi = 1 andwi j = 1, we can omit the vertex weight and write these

weights as

w
(I )
i j = |N (i ) ∩ N (j ) | (11)

w
(S )
i j = |N (i ) | + |N (j ) | (12)

w
(C )
i j = |N (i ) | − |N (i ) ∩ N (j ) | = |N (i ) − N (j ) | (13)

w
(U )
i j = |N (i ) | + |N (j ) | − |N (i ) ∩ N (j ) |

= |N (i ) − N (j ) | + |N (j ) − N (i ) | + |N (i ) ∩ N (j ) |

= |N (i ) ∪ N (j ) | (14)

Then, we can define Jaccard weight as

w
(J )
i j = w

(I )
i j /w

(U )
i j (15)

Dice-Sorensen weight as

w
(D)
i j = w

(I )
i j /w

(S )
i j (16)

Tversky weight as

w
(T )
i j = w

(I )
i j /(αw

(C )
i j + βw

(C )
i j +w

(I )
i j ) (17)
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For example, for the unweighted graph on Fig. 1 the original

adjacency matrix can be written as

A(O) =



1

1 1 1

1 1 1

1 1

1



(18)

while based on Jaccard weights it can be written as

A(J ) =



0

0 1/5 1/4

1/5 1/4 0

1/4 1/4

0



(19)

Notice that if we simply use the Jaccard weights the new graph

might become disconnected. For instance, in our example the inter-

sections of neighborhoods of N (1) ∩ N (2) and N (3) ∩ N (5) are
empty {∅} and consequently nodes 1 and 5 are disconnected from

the rest of the graph. While it is possible to work with disconnected

graphs, in many scenarios such change in the graph properties is

undesirable.

Also, notice that the original weightsw
(O)
i j have arbitrary mag-

nitude, while Jaccard weightw
(J )
i j ∈ [0,1]. Therefore, adding these

weights might result in non uniform effects on different parts of

the graph (with small and large original weights) and make these

effects scaling dependent.

In order to address these issues we propose to combine Jaccard

and original weights in the following fashion

w
(∗)
i j = w

(O)
i j

(
1 +w

(J )
i j

)
(20)

Notice that in this formula the Jaccard weight is used to strengthen

edges with large overlapping neighbourhoods.

In the next section we will show how we can efficiently compute

Jaccard weights in parallel on the GPU. The Dice-Sorensen and

Tversky weights can be computed similarly.

4 PARALLEL ALGORITHM
The graph and its adjacency matrix can be stored in arbitrary data

structures. Let us assume that we use the standard CSR format,

which simply concatenates all non-zero entries of the matrix in

row-major order and records the starting position for the entries of

each row. For example, the adjacency matrix (18) can be represented

using three arrays

Ap = [0,1,4,7,9,10]

Ac = [1; 0,2,3; 1,3,4; 1,2; 2]

Av = [1; 1,1,1; 1,1,1; 1,1; 1] (21)

where “;" denotes the start of elements in a new row.

Then, the intersection weights in (6) can be computed in parallel

using Alg. 1, where the binary search is done according to Alg. 2.

Notice that in Alg. 1 we perform intersections on sets corresponding

to neighbourhoods of nodes i and j. These sets have potentially
different number of elements Ni = ei − si and Nj = ej − sj . In order

to obtain better computational complexity we would like to perform

the binary search on the largest set. In the above pseudo-code we

have implicitly assumed that the smallest set corresponds to node i .
In practice, we can always test the set size by looking at whether

Ni < Nj and flip-flop indices i and j if needed.

Algorithm 1 Intersection Weights

1: Let n andm be the # of nodes and edges in the graph.

2: Let Ap, Ac and Av represent its adjacency matrix A(O)
.

3: Initialize all weightsw
(I )
i j to 0.

4: for i = 1, ...,n do in parallel
5: Set si = Ap[i] and ei = Ap[i + 1]
6: for k = si , ...,ei do in parallel
7: Set j = Ac[k]
8: Set sj = Ap[j] and ej = Ap[j + 1]
9: for z = si , ...,ei do in parallel ▷ Intersection

10: l = binary_search(Ac[z],sj ,ej − 1,Ac)
11: if l ≥ 0 then ▷ Found element

12: AtomicAdd(w
(I )
i j ,Av[l]) ▷ Atomic Update

13: end if
14: end for
15: end for
16: end for

Algorithm 2 binary_search(i,l ,r ,x)

1: Let i be the element we would like to find.

