A theory of functions of several variables applied to square matrices
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In this paper, we give one possible definition for functions of several variables applied to endomorphisms of finite dimensional C-vector spaces. This definition is consistent with the usual notion of a function of a square matrix. The fact that with this definition, f ⊗ (A, B) is not a square matrix of size n anymore when A and B are square matrices of size n (well, except in the trivial case where n = 1) can seem weird and unsatisfying, but this objects naturally appear when one differentiates a smooth function of a matrix.
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definitions and notations

As for defining functions in one variable applied to a single matrix (as done in [START_REF] Gantmacher | Matrix theory[END_REF]), we start with the simple case of polynomials.

Definition 1 Let k ∈ N * , and let M 1 , . . . , M k be endomorphisms of the finite dimensional C-vector spaces E 1 , . . . , E k (their dimensions n 1 , . . . , n k may be different). Let P (x 1 , . . . , x k ) = α∈F c α x α 1 1 . . . x α k k be a polynomial of k variables (here F is a finite subset of N k , c α ∈ C and the α l 's are the coordinates of α). We set:

P ⊗ (M 1 , . . . , M k ) := α∈F c α M α 1 1 ⊗ . . . ⊗ M α k k ∈ k l=1 E l ⊗ E * l .
Remark 2 In this definition, the tensor products are implicitely taken over C. We can use a similar definition if E 1 , . . . , E k are R-vector spaces and if P has real coefficients, but with tensor products over R. In the cases when some of the E l 's are R-vector spaces and the other ones are C-vector spaces, or if all the E l 's are R-vector spaces and P has complex coefficients, we can complexify the real vector spaces by replacing the concerned E l 's by E ′ l = C ⊗ R E l and M l by its natural C-linear extension M ′ l to E ′ l , and use the classical version of definition 1.

Remark 3 We use the notation P ⊗ (M 1 , . . . , M k ) and not P (M 1 , . . . , M k ), because doing so would be confusing, and because the ⊗ sign reminds you it is a tensor of higher order. For example, we have ((x, y) → x + y) ⊗ (A, B) = A ⊗ I + I ⊗ B = A + B in general (even in simple cases where A = B or B = 0). Lemma 4 Let k ∈ N * , and let M 1 , . . . , M k be endomorphisms of the finite dimensional C-vector spaces E 1 , . . . , E k . For 1 ≤ l ≤ k, let A (l) be an invertible C-linear application from E l to another C-vector space F l of same dimension than E l . We set M ′ l = A (l) M l A -1 (l) ∈ L(F l , F l ). Let P be a polynomial of k variables. Then we have:

P ⊗ (M ′ 1 , . . . , M ′ k ) i 1 j 1 . . . i k j k = A (1) i 1 i ′ 1 A -1
(1)

j ′ 1 j 1 . . . A (k) i k i ′ k A -1 (k) j ′ k j k P ⊗ (M 1 , . . . , M k ) i ′ 1 j ′ 1 . . . i ′ k j ′ k .
Proof: In the simple case where P is a monomial, it follows from the fact that (AM A -1 ) n = AM n A -1 . The more general case where P is any polynomial easyly follows by linearity. Any complex square matrix can be put in a Jordan form by conjugation by an invertible matrix. Let us see what one gets when all the matrices M 1 , . . . , M k are Jordan matrices.

Example 5 Let M 1 , . . . , M k be Jordan matrices, i.e, for 1 ≤ l ≤ k, the matrix M l has the following form:

M l =       J λ l1 ,r l1 0 . . . 0 0 J λ l2 ,r l2 . . . . . . . . . . . . . . . 0 0 . . . 0 J λ lb l ,r lb l      
, where b l is the number of jordan blocks in M l , J λ,r is the r × r square matrix . . , M k ) i 1 j 1 . . . i k j k is given by the following formulas:

J λ,r =          λ 1 
• If for some 1 ≤ l ≤ k, one has i l > j l or c l = d l , then the coefficient P ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i k j k is 0.

• If for all 1 ≤ l ≤ k, one has i l ≤ j l and c l = d l , then the coefficient

P ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i k j k is k l=1 1 (j l -i l )! ∂ j l -i l l P (λ 1c 1 , . . . , λ kc k ).
Proof: Like in the proof of Lemma 4, we start with the simple case where P is a monomial. In this case, P (x 1 , . . . ,

x k ) = x α 1 1 . . . x α k k and P ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i k j k = k l=1 M α l l i l j l .
One easyly gets the expression given in Example 5 for the coefficients of P ⊗ (M 1 , . . . , M k ) by using the special form of the coefficients of powers of Jordan matrices, and the fact that

k l=1 ∂ ∂x l a l k l=1 f l (x l ) = k l=1 f (a l ) l (x l
). The case of a more general polynomial P trivially follows by linearity.

Proposition 6 Let k ∈ N * , and let M 1 , . . . , M k be square matrices with complex coefficients. Let P 1 , . . . , P k be their minimal polynomials.

Then the set of polynomials P of k variables such that

P ⊗ (M 1 , . . . , M k ) = 0
is the ideal generated by the polynomials P l (x l ), for 1 ≤ k ≤ l.

Proof:

There exist M ′ 1 , . . . , M ′ k Jordan matrices and A 1 , . . . , A k invertibles such that M ′ l = A l M l A -1 l .
According to Lemma 4, we have

