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A theory of functions of several variables applied to
square matrices

Laurent Veysseire

In this paper, we give one possible definition for functions of several
variables applied to endomorphisms of finite dimensional C-vector spaces.
This definition is consistent with the usual notion of a function of a square
matrix. The fact that with this definition, f®(A, B) is not a square matrix
of size n anymore when A and B are square matrices of size n (well, except
in the trivial case where n = 1) can seem weird and unsatisfying, but this
objects naturally appear when one differentiates a smooth function of a
matrix.

This work was supported by the TECHNION, Israel Institute of Tecnol-
ogy, Haifa, Israel.

1 definitions and notations

As for defining functions in one variable applied to a single matrix (as done
in [1]), we start with the simple case of polynomials.

Definition 1 Let k € N*, and let My,..., My be endomorphisms of the
finite dimensional C-vector spaces E1,...,Ey (their dimensions ny, ..., ng
may be different). Let

o e
P(zq,...,2x) = g Cawt Tyt
acl

be a polynomial of k variables (here F is a finite subset of N¥, ¢, € C and
the ay’s are the coordinates of o). We set:

k
PO(My,... . M) =) M ®...0 M* € Q) E @ Ef.
a€EF =1



Remark 2 In this definition, the tensor products are implicitely taken over
C. We can use a similar definition if E1,..., Ey are R-vector spaces and
if P has real coefficients, but with tensor products over R. In the cases
when some of the E;’s are R-vector spaces and the other ones are C-vector
spaces, or if all the E;’s are R-vector spaces and P has complex coefficients,
we can complexify the real vector spaces by replacing the concerned E;’s by
El’ = C®gr E; and M; by its natural C-linear extension Ml' to E;, and use
the classical version of definition 1.

Remark 3 We use the notation P®(My, ..., My) and not P(My, ..., My),
because doing so would be confusing, and because the @ sign reminds you it
is a tensor of higher order. For example, we have ((z,y) — z+y)®(A, B) =
ARI+1® B # A+ B in general (even in simple cases where A = B or
B=0).

Lemma 4 Let k € N*, and let My, ..., M} be endomorphisms of the finite
dimensional C-vector spaces Ey,...,Ep. For 1 <1 < k, let Ay be an
invertible C-linear application from Ej to another C-vector space F; of same
dimension than E;. We set M| = A(l)MlA(_l)l € L(F,F). Let P be a
polynomial of k variables. Then we have:

PO(M{, ..., M)y, .., =
A(l)“i'lA(_ﬁjljl R A(k)lki;ﬁA(_kl)]kjkP(g(Ml, e ,Mk)zl VR

Proof: In the simple case where P is a monomial, it follows from the
fact that (AMA~1)" = AM™A~!. The more general case where P is any
polynomial easyly follows by linearity. [

Any complex square matrix can be put in a Jordan form by conjugation
by an invertible matrix. Let us see what one gets when all the matrices
My, ..., My are Jordan matrices.

Example 5 Let My,..., My be Jordan matrices, i.e, for 1 <1 < k, the
matriz My has the following form:

J>\L1,7"11 0 - 0
Ml = 0 J)\L2,7"12 : ,
- 0
0 O



where by is the number of jordan blocks in M, J, is the r X r square matrix

A1 0 ...0

0 X 1
D=1+ -0 - 0 |

SRRV W |

0 ... ... 0 A

the A, are the eigenvalues of M; and the ry, are the sizes of the Jordan
blocks of M;. Let P be a polynomial on k variables.

Let us choose the values of the indexes iy,...,ix and j1,...,jk. Then
for each 1 < I < k, there exist 1 < ¢,d; < by such that fo;ll Tim <
i < Yo T, and Zﬁé; Tim < j1 < Zﬁézl Tim. Then the coefficient
PO(My, ..., Mg)"; ... % is given by the following formulas:

o [If for some 1 <1 <k, one has i; > j; or ¢; # dj, then the coefficient

]3(8(]\417 R ,Mk)iljl Lk j 48 0.

o If for all 1 <1 < k, one has iy < j; and ¢; = d;, then the coefficient
]3(8(]\417 c ,Mk)iljl L i 18 [Hle maljl_”} P()‘lcla e 7)‘kck)-
Proof: Like in the proof of Lemma 4, we start with the simple case
where P is a monomial. In this case, P(x1,...,z;) = 27"...23" and
PE(My,..., M)y, .0 =TT, M,
One easyly gets the expression given in Example 5 for the coefficients of
P®(Mj, ..., My) by using the special form of the coefficients of powers of Jor-

dan matrices, and the fact that [Hle a%lal (Hle fl(xl)) = Hle fl(al)(xl).

The case of a more general polynomial P trivially follows by linearity. [

Proposition 6 Let k € N*, and let My,..., M}, be square matrices with
complex coefficients. Let Py, ..., Py be their minimal polynomials.
Then the set of polynomials P of k variables such that

P®(My,...,My)=0
is the ideal generated by the polynomials Pi(x;), for 1 <k <.

Proof: There exist M7, ..., M, Jordan matrices and Ay, ..., Ay invertibles
such that M] = AlMlAl_l. According to Lemma 4, we have

PE(M;y,..., M) =0« PO(M],...,M})=0.



For 1 <1 <k, we set Ay, the eigenvalues of M;, and ry,, their multiplicity as
root of the minimal polynomial P; of M; (here the index m varies from 1 to
the number ¢; of distinct eigenvalues of M;). Then according to example 5,
P®(Mj,..., M) = 0 is equivalent to: for all (my;)1<i<k, (ji)1<i<k satisfying
1<my <e and 0 < j; < ryp,, one has

i

=1

P(Aimys -y Aemy,,) = 0.

Assume that there exists [ such that P(x1,...,zr) = P(x)Q(z1,. .., x),
where @ is a polynomial. Then for any 1 < m < ¢; and any 0 < j < myy,
x; — Ay divides 8/ P(x1,...,2y), so it also divides all the derivatives of
ale(xl, ..., x) with respect to all variables but z;, thus they cancel when
x; = ANy Thus P(Mj, ..., M) = 0. By linearity, for any polynomial P in
the ideal generated by P;(z1),..., P(zk), we have P(My,..., M) = 0.