2: Let left l and right r be the end points of a set.

3: Let sorted set elements be located in array x.
4: while l ≤ r do
5: m = (l + r )/2 ▷ Find middle of the set

6: j = x[m]

7: if j > i then
8: Set r =m − 1 ▷ Move right end point

9: else if j < i then
10: Set l =m + 1 ▷ Move left end point

11: else
12: Returnm ▷ Done, element found

13: end if
14: end while
15: Return −1 ▷ Done, element not found

Algorithm 3 Sum Weights

1: Let n andm be the # of nodes and edges in the graph.

2: Let Ap, Ac and Av represent its adjacency matrix A(O)
.

3: for i = 1, ...,n do in parallel
4: Set si = Ap[i] and ei = Ap[i + 1]
5: Set Ni = sum(si ,ei ,Av)
6: for k = si , ...,ei do in parallel
7: Set j = Ac[k]
8: Set sj = Ap[j] and ej = Ap[j + 1]
9: Set Nj = sum(sj ,ej ,Av)

10: Setw
(S )
i j = Ni + Nj

11: end for
12: end for
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Then, the sum weights in (7) can be computed using the parallel

Alg. 3, where the sum operation on line 6 and 10 can be written for

general graphs as

sum(s,e,Av) = Av[s] + Av[s + 1] + ... + Av[e] (22)

and for unweighted graphs as

sum(s,e,Av) = 1 + ... + 1 = e − s (23)

Finally, the union and the corresponding Jaccard weights can be

obtained using (9) and (15), respectively.

Let us assume a standard theoretical PRAM (CREW) model for

analysis [12]. Notice that the sequential complexity of Alg. 1 is

n∑
i=1

Ni∑
j=1

Ni logNj (24)

and, assuming we can store intermediate results, of Alg. 3 is

n∑
i=1

logNi +m (25)

where Ni = |N (i ) | is the number of elements in each row. However,

the complexity of both algorithms is

max

i
logNi (26)

using nmaxi N
2

i andm processors, respectively, which illustrates

the degree of available parallelism.

Also, notice that Alg. 1 can be interpreted as sparsematrix-matrix

multiplication AAT , where only elements that are already present

in the sparsity pattern of A are left, in other words, we do not allow

any fill-in in the result.

The performance of the parallel implementation in CUDA of the

algorithm for computing Jaccard weights on the GPU is shown in

Fig. 4. Notice that we compare it with sequential (single thread) as

well as openMP (12 threads) implementation of the algorithm on the

CPU, with hardware details specified in the numerical experiments

section. We often obtain a speedup above 10× on the data sets from

Tab. 3. The details of the experiments are provided in Tab. 1.

Figure 4: Speedup when computing Jaccard Weights

# CPU (1 thread) CPU (12 threads) GPU

1. 155 86 5

2. 193 125 8

3. 172 82 4

4. 340 77 9

5. 9401 2847 308

6. 13514 5130 538

7. 65582 34646 502

8. 337870 109541 12751

Table 1: Time(ms) needed to compute Jaccard weights

5 PAGERANK AND VERTEXWEIGHTS
The PageRank algorithm measures the relative importance of a

vertex compared to other nodes in the graph. Therefore, it is natural

to incorporate the vertex weights vk to measure the importance of

neighbourhoods, as shown on Fig. 2.

In this section, we will show how to compute vertex weights

based on the PageRank algorithm [24], which has been a key fea-

ture of search and recommendation engines for years [5, 18]. Recall

that the PageRank algorithm is based on a discrete Markov process

(Markov chain), a mathematical system that undergoes transitions

from one state to another and where the future states depend only

on the current state. It can be represented as a transition matrix

P = [pi j ], where the off-diagonal elements correspond to the proba-

bilities of transitioning between i-th and j-th states. Therefore, the

transition matrix allows us to move from the vector of current sk
to the vector of next states using sTk+1 = sTk P .