P ⊗ (M 1 , . . . , M k ) = 0 ⇔ P ⊗ (M ′ 1 , . . . , M ′ k ) = 0.
For 1 ≤ l ≤ k, we set λ lm the eigenvalues of M l , and r lm their multiplicity as root of the minimal polynomial P l of M l (here the index m varies from 1 to the number e l of distinct eigenvalues of M l ). Then according to example 5, P ⊗ (M ′ 1 , . . . , M ′ k ) = 0 is equivalent to: for all (m l ) 1≤l≤k , (j l ) 1≤l≤k satisfying 1 ≤ m l ≤ e l and 0 ≤ j l < r lm l , one has

k l=1 ∂ j l l P (λ 1m 1 , . . . , λ km k ) = 0.
Assume that there exists l such that P (x 1 , . . . , x k ) = P l (x l )Q(x 1 , . . . , x k ), where Q is a polynomial. Then for any 1 ≤ m ≤ e l and any 0 ≤ j < m lm , x lλ lm divides ∂ j l P (x 1 , . . . , x k ), so it also divides all the derivatives of ∂ j l P (x 1 , . . . , x k ) with respect to all variables but x l , thus they cancel when x l = λ lm . Thus P (M 1 , . . . , M k ) = 0. By linearity, for any polynomial P in the ideal generated by P 1 (x 1 ), . . . , P k (x k ), we have P (M 1 , . . . , M k ) = 0. Conversely, let P be a polynomial such that P (M 1 , . . . , M k ) = 0. There exists two polynomials Q and R such that P = Q + R, Q belongs to the ideal generated by P 1 (x 1 ), . . . , P k (x k ) and the degree of R with respect to the variable x l is lower than deg(P l ) (in the sense that any monomial

x α 1 1 . . . x α k k in R satisfies α l < deg(P l ))
. This fact can be shown by performing Euclidean division by the Gröbner basis P 1 (x 1 ), . . . , P k (x k ) (this is a Gröbner basis for any monomial order) in the space of polynomials on k variables. For any 1 ≤ l ≤ k, any 1 ≤ m ≤ e l and any 0 ≤ j < r lm , there exists a polynomial of one variable P lmj of degree less than deg(P l ) such that for any 1 ≤ m ′ ≤ e l and any 0 ≤ j ′ < r lm ′ , one has P (j ′ ) lmj (λ lm ′ ) = 1 m=m ′ ,j=j ′ (this follows from the classical theory of Lagrange-Sylvester interpolation polynomials). For any m 1 , . . . , m k and j 1 , . . . , j k such that 1 ≤ m l ≤ e l and 0 ≤ j l < r lm l , we set P m 1 j 1 ...m k j k (x 1 , . . . x k ) = k l=1 P lm l j l (x l ). Let us consider the linear map ν which associates to any polynomial S(x 1 , . . . , x k ) of k variables such that its degree with respect to x l is less than deg(P l ), the following k l=1 deg(P l ) values: for any m 1 , . . . , m k and j 1 , . . . , j k satisfying 1 ≤ m l ≤ e l and 0 ≤ j l < r lm l , we set

ν m 1 j 1 ...m k j k (S) := k l=1 ∂ j l l S(λ 1m 1 , . . . , λ km k ). Then we have ν m 1 j 1 ...m k j k (P m ′ 1 j ′ 1 ...m ′ k j ′ k ) = 1 if m l = m ′ l and j l = j ′ l for every 1 ≤ l ≤ k and ν m 1 j 1 ...m k j k (P m ′ 1 j ′ 1 ...m ′ k j ′
k ) = 0 otherwise, so the linear map ν is surjective. So because of the equality of the (finite) dimensions of its domain and its image, ν is also injective. So since ν(R) = 0, we have R = 0 and thus P = Q belongs to the ideal generated by the P l (x l ).

So one does see from Proposition 6 that the dependancy in P of P (M 1 , . . . , M k ) only relies on the values of P and of some of its derivatives at the eigenvalues of the matrices M l , 1 ≤ l ≤ k. This justifies the following definition for more general functions than polynomials.

Definition 7 Let k ∈ N * , and let M 1 , . . . , M k be endomorphisms of the finite dimensional C-vector spaces E 1 , . . . , E k . For 1 ≤ l ≤ k, let e l be the number of different eigenvalues of M l , λ lm be the eigenvalues of M l , for 1 ≤ m ≤ e l , and r lm be the multiplicity of the root λ lm in the minimal polynomial of M l . Let f be a function of k complex variables. Assume that for any k-uple of integers (m 1 , . . . , m k ) such that 1 ≤ m l ≤ e l for 1 ≤ l ≤ k, the function f (x 1 , . . . , x k ) is holomorphic with respect to the variables x l with l satisfying r lm l ≥ 2 near (λ 1m 1 , . . . , λ km k ). That is, if we denote by l 1 , . . . , l p the indexes such that r lq ≥ 2 for 1, ≤ q ≤ p, the function

g : C p → C (y 1 , . . . , y p ) → f (λ 1m 1 , . . . , λ km k ) + p q=1 y q v lq
admits a continuous C-linear differential on a neighborhood of 0, where v l is the l-th vector of the canonical basis of C k . Then we set:

f ⊗ (M 1 , . . . , M k ) := P ⊗ (M 1 , . . . , M k ),
with P any complex polynomial of k variables such that for all (m 1 , . . . , m k ) and (j 1 , . . . , j k ) such that 1 ≤ m l ≤ e l and 0 ≤ j l < r lm l for 1 ≤ l ≤ k, we have:

k l=1 ∂ j l l f (λ 1m 1 , . . . , λ km k ) = k l=1 ∂ j l l P (λ 1m 1 , . . . , λ km k ).
Remark 8 The function f does not really need to be defined on the whole C k , but only on the points whose coordinates are the eigenvalues of the M l 's and on some neighborhoods of those points intersected with some affine subspaces.

Remark 9 If one wants to generalize this definition in a real framework, as said in Remark 2, one can not just assume f is a real function of real variables, because real matrices may have non-real eigenvalues. The right thing to do is to chose f such that f ( z1 , . . . , zk ) = f (z 1 , . . . , z k ) to be sure there exists a polynomial P with real coefficients satisfying all the equalities required.

Remark 10 The polynomial P can be chosen to be

k l=1 ∂ j l l f (λ 1m 1 , . . . , λ km k ) P m 1 j 1 ...m k j k (x 1 , . . . , x k ),
with the same notation as in the proof of Proposition 6. In this case, we say P is the Lagrange-Sylvester interpolation polynomial of f associated to the product of multisets k l=1 Root(P l ), where Root(P l ) is the multiset of the roots of P l , counted with their multiplicity.