Conversely, let P be a polynomial such that P(My,..., M) = 0. There
exists two polynomials () and R such that P = @ + R, @ belongs to the
ideal generated by Pj(x1), ..., Py(z)) and the degree of R with respect to the
variable x; is lower than deg(F}) (in the sense that any monomial 7" ... z*
in R satisfies oy < deg(F;)). This fact can be shown by performing Euclidean
division by the Grobner basis Pi(x1), ..., Py(xy) (this is a Grébner basis for
any monomial order) in the space of polynomials on k variables. For any
1<i<k,any 1 <m < e and any 0 < j < ry,, there exists a polynomial of
one variable P, of degree less than deg(F;) such that for any 1 < m/ < ¢
and any 0 < j' < 7,,, one has B%;(Alm/) = 1,—py j=j (this follows from
the classical theory of Lagrange-Sylvester interpolation polynomials). For
any mi,...,my and ji,...,Ji such that 1 <m; < e and 0 < j; < 14y, We
set Py jy.mpin (z1,...2) = Hf:l Prrmyj, (1)-

Let us consider the linear map v which associates to any polynomial

S(z1,...,x) of k variables such that its degree with respect to z; is less
than deg(P;), the following Hle deg(F;) values: for any myq,...,my and
Ji, .-+, jk satisfying 1 <m; < e and 0 < j; < 7y, We set

k
Vmiji..myjk (S) = [H aljz] S()‘lmlv e 7)\kmk)-
=1

— 3 _ / s
Then we have Vi, j,.my i (P ji.mi g ) = 1 i my = m and j; = Ji for every
1 <1 <k and vyjy.mij (Pmiji---mkjé) = 0 otherwise, so the linear map

v is surjective. So because of the equality of the (finite) dimensions of its



domain and its image, v is also injective. So since v(R) = 0, we have R =0
and thus P = @ belongs to the ideal generated by the P(x;). O

So one does see from Proposition 6 that the dependancy in P of P(Mj, ..., M)
only relies on the values of P and of some of its derivatives at the eigenvalues
of the matrices M;, 1 <[ < k. This justifies the following definition for more
general functions than polynomials.

Definition 7 Let k € N*, and let My,..., My be endomorphisms of the
finite dimensional C-vector spaces Fr,...,Er. For 1 <1 <k, let e; be the
number of different eigenvalues of M, A, be the eigenvalues of My, for
1 < m < e, and ryy, be the multiplicity of the root Ay, in the minimal
polynomial of M;. Let f be a function of k complex variables. Assume that
for any k-uple of integers (mq,...,my) such that 1 < m; < e for1 <1<k,
the function f(x1,...,x) is holomorphic with respect to the variables x;
with 1 satisfying rim,, > 2 near (Mmy, ..., Aem,, ). That is, if we denote by
l1,...,1lp the indexes such that r;, > 2 for 1,< q < p, the function

Ccr —» C
9 (y17"'7yp) — f((A1m17"'7Akmk)+2221yqvlq)

admits a continuous C-linear differential on a neighborhood of 0, where v;
is the I-th vector of the canonical basis of C*. Then we set:

f®(M1, . 7]\4%) = P®(M1, . ,Mk),

with P any complex polynomial of k variables such that for all (my,...,mg)
and (ji,...,Jk) such that 1 < my < e and 0 < jj < 1y, for 1 <1 < k, we
have:

k

k
[H 8l]l] f()\1m17 cey )‘kmk) — [H aljl
=1

=1

Py - Memy)-

Remark 8 The function f does not really need to be defined on the whole
C*, but only on the points whose coordinates are the eigenvalues of the M;’s
and on some neighborhoods of those points intersected with some affine sub-
spaces.

Remark 9 If one wants to generalize this definition in a real framework,
as said in Remark 2, one can not just assume f is a real function of real
variables, because real matrices may have non-real eigenvalues.

The right thing to do is to chose f such that f(z1,...,2) = f(z1,---, 2k)
to be sure there exists a polynomial P with real coefficients satisfying all the
equalities required.



Remark 10 The polynomial P can be chosen to be

3

with the same notation as in the proof of Proposition 6. In this case, we say
P is the Lagrange—Sylvester interpolation polynomial of f associated to the
product of multisets Hle Root(P;), where Root(P,) is the multiset of the
roots of P, counted with their multiplicity.

k
H al]l] f(>\1m1a cee a)‘k:mk)> Pmljl---mkjk (xl’ e ’xk)’
=1

2 Some rules for computations

In this section, we show that f®(Mj,..., My) behaves like fonctions of sev-
eral variables do, and we show that some contractions of f®(My,..., My)
can have a simplified expression. Finally, we show the main result of this
paper, which is the expression of the derivative of f®(Mjy,..., M}) with
respect to the matrices M;.

The tensor f®(Mj,..., M}) applied to eigenvectors of My, ..., M}, has
a simplified expression. This allows to give an alternative expression for
fe(My,..., M) when My, ..., M}, are all diagonalizable.

Proposition 11 Let k € N*, and let My, ..., My be endomorphisms of the
finite dimensional C-vector spaces F1,...,Ep. For 1 <1<k, let u; € E; be
an eigenvector of My for the eigenvalue X\;. then we have

f®(M1, e ,Mk)iljl .. .ik jk(ul)jl e (uk)]’“ = f()\l, .. .,)\k)(ul)il e (uk)““

Proof: In the simple case where f is a monomial, we have f(z1,...,z) =
ot .ok, with og € Nfor 1 <1 < k. We get

FOMy, .o, M)y g (un PP (g )Pe = (MY, (M) (ug)

= A" (ul)i1 D Vi (uk)lk

= f()\l, ey )\k)(ul)“ e (uk)lk

By linearity, this extends to the case where f is a polynomial. For the
more general case, we have f®(My,..., M) = P®(Mj, ..., M) where P is a
polynomial of k variables satisfying the conditions described in Definition 7.
In particular, P has the same values f has on the eigenvalues of M, ..., M,
so the desired equality holds for a general function f. [

(ug)*



Remark 12 In the case where My, ..., My are all diagonalizable, for all
1 <1 <k we can take a basis of By made of eigenvectors of M;. Let us
denote by upy,, for 1 < m < dim(E;) = d; the vectors of this basis, by A\,
the corresponding eigenvalue and by u;,, € Ej the corresponding vector of
the dual basis.

Then the family of tensors ®f:1 ulml®u2‘nl, for1<m; <d;andl <n; <
dy, is a basis of ®f:1 Ey®E). According to Proposition 11, the decomposition
of the tensor f®(Mjy, ..., My) in this basis can only be

k
FEMy,..., M) = > FOamrs s My, ) Q) iy @ Uiy, -

V1<i<k,1<m;<d, =1

One of the simplest properties of f®(Mj,..., My) is its linearity with
respect to f.

Proposition 13 Let k € N*, and let My, ..., My be endomorphisms of the
finite dimensional C-vector spaces Ey,...,E,. Let A and p be two complex
numbers, and f and g be two functions from CF to C, regular enough such
that f®(Mjy, ..., My) and g®(Mj, ..., My) can be defined. Then the function
Af + pg has the same regularity, and we have:

(Af + 1) (My, ..., M) = MfO(My, ..., My) + pg® (M, ..., My).

Proof: If P and @) are interpolation polynomials of f and g as required in
Definition 7 to compute f® (M, ..., M) and g® (M, ..., My), then A\P+uQ
is an interpolation polynomial of A\f + pug because partial derivatives are
linear.