In PageRank the transition matrix

P = H + bwT
(27)

where the matrixH = [hi j ] represents the probabilities of following
links between connected pages, so that

hi j =

{
1/d(i ) if there is an outgoing link from i to j
0 otherwise,

(28)

the bookmark vector b = [bi ]marks the dangling pages (also called

leaf pages) without outgoing links, so that

bi =

{
1 if there are no outgoing links from i
0 otherwise,

(29)

the probability vector w = [wi ] satisfies wT e = 1 and gives the

probability of transitioning to page i from a dangling page, d(i )
denotes the number of outgoing links from i-th page and vector

eT = (1, ...,1).
The matrix P is often further modified to allow for personaliza-

tion, so that we finally obtain the Google matrix

G = αP + (1 − α )epT (30)

where constant α ∈ [0,1] and personalization vector p = [pi ]
satisfies pT e = 1 and gives the probability of transitioning to page

i at any moment.

Notice that matrix G is row-stochastic. Therefore, it has non-

negative elements and satisfies Ge = e, with a comprehensive

analysis of its properties done in [3–6, 9]. The rank vi of page i is



Parallel Jaccard and Related Graph Clustering Techniques ScalA17, November 12–17, 2017, Denver, CO, USA

given by the rank vector v = [vi ] that satisfies

vTG = vT (31)

and corresponds to the left eigenvector associated with the largest

eigenvalue λ = 1 of nonsymmetric matrix G. This vector is some-

times referred to as the stationary distribution (or equilibrium)

vector of the Markov chain.

The PageRank vector v is often computed using Power method

withGT
[1, 13, 14], as shown in Alg. 4. Notice that in this algorithm

we never form the Google matrix explicitly, but rather replicate its

action on a vector using matrix HT
and rank-one updates.

Algorithm 4 PageRank

1: Let P be the transition matrix.

2: Let b be the bookmark vector.

3: Let w be the probability vectors (often w = 1

n e).
4: Let p be the personalization vector (may be p = 1

n e).
5: Let v0 be the initial guess.
6: for i=0,1,2,...,convergence do ▷ Power method

7: Compute βi = αbT vi
8: Compute γi = (1 − α )eT vi
9: Compute zi+1 = αHT vi + βiw + γip ▷ zi+1 = Gvi
10: Compute vi+1 = zi+1/| |zi+1 | |2
11: end for

Figure 5: Speedup when computing PageRank

CPU (12 threads) GPU

# time it. | |rk | |2/| |r0 | |2 time it. | |rk | |2/| |r0 | |2
1. 61 17 8.3e-06 7 17 8.3e-06

2. 393 76 9.0e-06 29 76 9.0e-06

3. 461 51 9.9e-06 24 51 9.9e-06

4. 470 57 8.9e-06 30 57 8.9e-06

5. 1721 51 2.4e-06 156 51 2.4e-06

6. 1615 53 2.7e-06 157 53 2.7e-06

7. 5228 74 6.6e-06 188 74 6.6e-06

8. 6650 49 1.1e-06 442 49 1.1e-06

Table 2: Time(ms) needed to compute PageRank

The speedup and performance of the parallel CUDA implementa-

tion of the algorithm for computing PageRank on the GPU is shown

in Fig. 5 and Tab. 2, respectively. In these experiments we compare

the parallel CUDA implementation with the Intel MKL implemen-

tation on the CPU, using all available threads. Both device and host

implementations take advantage of the sparse matrix-vector mul-

tiplication building block implemented in the CUSPARSE library

and Intel MKL, respectively. Further hardware details are specified

in the numerical experiments section.

Notice that we often obtain a speedup above 10× on the realistic

data sets from Tab. 3. In both implementations we always use the

same initial guess and stopping criteria, based on the maximum

number of iterations being < 100 and relative residual < 10
−5
.

Therefore, the obtained iteration count (it.) and relative resiudual

(| |rk | |2/| |r0 | |2) are equals across CPU and GPU, as shown in Tab. 2.

6 GRAPH CLUSTERING
In graph clustering a vertex setV is often partitioned into p disjoint

sets Sk , such that V = S1 ∪ S2... ∪ Sp and Si ∩ Sj = {∅} for i , j
[16, 21]. Notice that instead of the original graph G = (V ,E) we

can use the modified graphG (∗) = (V (∗) ,E (∗) ), with vertexv
(∗)
i and

edge w
(∗)
i j weights computed based on PageRank and Jaccard or

related schemes discussed in earlier sections.