Some rules for computations

In this section, we show that f ⊗ (M 1 , . . . , M k ) behaves like fonctions of several variables do, and we show that some contractions of f ⊗ (M 1 , . . . , M k ) can have a simplified expression. Finally, we show the main result of this paper, which is the expression of the derivative of f ⊗ (M 1 , . . . , M k ) with respect to the matrices M l .

The tensor f ⊗ (M 1 , . . . , M k ) applied to eigenvectors of M 1 , . . . , M k has a simplified expression. This allows to give an alternative expression for f ⊗ (M 1 , . . . , M k ) when M 1 , . . . , M k are all diagonalizable.

Proposition 11 Let k ∈ N * , and let M 1 , . . . , M k be endomorphisms of the finite dimensional C-vector spaces E 1 , . . . , E k . For 1 ≤ l ≤ k, let u l ∈ E l be an eigenvector of M l for the eigenvalue λ l . then we have

f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i k j k (u 1 ) j 1 . . . (u k ) j k = f (λ 1 , . . . , λ k )(u 1 ) i 1 . . . (u k ) i k .
Proof: In the simple case where f is a monomial, we have

f (x 1 , . . . , x k ) = x α 1 1 . . . x α k k , with α l ∈ N for 1 ≤ l ≤ k. We get f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i k j k (u 1 ) j 1 . . . (u k ) j k = (M α 1 1 ) i 1 j 1 . . . M α k k i k j k (u 1 ) j 1 . . . (u k ) j k = λ α 1 1 (u 1 ) i 1 . . . λ α k k (u k ) i k = f (λ 1 , . . . , λ k )(u 1 ) i 1 . . . (u k ) i k .
By linearity, this extends to the case where f is a polynomial. For the more general case, we have f ⊗ (M 1 , . . . , M k ) = P ⊗ (M 1 , . . . , M k ) where P is a polynomial of k variables satisfying the conditions described in Definition 7. In particular, P has the same values f has on the eigenvalues of M 1 , . . . , M k , so the desired equality holds for a general function f . Remark 12 In the case where M 1 , . . . , M k are all diagonalizable, for all 1 ≤ l ≤ k we can take a basis of E l made of eigenvectors of M l . Let us denote by u lm , for 1 ≤ m ≤ dim(E l ) = d l the vectors of this basis, by λ lm the corresponding eigenvalue and by u * lm ∈ E * l the corresponding vector of the dual basis.

Then the family of tensors k l=1 u lm l ⊗u * ln l , for 1 ≤ m l ≤ d l and

1 ≤ n l ≤ d l , is a basis of k l=1 E l ⊗E * l .
According to Proposition 11, the decomposition of the tensor f ⊗ (M 1 , . . . , M k ) in this basis can only be

f ⊗ (M 1 , . . . , M k ) = ∀1≤l≤k,1≤m l ≤d l f (λ 1m 1 , . . . , λ km k ) k l=1 u lm l ⊗ u * lm l .
One of the simplest properties of f ⊗ (M 1 , . . . , M k ) is its linearity with respect to f . Proposition 13 Let k ∈ N * , and let M 1 , . . . , M k be endomorphisms of the finite dimensional C-vector spaces E 1 , . . . , E k . Let λ and µ be two complex numbers, and f and g be two functions from C k to C, regular enough such that f ⊗ (M 1 , . . . , M k ) and g ⊗ (M 1 , . . . , M k ) can be defined. Then the function λf + µg has the same regularity, and we have:

(λf + µg) ⊗ (M 1 , . . . , M k ) = λf ⊗ (M 1 , . . . , M k ) + µg ⊗ (M 1 , . . . , M k ).
Proof: If P and Q are interpolation polynomials of f and g as required in Definition 7 to compute f ⊗ (M 1 , . . . , M k ) and g ⊗ (M 1 , . . . , M k ), then λP +µQ is an interpolation polynomial of λf + µg because partial derivatives are linear.

So we have

(λf + µg) ⊗ (M 1 , . . . , M k ) = (λP + µQ) ⊗ (M 1 , . . . , M k ) = λP ⊗ (M 1 , . . . , M k ) + µQ ⊗ (M 1 , . . . , M k ) = λf ⊗ (M 1 , . . . , M k ) + µg ⊗ (M 1 , . . . , M k ),
where the second equality trivially follows from Definition 1. Another trivial property is the nice behaviour of f ⊗ (M 1 , . . . , M k ) with respect to transpositions.

Proposition 14 Let k ∈ N * , and let M 1 , . . . , M k be endomorphisms of the finite dimensional C-vector spaces E 1 , . . . , E k . Let f be a function from

C k to C such that f ⊗ (M 1 , . . . , M k ) is well defined. Let 1 ≤ l ≤ k. The transposition of M l is the endomorphism of E * l defined by M T l (ζ), v = ζ, M l (v) , for any ζ in E * l and v ∈ E l . More explicitely, we can write (M T l ) j l i l = (M l ) i l j l .
Then we have:

f ⊗ (M 1 , . . . , M l-1 , M T l , M l+1 , . . . , M k ) i 1 j 1 . . . i l-1 j l-1 j l i l i l+1 j l+1 . . . i k j k = f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i k j k .
Remark 15 In particular, if the matrix of M l is symmetric in some basis B of E l , then the coefficients of f ⊗ (M 1 , . . . , M k ) in a product basis where the one chosen for E l is B are invariant by swapping the corresponding indexes.

Proof: The matrices M l and M T l have the same eigenvalues and the same minimal polynomial, thus if P is a suitable interpolation polynomial so that

f ⊗ (M 1 , . . . , M k ) = P ⊗ (M 1 , . . . , M k ), then we have f ⊗ (M 1 , . . . , M l-1 , M T l , M l+1 , . . . , M k ) = P ⊗ (M 1 , . . . , M l-1 , M T l , M l+1 , . . . , M k ).
Proposition 14 for polynomials trivially follows from the fact that (M T ) a = (M a ) T .

The tensor f ⊗ (M 1 , . . . , M k ) can also be seen as an endomorphism on the space E 1 ⊗ E 2 ⊗ . . . ⊗ E k . This allows to take products of such tensors, or to apply functions of several variables on them.