So we have

()‘f + //Jg)®(M1’ s ’Mk) = ()‘P + :U‘Q)(X)(Ml’ s ’Mk)
= AP9(M, ..., My) + pQ® (M, ..., My)
= MO (My,..., M)+ pg® (M, ..., M),
where the second equality trivially follows from Definition 1. [J

Another trivial property is the nice behaviour of f®(Mj,..., M) with
respect to transpositions.

Proposition 14 Let k € N*, and let My, ..., My be endomorphisms of the
finite dimensional C-vector spaces Ey,...,E,. Let f be a function from



CF to C such that fO(Mjy,..., M) is well defined. Let 1 <1 < k. The
transposition of M is the endomorphism of EJ defined by

(M (¢),v) = (¢, My (v)),

for any ¢ in Ef and v € E;. More explicitely, we can write (MZT)jlil =
(Ml)”jl‘
Then we have:
T A - . A
f®(M1a oy My, My My, - ’Mk)“jl T jl—ljl2l2l+ljl+1 S Ik =

FOMy, ... M)y, .0,

Remark 15 In particular, if the matriz of M is symmetric in some basis
B of Ej, then the coefficients of f©(My, ..., My) in a product basis where the
one chosen for E; is B are invariant by swapping the corresponding indezes.

Proof: The matrices M; and M lT have the same eigenvalues and the same
minimal polynomial, thus if P is a suitable interpolation polynomial so that
fO(My,...,My) = P®(M,..., My), then we have f®(My,..., My, Ml , My11,..., M) =
PE(My,...,M_1, M{', My11,..., My). Proposition 14 for polynomials triv-
ially follows from the fact that (M7)® = (M*)T.0
The tensor f@(My, ..., M) can also be seen as an endomorphism on the
space 1 ® Fyr ® ... ® Ei. This allows to take products of such tensors, or
to apply functions of several variables on them.

Theorem 16 Let My, ..., My be endomorphisms of finite dimensional C-
vector spaces. Let f1 and fa be two functions from CF to C. As in Definition
7, we set e; the number of different eigenvalues of My, for 1 <1 <k, A\jjm
the eigenvalues of M; and ry, their multiplicity as roots of the minimal
polynomial of My, for 1 < m < e;. Assume that f1 and fo are holomorphic
with respect to all the variables x; such that vy, > 2 near (Amy;- -+, Memy,)-
Then we can define My = f2(My, ..., Mg) and My = f5(Mjy,..., M) and
see them as endomorphisms of 1 @ ... ® Ex. Then we have

M1M2 - g®(M17' .. 7Mk)7
with g(xl,. .. ,.%'k) = fl(.%'l,. .. ,.%'k)fg(m‘l, e ,.%'k).

Remark 17 In particular, M; and My commute, since one does get the
same function g by swapping f1 and fs.



Proof:  We first notice that the function ¢ is regular enough so that
g®(My, ..., My) is well defined, so the statement of Proposition 16 has a
sense.

Let P, and P, be suitable interpolation polynomials of f; and fs, in
the sense that all the partial derivatives at (Aim,,..., Agm, ) such that one
derives less than 74, times with respect to x; are equal for f; and P;.

Then according to Definition 7, one has f2(Mj, ..., My) = P2 (M, ..., My).
The polynomials P, and P, can be written as

— . a1 (025
P, = E Aia Ty .. TL",
a€EF;

with Fj a finite subset of N*¥ and a;, the complex coefficients of the polyno-
mial P;. Then we have:

(MlMQ)iljl . Jk — (Ml)ilnn L my, (MQ)mljl LR Jk
= > @My () D ang(MP)™ gy (MF)™ 5,

acFy BEF,
_ a1 +B1yiy op+Br i
= Z a1aa28(M; ) i (M )" i
acl,BEF,

= (PLP)®(My, ..., M)y, ... .
Finally, we have
8?1, e ,agk(PlPQ)(xl, e ,xk) =
Z <a1> e <Gk> 8?1 e 82’“131(.%'1, ‘e ,mk)a‘fl_bl ‘e 8Zkibkpg(.%'1, ‘e ,.%'k).

b b
0<bi<a; N ! k
0<by <ay,

the same formula holds when we replace P; with fi, P» with fo, Py P, with
g, and x; with Xpy,,, for all k-tuple (mq,...,my) such that 1 < my < e,
provided 0 < a; < 7y, for all 1 <1 < k. Thus we have

8(111 e 8Zkg()\1m17 e 7)‘kmk) = ({9(111 e .6gk(P1P2)()\1ml, e 7)‘kmk)a
for all k-tuple (a1, ...,ax) such that 0 < a; < r4y,. So we get
MlMg = (P1P2)®(M1,. .. ,Mk) = g®(M1,. .. ,Mk),

as stated.[]



Theorem 18 Let r € N*, and k; € N* for 1 < q < r. Let Ey be a family
of finite dimensional C-vector spaces, where 1 <1 <1 and 1 <1 < ky, and
let My be and endomorphism of Ey;.

We set eq the number of different eigenvalues of My, Agim these eigen-
values, where 1 < m < ey, and vy, the multiplicity of the root Ay, in
the minimal polynomial of My. For 1 < q < r, let f, be a function from
Cka to C, such that fq is holomorphic with respect to all the variables x;
such that Tqum, > 2 near (Agimy,-- - Agimy» - - - ,)\qkquq), for every ky-tuple
(mi,...,my,) with 1 <m; < egy.

Let €, be the number of different values that fy(Agim,,- - - ,)\qkquq) takes,
and pgp be these values for 1 < p < é,.

We set 7gp 1= max{l—i—z;zl(rqlml—l), 1 <my < eqlfaAqimas - Agkgmy, ) =
figp}- _ _

We set My, = f?(Mql,...,quq), seen as an endomorphism of E, =
qu (039 ---®Eqkq-

Let g be a function from C" to C, such that for every r-tuple (p1,...,py),
g 1s holomorphic with respect to all the variables x4 such that 7qp, > 2, near
the point (Lip,,-- - trp,.)-

Then for all1 < q <k, and all 1 < p < &4, the jug,’s are the eigenvalues
of My, and the multiplicity of the root gy, in the minimal polynomial of M,
s at most Typ.

So g® (M, ..., M,) is well defined and furthermore, we have:

g®(M1, . 7Mr) = h(MH, . 7Mrkr)7
where h is the function of 22:1 kq variables defined by

h(mn, . 7xrkr) = g(fl(.%'n, e ,xlkl), e ,fr(xrl, . ,xrkr)).

Proof: Let us prove that the p,,’s are the eigenvalues of M, and have
multiplicity at most 7, in the minimal polynomial of M,,.