6.1 Jaccard Spectral Clustering
Notice that we can define the Laplacian as

L(∗) = D (∗) −A(∗)
(32)

where D (∗) = diag(A(∗)e) is the diagonal matrix.

Then, we would minimize the normalized balanced cut

η̃(S1, ...,Sp ) = min

S1, ...,Sp

p∑
k=1

vol(∂(Sk ))

vol(Sk )

= min

U TD (∗)U=I
Tr(UT L(∗)U ) (33)

where Tr(.) is the trace of a matrix, boundary edges

∂S = {(i, j ) | i ∈ S ∧ j < S } (34)

and volume

vol(S ) =
∑
i ∈S

w
(∗)
i j (35)

vol(∂S ) =
∑

(i,j )∈∂(S )

w
(∗)
i j =

∑
(i,j )∈∂(S )

w
(O)
i j

*.
,
1 +

w
(I )
i j

w
(U )
i j

+/
-

by finding its smallest eigenpairs and transforming them into as-

signment of nodes into clusters [22]. Notice that Jaccard weights

correspond to the last term in the above formula, and are related

to the sum of ratios of the intersection and union of nodes on the

boundary of clusters.

Also, we point out that we choose to use normalized cut spectral

formulation because it is invariant under scaling. Notice that based

on (20) the edge weightw
(∗)
i j ≥ w

(O)
i j . Therefore, to avoid artificially

higher/lower scores when comparing quality, we need to use a

metric that is invariant under edge weight scaling. To illustrate this

point suppose that for a given assignment of nodes into clusters the

edge weights are multiplied by 2. The clustering has not changed

and normalized score stays the same, while ratio cut score increases

and therefore is not an appropriate metric for our comparisons.
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Finally, we show the assignment of nodes into clusters based

on Jaccard and PageRank weights for a realistic Amazon book co-

purchasing data set [2, 19] on Fig. 6. Notice that use of Jaccard edge

and PageRank vertex weights lead to visually intuitive discovery

of clusters.

Figure 6: Amazon book co-purchasing graph clustering with
PageRank vertex and Jaccard edge weights

6.2 Tversky Spectral Clustering
So far we have essentially defined Tversky clustering for a special

cases T1,1 (S1,S2) = J (S1,S2). We note that further generalization

is possible by introducing

A(T ) = A(I ) ⊘ (αL(C ) + βU (C ) +A(I ) ) (36)

where L(C )
is lower andU (C )

is upper triangular part of the matrix

A(C ) = [a
(C )
i j ] with elements a

(C )
i j = w

(C )
i j corresponding to com-

plement weights, A(I )
is a matrix with intersection weights and ⊘

operation corresponds to Hadamard (entry-wise) division.

However, we point out that we can only compute Tversky cluster-

ing analogously to Jaccard clustering when the scaling parameters

α = β . Notice that if α , β then the adjacency matrix A(T )
and the

corresponding Laplacian matrix L(T )
are not symmetric. Therefore,

the Courant-Fischer theorem [10] is no longer applicable and the

minimum of the objective function η̃ in (33) no longer corresponds

to the smallest eigenvalues of the Laplacian.

6.3 Profiling
Notice that the computation of Jaccard and PageRank weights is

often a small fraction < 20% of the total computation time, see Fig.

7. In fact the profiling of the complete spectral clustering pipeline

on the GPU shows that most time > 80% is actually spent in the

eigenvalue solver. In our code we rely on the LOBPCG method [17],

which has been shown to be effective for Laplacian matrices [22].

The second most time consuming operation is the computation

of PageRank vertex weights. Notice that PageRank also solves an

eigenvalue problem, but it finds the largest eigenpairs of the Google

matrix and therefore is significantly faster than LOBPCG, which

looks for the smallest eigenpairs. We point out that the PageRank

computation is optional and can be skipped if needed.

Finally, the computation of Jaccard edge weights is only the third

most time consuming operation. Notice that our implementation

supports weighted vertices by design, so that there is no extra cost

for using the vertex weight resulting from PageRank or any other

algorithm.