Theorem 16 Let M 1 , . . . , M k be endomorphisms of finite dimensional Cvector spaces. Let f 1 and f 2 be two functions from C k to C. As in Definition 7, we set e l the number of different eigenvalues of M l , for 1 ≤ l ≤ k, λ lm the eigenvalues of M l and r lm their multiplicity as roots of the minimal polynomial of M l , for 1 ≤ m ≤ e l . Assume that f 1 and f 2 are holomorphic with respect to all the variables x l such that r lm l ≥ 2 near (λ 1m 1 , . . . , λ km k ).

Then we can define

M1 = f ⊗ 1 (M 1 , . . . , M k ) and M2 = f ⊗ 2 (M 1 , . . . , M k ) and see them as endomorphisms of E 1 ⊗ . . . ⊗ E k . Then we have M1 M2 = g ⊗ (M 1 , . . . , M k ), with g(x 1 , . . . , x k ) = f 1 (x 1 , . . . , x k )f 2 (x 1 , . . . , x k ).
Remark 17 In particular, M1 and M2 commute, since one does get the same function g by swapping f 1 and f 2 .

Proof:

We first notice that the function g is regular enough so that g ⊗ (M 1 , . . . , M k ) is well defined, so the statement of Proposition 16 has a sense.

Let P 1 and P 2 be suitable interpolation polynomials of f 1 and f 2 , in the sense that all the partial derivatives at (λ 1m 1 , . . . , λ km k ) such that one derives less than r lm l times with respect to x l are equal for f i and P i .

Then according to Definition 7, one has

f ⊗ i (M 1 , . . . , M k ) = P ⊗ i (M 1 , . . . , M k
). The polynomials P 1 and P 2 can be written as

P i = α∈F i a iα x α 1 1 . . . x α k k ,
with F i a finite subset of N k and a iα the complex coefficients of the polynomial P i . Then we have:

( M1 M2 ) i 1 j 1 . . . i k j k = ( M1 ) i 1 m 1 . . . i k m k ( M2 ) m 1 j 1 . . . m k j k = α∈F 1 a 1α (M α 1 1 ) i 1 m 1 . . . (M α k k ) i k m k β∈F 2 a 2β (M β 1 1 ) m 1 j 1 . . . (M β k k ) m k j k = α∈F 1 ,β∈F 2 a 1α a 2β (M α 1 +β 1 1 ) i 1 j 1 . . . (M α k +β k k ) i k j k = (P 1 P 2 ) ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i k j k .
Finally, we have

∂ a 1 1 , . . . , ∂ a k k (P 1 P 2 )(x 1 , . . . , x k ) = 0≤b 1 ≤a 1 ... 0≤b k ≤a k a 1 b 1 . . . a k b k ∂ b 1 1 . . . ∂ b k k P 1 (x 1 , . . . , x k )∂ a 1 -b 1 1 . . . ∂ a k -b k k P 2 (x 1 , . . . , x k ).
the same formula holds when we replace P 1 with f 1 , P 2 with f 2 , P 1 P 2 with g, and x l with λ lm l , for all k-tuple (m 1 , . . . , m k ) such that 1 ≤ m l ≤ e l , provided 0 ≤ a l < r lm l for all 1 ≤ l ≤ k. Thus we have

∂ a 1 1 . . . ∂ a k k g(λ 1m 1 , . . . , λ km k ) = ∂ a 1 1 . . . ∂ a k k (P 1 P 2 )(λ 1m 1 , . . . , λ km k ),
for all k-tuple (a 1 , . . . , a k ) such that 0 ≤ a l < r lm l . So we get

M1 M2 = (P 1 P 2 ) ⊗ (M 1 , . . . , M k ) = g ⊗ (M 1 , . . . , M k ),
as stated.

Theorem 18 Let r ∈ N * , and k q ∈ N * for 1 ≤ q ≤ r. Let E ql be a family of finite dimensional C-vector spaces, where 1 ≤ l ≤ r and 1 ≤ l ≤ k q , and let M ql be and endomorphism of E ql .

We set e ql the number of different eigenvalues of M ql , λ qlm these eigenvalues, where 1 ≤ m ≤ e ql , and r qlm the multiplicity of the root λ qlm in the minimal polynomial of M ql . For 1 ≤ q ≤ r, let f q be a function from C kq to C, such that f q is holomorphic with respect to all the variables x l such that r qlm l ≥ 2 near (λ q1m 1 , . . . , λ qlm l , . . . , λ qkqm kq ), for every k q -tuple (m 1 , . . . , m kq ) with 1 ≤ m l ≤ e ql .

Let ēq be the number of different values that f q (λ q1m 1 , . . . , λ qkqm kq ) takes, and µ qp be these values for 1 ≤ p ≤ ēq .

We set rqp := max{1+ kq l=1 (r qlm l -1), 1 ≤ m l ≤ e ql |f q (λ q1m 1 , . . . , λ qkqm kq ) = µ qp }.

We set Mq = f ⊗ q (M q1 , . . . , M qkq ), seen as an endomorphism of Ēq := E q1 ⊗ . . . ⊗ E qkq .

Let g be a function from C r to C, such that for every r-tuple (p 1 , . . . , p r ), g is holomorphic with respect to all the variables x q such that rqpq ≥ 2, near the point (µ 1p 1 , . . . , µ rpr ).

Then for all 1 ≤ q ≤ k, and all 1 ≤ p ≤ ēq , the µ qp 's are the eigenvalues of Mq , and the multiplicity of the root µ qp in the minimal polynomial of Mq is at most rq p.

So g ⊗ ( M1 , . . . , Mr ) is well defined and furthermore, we have:

g ⊗ ( M1 , . . . , Mr ) = h(M 11 , . . . , M rkr ),
where h is the function of r q=1 k q variables defined by h(x 11 , . . . , x rkr ) := g(f 1 (x 11 , . . . , x 1k 1 ), . . . , f r (x r1 , . . . , x rkr )).