Let 1 < g < r. Let P(xl,...,xkq) be a suitable interpolation poly-
nomial of f,, such that M, = P®(M,,... , My,). For any my,...,my,, if
U1, ..., Vg, are eigenvectors of My, ..., My, for the eigenvalues Agipm,, - - -, )‘qk‘quq7
then v; ®. . .®uy, is an eigenvector of Mq for the eigenvalue P(Agim,, - - -, )‘qkquq) =
fquqlml,...,Aqkquq), so the pgp’s are eigenvalues of M,. Let Q(z) =
H;q:l(x — igp)7. Tt remains to check that Q(M,) = 0.

We set R(z1,...,2,) = Q(P(r1,...,7,)). Then it easily follows from
Theorem 16 that Q(M,) = R® (Mg, ..., Mgk,). For 1 <1 < kg, let 1 <

10



my < eq, and 0 < j; < 7gpm,- One has, according to the Faa di Bruno
formula,

q ) Zfil jl )
H al]l R()‘qlmu R )‘qkquq) = Q(j)(P()‘qlmlv SRR )‘qkquq ))AJ7
7=0

where the term A; can be written as

kg . | n kq
D> U Te ) TT (| TL0 | POt At
I n 1775 (2 Na l qlmys - -+ Agkgmy,
n<j [Tier an! TTZ () ) o0 \ i
(i1,-evin) €(NFO )™
0<i1<i2<...<in
(@1,...,an)EN*T
a1+...+an=j
arii+...+anin=(j1,--.jkq)

where < can be any total order on N« such that 0 is its minimal element
(one can take the lexicographical order, for example).

But actually the value of A; does not matter, since QU)(P(Agimy, - - -, Agkqgmi,)) =
0, because P(Agim,,-- -7)‘qkquq) is equal to some 4, such that 74, > j.

Thus, we have [Hf“l l‘l} R(Aqimys- -+ > Agkgmy, ) = 0 and then by Proposi-

tion 6, one has R®(Mq1, ..., Mg, ), and hence Q(M,) = 0 as stated.
Now let P be a suitable interpolation polynomial of g, i.e. such that

T T

H%q P(:ulpu---a,urpr): H%q g(#1p1a---,ﬂrpr),

g=1 g=1

for all p1,...,pr and ji,...,J, satisfying 1 < p; < e, and 0 < jg < 7gp,.

Then we have P®(Mjy,...,M,) = g®(M,...,M,). It easily follows from
Definition 1 and Theorem 16 that

P®(My,...,M,) = H®(My,...,My,),
where H is the function of 22:1 k4 variables defined by
H(zi1, ...y 20k,) = P(fi(z11, oo T1ky )y e v os fr(@pty ooy Tpk, )
To complete the proof of the theorem, it remains to check that

r T

H Haqu H(Mimyys s Mekpmps, ) = H H a]ql h(Mimyys - Arkemog, )s

g=1[=1 g=11=1

11

ag



for all 1 <mgy < ey and 0 < ju < rgim,,. This is easily done by using the
Faa di Bruno formula and the fact that

T T

H(:)éq P(/j'lplr"?/j'rpr): H(:)éq g(Mle"'?:u'T’pr)?

q=1 q=1

forall 1 <p, <e; and 0 < j, < Tapg- U
In some cases, contractions of the tensor f®(My,..., My) have a simpli-
fied expression.

Theorem 19 Let My, ..., My be endomorphisms of finite dimensional C-
vector spaces. Let f be a function from C* to C, such that f&(Mjy,. .., My)
1s well defined. Let 1 < p < k. Then we have the following equality:

f®(M1, - ,Mk)iljl .. .ip_l jpflipipip-kljwrl .. .ik gL =
g®(M1, .. ,Mpfl,Merl, . ,Mk)iljl .. .ip_l jp_lip+ljp+1 .. .ik JK
where g is the function of k — 1 variables defined by
€p
g(z1, .. p1, Tpy1, .., X)) = Z Spm S (X1, Tp—1, Apms Tpt1s - - -5 Th),
m=1

where the \pp,, for 1 < m < e, are all the different eigenvalues of M, and
Spm 18 the multiplicity of the eigenvalue Ay, i.e. its multiplicity as root of
the characteristic polynomial of M,y.

Proof: In the simple case where f(x1,...,zx) is a monomial, the equal-
ity of Theorem 19 easily follows from the classical fact that Tr(M®) =
Yo cigenvalue of M A (where the same A\ appears several times in the sum
if it is a multiple eigenvalue of M) for any square matrice M. By linearity,
the equality of Theorem 19 extends to the case where f is a polynomial.

For a more general f, we set P a polynomial such that [Hle (92”} (f —
P)(Mmys- -3 Akm,) = 0 for any sequences myq,...,my and ay,...,a; such
that 1 < m; < ¢ and 0 < a; < 79y, With ¢ the number of different
eigenvalues of M;, Aj, these eigenvalues for 1 < m < ¢; and 7y, their multi-
plicities in the minimal polynomial of M;. Then we have f®(My,..., M) =
P®(Mj, ..., My). Thus we get

® i lp—1 . Tp. Tp4l . e . —
f (Ml,...,Mk) gree s P g Py Py e e =
® i lp—1 . p. Iptl . i .
P (Ml,...,Mk) Jree s P ey P P e
® i1 ip—1 . Gp+1 . ('
Q (Ml,...,Mp_l,Mp_,_l,...,Mk) g P e P e e s

12



with
€p
Qx1, . Tpa1, Tty Th) = E SpmP(Z1, .o Tp—1, Apms Tpt1s - > Th)-
m=1

To conclude the proof, it remains to check that

H <i> (9— Q) (@1, Tp—1,Tpt1, - Tp) = 0.

1<I<k Oz
l#p (@1,2k)=(A1my s Akmy, )

This quantity is just

€p 8 ay
Z H (%) (f_P)()‘lmla---7)‘p—1mp717)\pm7)\p+1mp+17---7)‘kmk)a
m=1 |1<I<k :
l#p
which is trivially 0.
SoQ¥(My,...,My_1,Mpy1,...,My) = g®(My,...,My_1,Mpy1,..., M)
and the theorem is proved. [

Theorem 20 Let My, ..., My be endomorphisms of finite dimensional C-
vector spaces Eq,...,Ey. Assume that for two indexes 1 < p < q < k, we
have E, = E; and M, = M,. Let f be a function from C* to C, such that
FO(My, ..., My) is well defined. Then we have:

® i1 ip—1 . T Gp41 . lg—1 . Q@ Tg4l . i . —
FO(My, o Myt g, oottty e ek
11 . Ip—1 . a ip+1 . 1g—1 . T lg+1 . (2 S —
FO My, M)y ot g Oty et i e = |
11 . ip—1 . T lp+1 . lg—1 . 1q+1 . U .
GO(My, ... My 1, My, My)ing, . o=ty tiiess, a7 dav

where the function g of k — 1 variables is defined by

g(xh sy Lg—1,Lg+1, - - - 7'%']6) = f(xla <o s Lg—15Tpy Lg+1, - - - 71.]6)-
Proof: We proceed as in the proof of Theorem 19. If f is a monomial, the
result easily follows from the trivial fact that M*M® = MPM* = M? for
any square matrix M. So by linearity, it also holds for polynomials.