Figure 7: Profile of spectral clustering with PageRank vertex
and Jaccard edge weights

7 NUMERICAL EXPERIMENTS
Let us now study the performance and quality of the clustering

obtained using Jaccard weights on a sample of graphs from the

DIMACS10, LAW and SNAP graph collection [30], shown in Tab. 3.

# Matrix n = |V| m = |E| Application

0. smallword 100,000 999,996 Artificial

1. preferentialA... 100,000 499,985 Artificial

2. caidaRouterLevel 192,244 609,066 Internet

3. coAuthorsDBLP 299,067 977,676 Coauthorship

4. citationCiteseer 268,495 1,156,647 Citation

5. coPapersDBLP 540,486 15,245,729 Affiliation

6. coPapersCiteseer 434,102 16,036,720 Affiliation

7. as-Skitter 1,696,415 22,190,596 Internet

8. hollywood-2009 1,139,905 113,891,327 Coauthorship

Table 3: General information on networks

In our spectral experiments we use the nvGRAPH 9.0 library and

let the stopping criteria for the LOBPCG eigenvalue solver be based

on the norm of the residual corresponding to the smallest eigenpair

| |r1 | |2 = | |Lu1 − λ1u1 | |2 ≤ 10
−4

and maximum of 40 iterations,

while for the k-means algorithm we let it be based on the scaled

error difference |ϵl −ϵl−1 |/n < 10
−2

between consecutive steps and

a maximum of 16 iterations [22].

In our multi-level experiments we use the METIS 5.1.0 library

and choose the default parameters for it [15]. Also, we plot the

quality improvement as a percentage of the original score based on

100% × (η̃ (modif ied ) − η̃ (or iдinal ) )/η̃ (or iдinal ) .
All experiments are performed on a workstation with Ubuntu

14.04 operating system, gcc 4.8.4 compiler, Intel MKL 11.0.4, CUDA

Toolkit 9.0 software and Intel Core i7-3930K CPU 3.2 GHz and

NVIDIA Titan Xp GPU hardware. The performance of algorithms

was always measured across multiple runs to ensure consistency.
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7.1 Multi-level Schemes (CPU)
Let us first look at the impact of using Jaccard weights in popular

multi-level graph partitioning schemes, that are implemented in

software packages such as METIS [15, 16]. These schemes agglom-

erate nodes of the graph in order to create a hierarchy, where the

fine level represents the original graph and the coarse level repre-

sents its reduced form. The partitioning is performed on the coarse

level and results are propagated back to the fine level.

Figure 8: Improvement in the quality of partitioning ob-
tained by METIS, with Jaccard and Jaccard-PageRank for
coPapersCitseer graph

In our experiments we compute the modified vertex v
(∗)
i and

edge w
(∗)
i j weights ahead of time and supply them to METIS as

one of the parameters. We measure the quality of the partitioning

using the cost function η̃ in (33) and plot it over different number

of cluster for the same coPaperCitseer network. The obtained

improvement in quality when using Jaccard and Jaccard-PageRank

versus original weights is shown in Fig. 8.

Notice that using Jaccard and Jaccard-PageRank weights helped

improve METIS partitioning by 18% and 21% on average, respec-

tively. This is a moderate but steady amelioration, taking values

within a range of 7% to 25% for Jaccard and 15% to 26% with addi-

tional PageRank information.

7.2 Spectral Schemes (GPU)
Let us now look at using Jaccard weights in spectral schemes, that

are implemented in the nvGRAPH library. These schemes often

use the eigenpairs of the Laplacian matrix and subsequent post-

processing by k-means to find the assignment of nodes into clusters.

In our experiments we measure the quality of clustering using

the cost function η̃ in (33) and plot it over different number of cluster

for the same coPapersDBLP network. The obtained improvement in

quality when using Jaccard and Jaccard-PageRank versus original

weights is shown in Fig. 9. Notice that in spectral clustering it is

possible to compute a smaller number of eigenpairs than clusters [8]

and in these experiments we have varied them synchronously until

32, after which we have fixed the number of eigenpairs pairs and

increased the number of clusters only. The limit of 32 was chosen

somewhat arbitrarily based on tradeoffs between computation time,

memory usage and quality.