Proof: Let us prove that the µ qp 's are the eigenvalues of Mq and have multiplicity at most rpq in the minimal polynomial of Mq . Let 1 ≤ q ≤ r. Let P (x 1 , . . . , x kq ) be a suitable interpolation polynomial of f q , such that Mq = P ⊗ (M q1 , . . . , M qkq ). For any m 1 , . . . , m kq , if v 1 , . . . , v kq are eigenvectors of M q1 , . . . , M qkq for the eigenvalues λ q1m 1 , . . . , λ qkqm kq , then v 1 ⊗. . .⊗v kq is an eigenvector of Mq for the eigenvalue P (λ q1m 1 , . . . , λ qkqm kq ) = f q (λ q1m 1 , . . . , λ qkqm kq ), so the µ qp 's are eigenvalues of Mq . Let Q(x) = ēq p=1 (xµ qp ) rqp . It remains to check that Q( Mq ) = 0. We set R(x 1 , . . . , x kq ) = Q(P (x 1 , . . . , x kq )). Then it easily follows from Theorem 16 that Q( Mq ) = R ⊗ (M q1 , . . . , M qkq ). For 1 ≤ l ≤ k q , let 1 ≤ m l ≤ e ql , and 0 ≤ j l < r qlm l . One has, according to the Faa di Bruno formula,

  kq l=1 ∂ j l l   R(λ q1m 1 , . . . , λ qkqm kq ) = kq l=1 j l j=0 Q (j) (P (λ q1m 1 , . . . , λ qkqm kq ))A j ,
where the term A j can be written as

A j = n≤j (i 1 ,...,in)∈(N kq ) n 0≺i 1 ≺i 2 ≺...≺in (a 1 ,...,an)∈N * n a 1 +...+an=j a 1 i 1 +...+anin=(j 1 ,...,j kq ) kq l=1 j l ! n k=1 a k ! kq l=1 (i kl !) a k n k=1     kq l=1 ∂ i kl l   P (λ q1m 1 , . . . , λ qkqm kq )   a k ,
where can be any total order on N kq such that 0 is its minimal element (one can take the lexicographical order, for example).

But actually the value of A j does not matter, since Q (j) (P (λ q1m 1 , . . . , λ qkqm kq )) = 0, because P (λ q1m 1 , . . . , λ qkqm kq ) is equal to some µ qp such that rqp > j. for all p 1 , . . . , p r and j 1 , . . . , j r satisfying 1 ≤ p q ≤ ēq and 0 ≤ j q < rqpq .

Thus, we have

Then we have P ⊗ ( M1 , . . . , Mr ) = g ⊗ ( M1 , . . . , Mr ). It easily follows from Definition 1 and Theorem 16 that

P ⊗ ( M1 , . . . , Mr ) = H ⊗ (M 11 , . . . , M rkr ),
where H is the function of r q=1 k q variables defined by H(x 11 , . . . , x rkr ) = P (f 1 (x 11 , . . . , x 1k 1 ), . . . , f r (x r1 , . . . , x rkr )).

To complete the proof of the theorem, it remains to check that for all 1 ≤ m ql ≤ e ql and 0 ≤ j ql < r qlm ql . This is easily done by using the Faa di Bruno formula and the fact that

  r q=1 ∂ jq q   P (µ 1p 1 , . . . , µ rpr ) =   r q=1 ∂ jq q   g(µ 1p 1 , . . . , µ rpr ),
for all 1 ≤ p q ≤ ēq and 0 ≤ j q < rqpq .

In some cases, contractions of the tensor f ⊗ (M 1 , . . . , M k ) have a simplified expression.

Theorem 19 Let M 1 , . . . , M k be endomorphisms of finite dimensional Cvector spaces. Let f be a function from

C k to C, such that f ⊗ (M 1 , . . . , M k ) is well defined. Let 1 ≤ p ≤ k.
Then we have the following equality:

f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 ip ip i p+1 j p+1 . . . i k j k = g ⊗ (M 1 , . . . , M p-1 , M p+1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i p+1 j p+1 . . . i k j k ,
where g is the function of k -1 variables defined by

g(x 1 , . . . , x p-1 , x p+1 , . . . , x k ) = ep m=1 s pm f (x 1 , . . . , x p-1 , λ pm , x p+1 , . . . , x k ),
where the λ pm , for 1 ≤ m ≤ e p are all the different eigenvalues of M p and s pm is the multiplicity of the eigenvalue λ pm , i.e. its multiplicity as root of the characteristic polynomial of M p .

Proof: In the simple case where f (x 1 , . . . , x k ) is a monomial, the equality of Theorem 19 easily follows from the classical fact that Tr(M a ) = λ eigenvalue of M λ a (where the same λ appears several times in the sum if it is a multiple eigenvalue of M ) for any square matrice M . By linearity, the equality of Theorem 19 extends to the case where f is a polynomial.

For a more general f , we set P a polynomial such that k l=1 ∂ a l l (f -P )(λ 1m 1 , . . . , λ km k ) = 0 for any sequences m 1 , . . . , m k and a 1 , . . . , a k such that 1 ≤ m l ≤ e l and 0 ≤ a l < r lm l , with e l the number of different eigenvalues of M l , λ lm these eigenvalues for 1 ≤ m ≤ e l and r lm their multiplicities in the minimal polynomial of M l . Then we have

f ⊗ (M 1 , . . . , M k ) = P ⊗ (M 1 , . . . , M k ). Thus we get f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 ip ip i p+1 j p+1 . . . i k j k = P ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 ip ip i p+1 j p+1 . . . i k j k = Q ⊗ (M 1 , . . . , M p-1 , M p+1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i p+1 j p+1 . . . i k j k , with Q(x 1 , . . . , x p-1 , x p+1 , . . . , x k ) = ep m=1
s pm P (x 1 , . . . , x p-1 , λ pm , x p+1 , . . . , x k ).