For a more general f, we set again P an interpolation polynomial such
that f@(My,..., M) = P®(My, ..., My;). And so we have:

f®(M1, e aMk)Z'ljl .- '2?71 jpfliqi?ﬂjpﬂ .- 'ifrl jqflajifﬁquﬂ .- 'ch ke —

P®(M1, A ,Mk)%ljl .. .Z'p’1 jp_llal'erljp_’_l .. .Z'qfl jq—l?j%q+1jq+l .. Zk Je =

P®(M17 cee 7Mk)A“jl .- _@-1 jpflaj,ZijpH .- "Zq_l jqfltla'2q+1jq+1 .- Zk Je =

f®(M1, .. ’Mk)lljl Lot jp—lajlpfljp-l»l a1 jq'_1'lalq4r1jq+1 e g = ‘
Q®(M1, ey My, Mgy, ... ,Mk)“jl Lot jpflljlp+1jp+1 Lt jqillq"'quJrl AL

13
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where the polynomial () is defined by

Qx1,. .. Tg1,Zgt1,---, %K) = P(x1,..., g1, Tp, Tgg1,- .., Th)-

It remains to check that

a\“
H <—> (g_Q)(‘le"7xQ*1,xq+la"',xk;) :Oa

x
1<I<k Oy
l#q (1,0s21)=(Amy s kmy, )

with the same notation as above for the Aj,,’s and the same conditions for
the m;’s and a;’s.
The left-hand side is equal to

a h —h
<;> apaqap H alal (f_P)(Almp---,Aqflmqla)\pmpa)‘qulmq.Fp---a)\kmk)-
1<i<k
l#p
l#q
It is 0 because P is a nice interpolation polynomial of f.
So we get Q®(M1, e ,qul,Mqul, ce ,Mk) = g®(M1, N ,qul, Mq+1, e ,Mk)
and the theorem is proved. [
In the case where I, = E, but M, and M, are different, there is no such
simplified expression for the contraction, but one has a kind of commutation
property if M, and M, commute.

Proposition 21 Let My, ..., M be endomorphisms of finite dimensional
C-vector spaces E1,...,E,. Assume that for two indexes 1 < p < q < k,
we have E, = E, and the endomorphisms M, and M, commute. Let f be a
function from CF to C, such that f(My, ..., M) is well defined. Then we
have:

f®(M1, . ,Mk)iljl .. .il”l jp_lzaip+1jp+1 .. .Z'qfl jq_lc'LjZ'%Lqu_H .. Zk Je =

® i1 Ip—1 . @ fdp41 . tg—1 . 1 g1 . i .
f (Ml,...,Mk) Gree P g P g T e T g e

Proof: One replaces f with a suitable interpolation polynomial P such
that fO(My,...,My) = P®(My,...,M;). Then using linearity, we only
have to check the property for monomials, which easily follows from the
well known fact that if M, and M, commute, then My* and Mg? also
commute (the commutation of two endomorphisms M and N can be written
Mi,N%; = M%N,). O
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Remark 22 We have a generalization of Remark 17. If My,..., My and
M;i ..., M} are endomorphisms of Ei,...,Ey such that for all 1 <1 < k,
M; and M] commute, and if f and g are two functions from C* to C such
that M = f®(My, ..., Mg) and M’ = g®(Mj, ..., M}) are well defined, then
M and M' commute as endomorphisms of B1 ® ... ® Ey.

Proof: The tensors MM’ and M'M can both be obtained by k contractions

from the tensor h® (M, ..., My, M7, ..., M}), where h(z1,..., %k, Y1, .., Yk) =

flx1,...,2k)g(y1, - .-, yk). The fact you get the same result follows just from
applying k times proposition 21. [

For a given holomorphic function f, the tensor f®(Mji,..., M) is an
holomorphic function of My, ..., M. The following theorem gives the ex-
pression of its derivatives.

Theorem 23 Let k € N*, and M, ..., My be endomorphisms of the finite
dimensional C-vector spaces E1,...,Ex. For any 1 <[ < k, we set e; the
number of different eigenvalues of My, A\, these eigenvalues for 1 < m < ¢,
T their multiplicity as roots of the minimal polynomial of M;. Let f be
a function from CF to C. Let 1 < p < k. Assume that for all k-tuple
(mi,...,mg), f(x1,...,25) is holomorphic with respect to x, and all the
other variables x; such that vy, > 2 near (Amy, - -+ Memy)-
Then for any endomorphism H of E,, we have the following:

im, SEMy,...,Mp—1,Mp+eH,Mpi1,...Mg)"1 5, .. % 5 — O (Moo, My )15y R g _

€
® 11 . ip—1 . ip.J . tp+1 . i .
g9 (M, ... M1, My, My, My, .. . My) g P G Pzﬂjp P R

with g the function of k + 1 variables defined by

g(‘rl’"',xpflaxpayaquLla"'axk‘): Yy—Tp

Jo

{ f@1, o ®p1,y,%pt 1, 2p) = f(T1,..,T8) if y z,

Opf(x1,...,2k) if y = xp.

Remark 24 When y is close to x, we can write

1
g(ml,...,xp1,xp,y,:cp+1,...,:ck):/ Opf(x1,. .., xp—1, I=t)xp+ty, Tpi1, ...
0

So we don’t have regularity issues with g near the hyperplane x, = y.

Proof: In the simple case of a monomial f(z1,...,z) = Hle ", it follows

15



from the fact that

. . -1
M H)op)i. Afap i @p L
il_%(( p+€ )Z)] ( p )j _ Z(M]]:HMI?p 1 h)lj
h=0

®

ap—1

= | @y) = Yyt (M, M) H
h=0

and that we have

ap—1 fey o
i a1k { de%ﬁp ifz#y
P 1 TP if x =y.
By linearity, this result extends to polynomials.
For a more general f, for any 1 <[ < k, we set P, the minimal polynomial
of M;, and we set P©) the characteristic polynomial of M, + cH. Let Q.
be the Lagrange—Sylvester interpolation polynomial of f associated to the
product of multisets f;ll Root(P;) x Root(P,P®)) x Hf:p—kl Root(F;). That
is to say, if we set e; the number of different roots of Pj, Aj, these roots
for 1 < m < ¢; and 1y, their multiplicities, and if we set likewise e the
number of different roots of PpP(e), /\ﬁi) these roots for 1 < m < e and
T,(fL) their multiplicities, then Q.(x1,...,xx) is the unique polynomial of k
variables whose degree with respect to the variable z; is at most deg(F),
except for the variable x, for which it is at most deg(P,) + dim(E,), and
wich satisfies the equalities

k
[H 8[@] (QE - f)()\lmp s 7Ap—1mp717)‘£f1,2,7 )‘p+1mp+17 R )‘kmk) =0
=1
for all k-tuples (mq,...,my) and (aq,...,ax) such that 1 < m; < ¢ and
0 <a; <ryp, forl#pandlgmpge(a) andOﬁap<r,(fL27.