Figure 9: Improvement in the quality of partitioning ob-
tained bynvGRAPH,with Jaccard and Jaccard-PageRank for
coPaperDBLP graph

Notice that using Jaccard and Jaccard-PageRank weights we

often obtain a significant improvement of up to 160% in the quality

of clustering up to about 32 clusters. Then, the improvement tails

off up to 20% for a larger number of clusters. This happens in part

because as mentioned in previous paragraph we do not increase

the number of obtained eigenpairs past 32 in the spectral clustering

scheme. Therefore, in the latter regime we have essentially already

traded off higher performance for lower quality.

Notice that in general using Jaccard and Jaccard-PageRankweights

helped improve the spectral clustering quality by 49% and 51% on

average, respectively. This is a significant but sometimes irregular

amelioration, taking values within a range of −39% to 172% for

Jaccard and 11% to 163% with additional PageRank information.

7.3 Quality Across Many Samples
Finally, let us compare the impact of using Jaccard and Jaccard-

PageRank weights across samples listed in Tab. 3. In this section we

fix the number of clusters to be 31, which is a prime number large

enough to be relevant for real clustering applications. We measure

quality as described in the previous two sections. The obtained

improvement in quality when using Jaccard and Jaccard-PageRank

versus original weights is shown in Fig. 10 and Tab. 4.

M-L (J) Spect (J) M-L (J+P) Spect (J+P)

smallworld 14.0% 9.9% 14.0% 22.9%

coAuthorsDBLP 14.3% 52.0% 15.1% 33.1%

citationCiteseer 2.1% -9.0% 4.5% -20.2%

coPapersDBLP 13.1% 61.0% 11.8% 113.8%

coPapersCiteseer 19.1% 237.7% 21.2% 236.5%

Table 4: Improvement in the quality of partitioning obtained
by nvGRAPH (Spect) and METIS (M-L), with Jaccard (J) and
Jaccard-PageRank (J+P) weights

Notice that for these graphs the Jaccard weights help to improve

the multi-level and spectral clustering quality by about 10% and

70% on average, respectively. When using additional PageRank in-

formation this improvement rises to about 15% and 80% on average,
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Figure 10: Improvement in the quality of partitioning ob-
tained by nvGRAPH and METIS, with Jaccard and Jaccard-
PageRank weights

respectively. However, the improvements are not always regular,

and on occasion might result in lower quality clustering.

The spectral clustering has a more intense average amelioration

but there is one case that does not benefit from using modified

weights. This is consistent with the experiment of Fig. 9. The multi-

level clustering has lower average amelioration, but all cases seem

to benefit from using Jaccard and Jaccard-PageRank weights.

Finally, we note that using Jaccard or Jaccard-PageRank weights

on coPapersCiteseer network leads to an improvement over 230%

for the spectral clustering approach. In this case, the high ameliora-

tion ratio happens because the spectral clustering method struggles

to find a good clustering without weights that represent the local

connectivity information.

8 CONCLUSION AND FUTUREWORK
In this paper we have extended the Jaccard, Dice-Sorensen and

Tversky measures to graphs. We have defined the associated edge

weights and we have shown how to incorporate vertex weights

into these new graph metrics.

Also, we have developed the corresponding parallel implementa-

tion of Jaccard edge and PageRank vertex weights on the GPU. The

Jaccard and PageRank implementation has attained a speedup of

more than 10× on GPU versus a parallel CPU code. Moreover, we

have profiled the entire clustering pipeline and shown that compu-

tation of modified weights consumes no more than 20% of the total

time taken by the algorithm.

Finally, in our numerical experiments we have shown that clus-

tering and partitioning can benefit from using Jaccard and PageRank

weights on real networks. In particular, we have shown that spec-

tral clustering quality can increase by up to 3×, while we also note

that the improvements are not uniform across graphs. On the other

hand, for multi-level schemes, we have shown smaller but steadier

improvement of about 15% on average.

In the future, we would like to explore the distributed imple-

mentation of the spectral clustering schemes. For instance, notice

that the computation of Jaccard edge weights can be interpreted as

matrix-matrix multiplication AAT without fill-in, while PageRank

algorithm relies on the matrix-vector multiplication kernel. It is

well known that these operations are well suited for parallelization

on distributed platforms, which we plan to explore next.
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