To conclude the proof, it remains to check that

    1≤l≤k l =p ∂ ∂x l a l     (g -Q)(x 1 , . . . , x p-1 , x p+1 , . . . , x k ) (x 1 ,...,x k )=(λ 1m 1 ,...,λ km k ) = 0.
This quantity is just

ep m=1     1≤l≤k l =p ∂ ∂x l a l     (f -P )(λ 1m 1 , . . . , λ p-1m p-1 , λ pm , λ p+1m p+1 , . . . , λ km k ), which is trivially 0. So Q ⊗ (M 1 , . . . , M p-1 , M p+1 , . . . , M k ) = g ⊗ (M 1 , . . . , M p-1 , M p+1 , .
. . , M k ) and the theorem is proved.

Theorem 20 Let M 1 , . . . , M k be endomorphisms of finite dimensional Cvector spaces E 1 , . . . , E k . Assume that for two indexes 1 ≤ p < q ≤ k, we have E p = E q and M p = M q . Let f be a function from C k to C, such that f ⊗ (M 1 , . . . , M k ) is well defined. Then we have:

f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i a i p+1 j p+1 . . . i q-1 j q-1 a j i q+1 j q+1 . . . i k j k = f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1
a j i p+1 j p+1 . . . i q-1 j q-1 i a i q+1 j q+1 . . . i k j k = g ⊗ (M 1 , . . . , M q-1 , M q+1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i j i p+1 j p+1 . . . i q-1 j q-1 i q+1 j q+1 . . .

i k j k ,
where the function g of k -1 variables is defined by g(x 1 , . . . , x q-1 , x q+1 , . . . , x k ) = f (x 1 , . . . , x q-1 , x p , x q+1 , . . . , x k ).

Proof: We proceed as in the proof of Theorem 19. If f is a monomial, the result easily follows from the trivial fact that M a M b = M b M a = M a+b for any square matrix M . So by linearity, it also holds for polynomials. For a more general f , we set again P an interpolation polynomial such that f ⊗ (M 1 , . . . , M k ) = P ⊗ (M 1 , . . . , M k ). And so we have:

f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i a i p+1 j p+1 . . . i q-1 j q-1 a j i q+1 j q+1 . . . i k j k = P ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i a i p+1 j p+1 . . . i q-1 j q-1 a j i q+1 j q+1 . . . i k j k = P ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 a j i p+1 j p+1 . . . i q-1 j q-1 i a i q+1 j q+1 . . . i k j k = f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 a j i p+1 j p+1 . . . i q-1 j q-1 i a i q+1 j q+1 . . . i k j k = Q ⊗ (M 1 , . . . , M q-1 , M q+1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i j i p+1 j p+1 . . . i q-1 j q-1 i q+1 j q+1 . . . i k j k ,
where the polynomial Q is defined by Q(x 1 , . . . , x q-1 , x q+1 , . . . , x k ) = P (x 1 , . . . , x q-1 , x p , x q+1 , . . . , x k ).

It remains to check that

    1≤l≤k l =q ∂ ∂x l a l     (g -Q)(x 1 , . . . , x q-1 , x q+1 , . . . , x k ) (x 1 ,...,x k )=(λ 1m 1 ,...,λ km k ) = 0,
with the same notation as above for the λ lm 's and the same conditions for the m l 's and a l 's. The left-hand side is equal to

ap h=0 a p h       ∂ h p ∂ ap-h q 1≤l≤k l =p l =q ∂ a l l       (f -P )(λ 1m 1 , . . . , λ q-1mq 1 , λ pmp , λ q+1m q+1 , . . . , λ km k ).
It is 0 because P is a nice interpolation polynomial of f . So we get Q ⊗ (M 1 , . . . , M q-1 , M q+1 , . . . , M k ) = g ⊗ (M 1 , . . . , M q-1 , M q+1 , . . . , M k ) and the theorem is proved.

In the case where E p = E q but M p and M q are different, there is no such simplified expression for the contraction, but one has a kind of commutation property if M p and M q commute. Proposition 21 Let M 1 , . . . , M k be endomorphisms of finite dimensional C-vector spaces E 1 , . . . , E k . Assume that for two indexes 1 ≤ p < q ≤ k, we have E p = E q and the endomorphisms M p and M q commute. Let f be a function from C k to C, such that f ⊗ (M 1 , . . . , M k ) is well defined. Then we have:

f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 i a i p+1 j p+1 . . . i q-1 j q-1 a j i q+1 j q+1 . . . i k j k = f ⊗ (M 1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 a j i p+1 j p+1 . . . i q-1 j q-1 i a i q+1 j q+1 . . . i k j k .
Proof: One replaces f with a suitable interpolation polynomial P such that f ⊗ (M 1 , . . . , M k ) = P ⊗ (M 1 , . . . , M k ). Then using linearity, we only have to check the property for monomials, which easily follows from the well known fact that if M p and M q commute, then M n 1 p and M n 2 q also commute (the commutation of two endomorphisms M and N can be written M i a N a j = M a j N i a ).

Remark 22

We have a generalization of Remark 17. If M 1 , . . . , M k and M ′ 1 . . . , M ′ k are endomorphisms of E 1 , . . . , E k such that for all 1 ≤ l ≤ k, M l and M ′ l commute, and if f and g are two functions from C k to C such that M = f ⊗ (M 1 , . . . , M k ) and M ′ = g ⊗ (M ′ 1 , . . . , M ′ k ) are well defined, then M and M ′ commute as endomorphisms of E 1 ⊗ . . . ⊗ E k .

Proof:

The tensors M M ′ and M ′ M can both be obtained by k contractions from the tensor h ⊗ (M 1 , . . . , M k , M ′ 1 , . . . , M ′ k ), where h(x 1 , . . . , x k , y 1 , . . . , y k ) = f (x 1 , . . . , x k )g(y 1 , . . . , y k ). The fact you get the same result follows just from applying k times proposition 21.

For a given holomorphic function f , the tensor f ⊗ (M 1 , . . . , M k ) is an holomorphic function of M 1 , . . . , M k . The following theorem gives the expression of its derivatives.