Because of the continuity of the Lagrange—Sylvester interpolation, we
have Q. ——0—> QQo. Furthermore, we have

E—r

My, ..., My_1, Mp+eH, Myy1,..., M) = Q2 (M, ..., My_1, My+eH, My1, . ..

So we get
fOM,...,My_1, My +eH, Myyi1,..., M) — f(My,..., M) =
QE(My, ..., My_1,My+eH, Mpi1,...,Mg) — QF(M,..., M)
= (Q€ - Q0)®(Mla cee aMp*IaMp +6H?Mp+la cee aMk‘)
+QF (My, ..., My_1, My +eH, Mpi1,..., M) — QF (M, ..., My).

16
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For a fixed ¢, the difference (Q-—Qo)® (M, ..., My_1, Mp+06H, My, ..., My)
is a polynomial of § whose coefficients tend to 0 when € tends to 0. The coeffi-
cient of this polynomial corresponding to §° is (Q. —Qo)®(Mj, ..., M) = 0.
Thus we have

(Q€ - Q0)®(Mla e ,MpflaMp +6H?Mp+la oo ,Mk) = 0(6)'

Hence, using the Theorem for the polynomial @)y, we have

hmgﬁo f®(M17---7Mp—17MP+€H7MP+17~~~7Mk)ilj1 "'ikjk7f®(M17~~~7~~~7Mk)ilj1 Zk]k —

RO(My,..., My 1, My, My, My, ..., My)itj, .. o=t ipgds iper, ik i

p—1 Jp Ip+1° Jk

7
with R the polynomial of k + 1 variables given by:

Qo(:r1,---,:vp—l,yvfrptl;--,xk)*Qo(rl,---,:vk) if y # @,
R(xl,"'axpflyxp’y,prrl,""xk): Y=o .
0pQo(x1, ..., k) if y = xp.
/ /
Let (ma,...,mp, My, Mpi1,...,myg) and (a1, ..., ap, @y, api1, - - -, ag) be

two k + 1-tuples satisfying 1 < m; < ¢, 1 < m;, < ep, 0 < a; < 1y, and
0< a;, < Tpmy, - We want to show that

8Tk 9 @ =
[8_31 le:la_xl }(g—R)(xl,...,xp,y,xp+1,...,xk) =0.
(1'17"'7mp7y7mp+17"'7xk):()‘1m17"'7)‘Pmp7)‘pm;77>‘p+1mp+17"'7>‘kmk)

If my, # my,, this quantity is

i

a,—h / h a
(=0 Maptap—m O T << 9 | (F=Q0) My s dp—tmy 1 Ayt Aptimy py M kmy,)

/

% (ap l#p
2hzo ( h) \ _x )ap+a;,—h+1
pm;; pmp
!
(=P (aptap, ! |95 T <y < 9} | (F=Q0) Ay v A kmy,)
_$P (ap l#p
Zh:o ( h ) B ap+aj,—h+1
(Apmg Apmyp)

which is 0 as wanted, since each term of both sums is 0. If m,, = m;,, using
the formula of Remark 24, the quantity we want to compute is

1
ap+al +1 a al 4a
ot T o (f—QO)(Alml,...,Akmk)/o (1 — 1Y%
1<I<k
i

which is 0 too because a, + a;, +1 < 2rpm, < Tpm, + Spm,, Where sy, is the
multiplicity of Ay, as root of the characteristic polynomial of M),.

Thus (9 — R)®(Mi, ..., My_1, My, My, M1, ..., M) =0 and the theo-
rem is proved. [
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3 Some possible applications

In the particular case of symmetric square matrices with real coefficients,
we know that such matrices have real eigenvalues and are diagonalizable in
an othonormal basis. So we can apply real-valued functions of real variables
to them, without having the regularity concerns for the definitions. In this
framework, we have the following result.

Proposition 25 We denote by Sym,,(R) the vector space of symmetric nxn
matrices with real coefficients, equipped with the Hilbert—Schmidt norm

|M]las = /Te(MTM) = /Te(317).

Let f: R — R be a function. Assume that f is k-Lipschitz for some
k> 0.
Then the function
. J Sym,(R) = Sym,(R)
' M - f(M

1s also k-Lipschitz.

Proof: We first prove that the result holds when f is a C! function. In that
case, a modified version of Theorem 23 holds, so F' is differentiable, and its
derivative at M is given by

(dF(M).H)'; = lim F(M +eH)"; — F(M)’

e—0 £

I — p (M, M) HY,

where we have
).
f(x) ifz=uy.

For a given M € Sym,,(R), we denote by A1, Aa,..., A, its eigenvalues
and uq,...,u, a set of orthoriormed* eigenvectors of M. Then, the matrices
u;@u; for 1 <7 < nand A L for 1 <14 < j < nform an orthonormal
basis of Sym,,(R) and are eigenvectors of dF'(M) with eigenvalues fi(A;, A;)
and f1(\, A;) respectively, according to Proposition 11. Using the fact that
f is k-Lipschitz, we have Vx,y € R, |f1(z,y)| < k.

Thus dF(M) is a k-Lipschitz linear function of Sym,, (R). This being
true for every M € Sym,,(R), the function F itself is also k-Lipschitz.

18



If the function f is not C', one can approximate f by a C' which is also
k-Lipschitz. For example, we set

0 if|z|>1
1

o) = TR oy

T
f—ll el-v?dy

9e(x) = ég <§>
— [ - ya.t)dy = [ g vy
R R
Then we have

o)~ f-(9)] = | /R (Fla—2)—f (y—2))ge (2)dz] < Kla—y] / 16e(2)ldz = Klz—y],

and

so f. is k-Lipschitz. And f. is differentiable, its derivative being

— / FW)gl(z —y)dy = / flz —y)g(y)dy,
R R

which is continuous so f; is C!.
Furthermore, we have

)= f @) =1 [ (F)=F@)aeta=0)dyl < [ Iolg-tu)dy = ke [ lolaty

So for any M € Sym,,(R), we have

n

1f-(M)—f (Mg = 1(fe= ) (M) Frs = Te((fe=HP(M)) = Y (f= 1) (M)

=1

< k*n </R |x|g(x)dx>2.