Theorem 23 Let k ∈ N * , and M 1 , . . . , M k be endomorphisms of the finite dimensional C-vector spaces E 1 , . . . , E k . For any 1 ≤ l ≤ k, we set e l the number of different eigenvalues of M l , λ lm these eigenvalues for 1 ≤ m ≤ e l , r lm their multiplicity as roots of the minimal polynomial of M l . Let f be a function from C k to C. Let 1 ≤ p ≤ k. Assume that for all k-tuple (m 1 , . . . , m k ), f (x 1 , . . . , x k ) is holomorphic with respect to x p and all the other variables x l such that r lm l ≥ 2 near (λ 1m 1 , . . . , λ km k ).

Then for any endomorphism H of E p , we have the following:

lim ε→0 f ⊗ (M 1 ,...,M p-1 ,Mp+εH,M p+1 ,...,M k ) i 1 j 1 ... i k j k -f ⊗ (M 1 ,...,...,M k ) i 1 j 1 ... i k j k ε = g ⊗ (M 1 , . . . , M p-1 , M p , M p , M p+1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 ip i j jp i p+1 j p+1 . . . i k j k H i j ,
with g the function of k + 1 variables defined by

g(x 1 , . . . , x p-1 , x p , y, x p+1 , . . . , x k ) = f (x 1 ,...,x p-1 ,y,x p+1 ,...,x k )-f (x 1 ,...,x k ) y-xp if y = x p ∂ p f (x 1 , . . . , x k ) if y = x p .
Remark 24 When y is close to x, we can write

g(x 1 , . . . , x p-1 , x p , y, x p+1 , . . . , x k ) = 1 0 ∂ p f (x 1 , . . . , x p-1 , (1-t)x p +ty, x p+1 , . . . , x k ).
So we don't have regularity issues with g near the hyperplane x p = y.

Proof: In the simple case of a monomial f (x 1 , . . . , x k ) = k l=1 x α l l , it follows from the fact that lim ε→0

((M p + εH) αp ) i j -(M αp p ) i j ε = αp-1 h=0 (M h p HM αp-1-h p ) i j =   (x, y) → αp-1 h=0 x h y αp-1-h   ⊗ (M p , M p ) i a b j H a b
and that we have

αp-1 h=0 x h y αp-1-h = y αp -x αp y-x if x = y d dx x αp if x = y.
By linearity, this result extends to polynomials. For a more general f , for any 1 ≤ l ≤ k, we set P l the minimal polynomial of M l , and we set P (ε) the characteristic polynomial of M p + εH. Let Q ε be the Lagrange-Sylvester interpolation polynomial of f associated to the product of multisets p-1 l=1 Root(P l )×Root(P p P (ε) )× k l=p+1 Root(P l ). That is to say, if we set e l the number of different roots of P l , λ lm these roots for 1 ≤ m ≤ e l and r lm their multiplicities, and if we set likewise e (ε) the number of different roots of P p P (ε) , λ (ε) m these roots for 1 ≤ m ≤ e (ε) and r (ε) m their multiplicities, then Q ε (x 1 , . . . , x k ) is the unique polynomial of k variables whose degree with respect to the variable x l is at most deg(P l ), except for the variable x p for which it is at most deg(P p ) + dim(E p ), and wich satisfies the equalities

k l=1 ∂ a l l (Q ε -f )(λ 1m 1 , . . . , λ p-1m p-1 , λ (ε)
mp , λ p+1m p+1 , . . . , λ km k ) = 0 for all k-tuples (m 1 , . . . , m k ) and (a 1 , . . . , a k ) such that 1 ≤ m l ≤ e l and 0 ≤ a l < r lm l for l = p and 1 ≤ m p ≤ e (ε) and 0 ≤ a p < r (ε) mp . Because of the continuity of the Lagrange-Sylvester interpolation, we have

Q ε ---→ ε→0 Q 0 . Furthermore, we have f ⊗ (M 1 , . . . , M p-1 , M p +εH, M p+1 , . . . , M k ) = Q ⊗ ε (M 1 , . . . , M p-1 , M p +εH, M p+1 , . . . , M k ). So we get f ⊗ (M 1 , . . . , M p-1 , M p + εH, M p+1 , . . . , M k ) -f ⊗ (M 1 , . . . , M k ) = Q ⊗ ε (M 1 , . . . , M p-1 , M p + εH, M p+1 , . . . , M k ) -Q ⊗ 0 (M 1 , . . . , M k ) = (Q ε -Q 0 ) ⊗ (M 1 , . . . , M p-1 , M p + εH, M p+1 , . . . , M k ) + Q ⊗ 0 (M 1 , . . . , M p-1 , M p + εH, M p+1 , . . . , M k ) -Q ⊗ 0 (M 1 , . . . , M k ).
For a fixed ε, the difference

(Q ε -Q 0 ) ⊗ (M 1 , . . . , M p-1 , M p +δH, M p+1 , . . . , M k )
is a polynomial of δ whose coefficients tend to 0 when ε tends to 0. The coefficient of this polynomial corresponding to

δ 0 is (Q ε -Q 0 ) ⊗ (M 1 , . . . , M k ) = 0. Thus we have (Q ε -Q 0 ) ⊗ (M 1 , . . . , M p-1 , M p + εH, M p+1 , . . . , M k ) = o(ε).
Hence, using the Theorem for the polynomial Q 0 , we have

lim ε→0 f ⊗ (M 1 ,...,M p-1 ,Mp+εH,M p+1 ,...,M k ) i 1 j 1 ... i k j k -f ⊗ (M 1 ,...,...,M k ) i 1 j 1 ... i k j k ε = R ⊗ (M 1 , . . . , M p-1 , M p , M p , M p+1 , . . . , M k ) i 1 j 1 . . . i p-1 j p-1 ip i j jp i p+1 j p+1 . . . i k j k H i j ,
with R the polynomial of k + 1 variables given by: R(x 1 , . . . , x p-1 , x p , y, x p+1 , . . . , x k ) =