[E(My)=F(My)|rs < |F(My)—=fe(M) || as+ fo (M) = fo(M2) || ms+|| f-(M2)
< ka\/ﬁ/R |z|g(z)dz + k| M2 — Mi||gs + k:a\/ﬁ/R |z|g(x)dx

So, for M; and My in Sym,, (R), we have

This inequality being true for every e > 0, we finally get || F'(M;1)—F(Ma)||gs <
k||M2 — M| gs, so F is k-Lipschitz. O

19
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The main reason the author thinks it is a good idea to introduce f©(Mq, ..., My)
is that it allows to give a rather simple expression of derivatives of a func-
tion of a square matrix. If we iterate Theorem 23, we can get the following
expression for the n-th derivative of f(M) = f®(M).

Proposition 26 Let M and H be two endomorphisms of a finite-dimensional
C-vector space E. Let f: C— C be a function which is holomorphic in the
neighborhood of each eigenvalue of M. Then the function F' : U C C —
L(E,E) given by F(z) = f(M + zH) ‘s holomorphic in a neighborhood of 0
and furthermore, we have:

F™ () = nlf2(M + 2H,M + zH,..., M + zH)';, "5, .=t s BTG, HInG

n

~
n+1 times

where U is an open subset of C which contains 0, and

fn(@o,- .. 2n) = flzo, ..., 2]
is the (generalized) divided difference of the function f on the nodes xg, . .., T.

Proof: We proceed by induction on n. The case n = 0 is trivial.
Assume that

FO () =l fE(M + zH, ..., M + zH); "5, . ot ity Hn,

n

then if we want to differentiate this expression one more time with respect
to z, we have to differentiate f@(M +zH, ..., M + 2H) with respect to each
(matricial) variable. So using Theorem 23, we get

n
FOD ()i =nl >~ & (M + 2H, ..., M+ zH)"; 15, 0y
k=0

jk+1"'

Tn+1

n
_ ® i1 in . Unt+l . I, Jn+1 .
_n!E fn_’_l(M—l—zf-I,...,M—i—zH)j1 PP REE +jH iy - HIT
k=0

= (TL + 1)'f§+1(M + ZH, - ,M + ZH)ijlile .. .i" i""'lejlil .. .Hj"+1‘

Jn+1 In+1)

where we just relabelled the indexes to derive line 2 from line 1. So the
induction hypothesis is true at the rank n + 1. O

Remark 27 In the case where H and M commute, we can get a simpler
expression. Indeed, we can write

F(")(z)ij =nlg®(M+zH,...,M+zH,H,... ,H)" ", .. o=t gy iy

20
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where g, is the function of 2n + 1 variables defined by

In(T0y - T, Y15 -+ Yn) = fT0s - Tnlyr - Yn-

Since H and M commute, H and M + zH commute too. Using Proposition
21 sufficiently many times, we can get

FO () =nlg®(M + 2H, ..., M + zH, H,... H); 7 0, I,
Using Theorem 20, one gets:
F(2)1; = nlgd (M + zH, H)'\*;

_ (n)
where Gu(,y) = go(@,....2,y,....y) = flz,....aly" = EEyn So fie

nally, we get:
FM(z) = f™(M + zH)H™.

Remark 28 If we differentiate Tr(f(M + zH)), one gets

n

FO () =nlfO(M 4 2H, ..., M + zH)' 1y, . ot S JIG Iy
Using Theorem 20, we get

FO(2) = nlhS (M + 2H, ... M + zH)™ ;" 0t HIG L H

n

with hy, the function of n variables defined by

hpn(x1, ... 2n) = fo(zn, x1,...,2p).

With n = 1, one gets the classical result that

% Tr(f(M + zH)) = Tre(f'(M + zH)H).

If one differentiates n — 1 extra times this formula, one gets

FM () = (n=1)1f/® ((M+2H,...,M+zH)n ", . o=t HIG L I
which seems to be different from the other formula above. In fact we get the
same thing because if we take hy (1, ..., 2n) = hnpn(Tht1s - - Tn, T1, -0, Tp),
we have

WS W(M + zH, ..., M+ zH)'n ;" HIG L HI =

n

hg’k(M +zH,. M zH)injliljé Lo jnHjlh e Hj"in
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by relabelling the indexes, and the equality

n
frlz—l(xl" .. ,Cﬂn) = Zhn,k(xl,- .. ,Cﬂn)
k=1

holds.

Remark 29 Despite the fact that the tensor f@(M,..., M) has a lot of
symmetries (due to the fact that f, is a symmetric function), the n-linear
application F(")(O).(Hl7 ..., Hy) obtained by polarization is not in general
given by n! times this tensor, but by a symmetrization of it.

FM(0).(Hy,..., Hy)' = <Z FEM, .. MYt et o) j>
ogeG,
(H1), - (Hp ),
75 n'ff?(M, ... ,M)ijlile .. .i”_l jni"j(Hl)jlil ... (Hn)jnl'n,
where &, is the set of permutations of {1,...,n}.
For example, if f(z) = 2", we have f, =1 and then f&(M,...,M) =
I but we have

> Hyqy...Hygy #nlHy .. Hy.
ogeG,

If a function f : C — C is R-differentiable but not holomorphic, then
f(M) is well defined if M has no multiple eigenvalues. One can wonder if
f(M) is R-differentiable. The answer is yes, but to the author’s knowledge,
one does not have a nice expression of the derivative like we have in the
holomorphic case. But we can use the fact that

f(M) = > FN)Pu(N),
A eigenvalue of M
where Pys(A) is the projection on the eigensubpace of M corresponding to
the eigenvalue A, parallelwise to all the other eigensubspaces of M.
We set M(t) = M + tH. Because of the continuity of eigenvalues, there
exist continuous functions Ag(t) for 1 < k < dim(FE), defined in a neighbor-
hood of 0, such that for a given ¢, the A\i(¢) are the eigenvalues of M(t).

The projectors Py (Ax(t)) are also continuous. As we will see below, the
Ai(t) and Py (Ag(t)) are analytic. So if we set F'(t) = f(M(t)), we have

dim(FE)

F(t) = Z F () Parey (A (1))

k=1
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Thus if f is n times R-differentiable, we get

dim(E

n—h
P~ 3 Z( ) TOW S Paty o),

k=1 h=0

The derivatives of f(Ax(t)) can be expressed with the derivatives of f and
A, thanks to the Faa di Bruno formula.

Now we look at the behaviour of Ai(t) and Py (A (t)) near 0. Since
the eigenvalues of M are different, we can set 20 > 0 the minimum of the
distance between two of them. So the balls B(Ag,d) do not overlap (with
A = Ak(0)). Because of the continuity of eigenvalues, there exists £ > 0
such that for |t| < e, we have A\ (t) € B(\,d) forall 1 < k < dim(E). Let us
denote by ugg‘)) the characteristic function of B(\,J), which is holomorphic
everywhere except on the boundary of B(\, ). Then we have, for t < e,

Ae(t) = Te(M (Buly (M (1))

Pariey k() = ulyt (M(1)).

To get the derivatives of these two guys, one can use Proposition 26, but

using the fact that the derivative of zug‘)'“)(z) is u& 5)'“)( ) and Remark 28, we

get )\(")( t) = Tr (%nil (Prrry(Me(t))) H), so we only have to look at the
derivatives of Pys(;)(Ax(t)). Using Proposition 26, we get:

dt

If we compute that at t = 0, we can replace ugg‘)k) with u(;‘,k) with &' < 6,
since this two functions coincide on a neighborhood of the spectrum of M.

We have the following interesting fact: for all n the functions ugg\))n simply

converge to a limit we will denote by uﬁf) when § tends to 0 (these functions
are not defined on the whole space C"*!, but for any single point, there

are only finitely many bad ¢’s, and furthermore, for any (xq,...,z,), the
function § — ug‘))n(xo, ...,Tp) is constant by parts).
The function ug‘) is the symmetric function of n + 1 variables such that
forall 0 <m <n+1and 2g,...,2p_m # A, we have
0
1 d m—1
uﬁl)‘)()\,...,)\,zo,...,z—m): m—1)1 d Hh 0 22— zh Y
N _(71)(m 1) Z n—m 1
m times = ko+.--+kn_m=m—11lp=0 ()_Zh)l-Hch
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So we get

dn

a (PM(t)()\k(t)))Z] = n!u,(f"“(t))(@(M(t), R ,]\4(t))ij1i1j2 Lt jni"jHjlil ... Hj"i

And finally, we have

,,,,,

A
Al(cn) B=(n=D' > 1 <kg.....kpy_ <dim(E) uﬁ_’ﬂ(m Mk (8)5-esAkeyy 1 (0) Tr(Pag ey Ak () H ... H Prg ) Ak, (0)H).

AAAAA

n A
A" (Paroy Mk (0))=n! Sy on<atim(m) U F ) Ok (0, Ak () Parce) Mg () H Par ey Ny (D) H - H Pag ey (M (1))

The following proposition shows how we can get Zilﬁwé__#k Firs oy Aiy)
from the tensor f®(M, ..., M), where the \;’s are the eigenvalues of M. This
is a generalization of Tr(f(M)) = >, f(\).

Proposition 30 Let M be an endomorphism of a C-vector space E of finite
dimension d. Let f be a function of k variables such that f®(M,... M) is
well defined. We set A\1,...,\q the eigenvalues of M (appearing with their
multiplicities). Then we have the following:

S FQne A = RS, MY (@I
1<n1,...,np<d
VIAU ,ny#ny

where 1
(H/k\)]lil .. .]k i — H Z E(O')Ijll'a(l)fnio(Q) e Ijkio(k),
€Sy
with €(o) the signature of the permutation o. The tensor (II}) is the one
corresponding to the canonical projection from E®* to the subspace E™* of
antisymmetric tensors of order k.

Proof: Let 0 € &;. We set (o) the number of orbits of o, and we denote
by wo, . ..,Wa() these orbits. For 1 <1 < k, we set 1 < c(l) < Q(o) the
unique index such that | € w,().

Then, using theorems 19 and 20, we have the following:

© 4 4 . . . B
FEM, . M) G0 T 1 T = S Fniyr e Ane)-
1<n1,...,nq(s)<d
Now, for 1 < ny,...,n; < d, we look at the number of times the term
f(Any, -+, A, ) appears when we use the formula above to compute

Z 6(0’)f®(M, . ,M)iljl . .ik jkIjliU(l)IJQio(g) .. -Ijkia(k)-
geSy,
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This term appears once for each ¢ such that [ — n; is constant on all the
orbits of o, with the prefactor ¢(o). The set of such permutations is in fact
a subgroup of &y, more precisely the one of permutations which stabilize
the equivalence classes of the relation [ ~ I < n; = ny.

If there exist two different indexes p and ¢ such that n, and n, are equal,
then the above-mentionned subgroup contains the transposition (p, ¢) which
has signature —1, and thus, since € is a group morphism, half of the elements
of the subgroup has signature 1 and the other half has signature —1, so the
sum of the signatures is 0.

If all the n; are different, then the subgroup is just the identity, so our
term only appears once.

Hence we have

S elo) M, MY T TP P = > FQn e A,
o€By 1<n1,...,np<d
VIAU ,ny#ny

as wanted. [J
A classical example is given by taking k = d, and f(z1,...,2q4) =
T1...xq, in which case we can get

det(M) = (TN e T2y L Te (Mo
et( ) - Z arlas! ... agl1®1202  dod I‘( ) I‘( ) 1“( ) '
a1+2as+...+dag=d

The restriction to EN of I f9(M, ..., M), where IT)) and f©(M, ..., M)
are seen as endomorphisms of E®k, can also be itself interesting (and not
only its trace). Let us denote it by f(M,..., M).

Indeed, since E* has dimension (Z), FA(M, ..., M) lives in a space of

. . 2 . .
dimension (z) , whereas f®(M,..., M) lives in a space of much greater
dimension d**.
The eigenvalues of f(M,..., M) are % ZUEGk f()‘nau)’ e ,)\ng(k)) for
1 <nj <ng <...<ng<d (the corresponding eigenvector is vp, A... A vy,

if M is diagonalizable and if vy, ..., v is a basis of eigenvectors of M, such
that vy, is an eigenvector of M for the eigenvalue \,,).
One could want to extend the definition of f(M, ..., M) to some cases

in which f®(M,..., M) is not well defined. For example, for f(x,y) =
m, fN(M, M) should have a sense if M only has simple eigenvalues,
whereas f® (M, M) has no sense, whatever M is. But the minimal conditions
we should put on f and the M;’s to extend the definition of f(My,..., My)

are not clear.
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If the fact that f©(Mji, ..., M}) is a tensor and not a matrix is disturbing,
there could be a way to define a kind of f(My, ..., M) which would be a ma-

trix. One way to get a matrix from the tensor f (M, ..., M) is to use con-
. . n n
tractions. Assume that one can write f(z1,...,2) = > ny . 02" - TLF,
7 n
where we have ) [an,, . n,|p]" ... pp* < oo for some py, ..., pp > 0. Assume

that for every 1 <1 <k, we have supy eigenvalue of 1, [A| < pi- Then the sum:

Z any,...,np (lemngl2 s M]?k)zj
is convergent, and this matrix is exactly

f®(M1,...,Mk)iili1i2 ...ik*2 1 ik’lj.

Tk—1

It is what we expect f(Mj,..., M) to be when all the M; commute. But
if they do not commute, this may introduce a dissymetry. It does still work

well if f(l‘l, ‘e ,.%'k) = Zle fl(xl)-

But in the simple example f(z,y) = (z + y)?, we have f®(4, B)!}*; =
(A% 4+ B2 +2AB)%; and not ((A + B)?)!; as one could want.

If f(z,y) = x%_y, and provided none of the eigenvalues of A is the opposite
of an eigenvalue of B, it gives you the unique matrix M such that AM +
MB = I, and this matrix is not (4 + B)~! in general.
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