Q 0 (x 1 ,...,x p-1 ,y,x p+1 ,...,x k )-Q 0 (x 1 ,...,x k ) y-xp if y = x p ∂ p Q 0 (x 1 , . . . , x k ) if y = x p .
Let (m 1 , . . . , m p , m ′ p , m p+1 , . . . , m k ) and (a 1 , . . . , a p , a ′ p , a p+1 , . . . , a k ) be two k + 1-tuples satisfying 1 ≤ m l ≤ e l , 1 ≤ m ′ p ≤ e p , 0 ≤ a l < r lm l and 0 ≤ a ′ p < r pm ′ p . We want to show that

∂ ∂y a ′ p k l=1 ∂ ∂x l a l (g -R)(x 1 , . . . , x p , y, x p+1 , . . . , x k ) = 0. (x 1 ,...,xp,y,x p+1 ,...,x k )=(λ 1m 1 ,...,λpm p ,λ pm ′ p ,λ p+1m p+1 ,...,λ km k ) If m p = m ′ p , this quantity is a ′ p h=0 ( a ′ p h ) (-1) a ′ p -h (ap+a ′ p -h)!     ∂ h p 1≤l≤k l =p ∂ a l l     (f -Q 0 )(λ 1m 1 ,...,λ p-1m p-1 ,λ pm ′ p ,λ p+1m p+1 ,...,λ km k ) (λ pm ′ p -λpm p ) ap+a ′ p -h+1 - ap h=0 ( ap h ) (-1) a ′ p (ap+a ′ p -h)!     ∂ h p 1≤l≤k l =p ∂ a l l     (f -Q 0 )(λ 1m 1 ,...,λ km k ) (λ pm ′ p -λpm p ) ap+a ′ p -h+1
which is 0 as wanted, since each term of both sums is 0. If m p = m ′ p , using the formula of Remark 24, the quantity we want to compute is

    ∂ ap+a ′ p +1 p 1≤l≤k l =p ∂ a l l     (f -Q 0 )(λ 1m 1 , . . . , λ km k ) 1 0 (1 -t) a ′ p t ap dt
which is 0 too because a p + a ′ p + 1 < 2r pmp ≤ r pmp + s pmp , where s pmp is the multiplicity of λ pmp as root of the characteristic polynomial of M p .

Thus (g -R) ⊗ (M 1 , . . . , M p-1 , M p , M p , M p+1 , . . . , M k ) = 0 and the theorem is proved.

Some possible applications

In the particular case of symmetric square matrices with real coefficients, we know that such matrices have real eigenvalues and are diagonalizable in an othonormal basis. So we can apply real-valued functions of real variables to them, without having the regularity concerns for the definitions. In this framework, we have the following result.

Proposition 25 We denote by Sym n (R) the vector space of symmetric n×n matrices with real coefficients, equipped with the Hilbert-Schmidt norm

M HS = Tr(M T M ) = Tr(M 2 ).
Let f : R → R be a function. Assume that f is k-Lipschitz for some k > 0.

Then the function

F : Sym n (R) → Sym n (R) M → f (M )
is also k-Lipschitz.

Proof: We first prove that the result holds when f is a C 1 function. In that case, a modified version of Theorem 23 holds, so F is differentiable, and its derivative at M is given by

(dF (M ).H) i j = lim ε→0 F (M + εH) i j -F (M ) i j ε = f 1 (M, M ) i k l j H k l ,
where we have

f 1 (x, y) = f (y)-f (x) y-x if x = y f ′ (x) if x = y.
For a given M ∈ Sym n (R), we denote λ 1 , λ 2 , . . . , λ n its eigenvalues and u 1 , . . . , u n a set of orthonormed eigenvectors of M . Then, the matrices u i ⊗u * i for 1 ≤ i ≤ n and

u i ⊗u * j +u j ⊗u * i √ 2
for 1 ≤ i < j ≤ n form an orthonormal basis of Sym n (R) and are eigenvectors of dF (M ) with eigenvalues f 1 (λ i , λ i ) and f 1 (λ i , λ j ) respectively, according to Proposition 11. Using the fact that

f is k-Lipschitz, we have ∀x, y ∈ R, |f 1 (x, y)| ≤ k.
Thus dF (M ) is a k-Lipschitz linear function of Sym n (R). This being true for every M ∈ Sym n (R), the function F itself is also k-Lipschitz.

If the function f is not C 1 , one can approximate f by a C 1 which is also k-Lipschitz. For example, we set

g(x) =      0 if |x| ≥ 1 e 1 1-x 2 1 -1 e 1 1-y 2 dy if |x| < 1, g ε (x) = 1 ε g x ε and f ε (x) = R f (x -y)g ε (y)dy = R f (y)g ε (x -y)dy.
Then we have

|f ε (x)-f ε (y)| = | R (f (x-z)-f (y-z))g ε (z)dz| ≤ k|x-y| R |g ε (z)|dz = k|x-y|, so f ε is k-Lipschitz. And f ε is differentiable, its derivative being f ′ ε (x) = R f (y)g ′ ε (x -y)dy = R f (x y)g ′ ε (y)dy, which is continuous so f ε is C 1 . Furthermore, we have |f ε (x)-f (x)| = | R (f (y)-f (x))g ε (x-y)dy| ≤ k R |y|g ε (y)dy = kε R |y|g(y)dy.
So for any M ∈ Sym n (R), we have

f ε (M )-f (M ) 2 HS = (f ε -f )(M ) 2 HS = Tr((f ε -f ) 2 (M )) = n i=1 (f ε -f ) 2 (λ i ) ≤ k 2 ε 2 n R |x|g(x)dx 2 .
So, for M 1 and M 2 in Sym n (R), we have

F (M 1 )-F (M 2 ) HS ≤ F (M 1 )-f ε (M 1 ) HS + f ε (M 1 )-f ε (M 2 ) HS + f ε (M 2 )-F (M 2 ) HS ≤ kε √ n R |x|g(x)dx + k M 2 -M 1 HS + kε √ n R |x|g(x)dx.
This inequality being true for every ε > 0, we finally get

F (M 1 )-F (M 2 ) HS ≤ k M 2 -M 1 HS , so F is k-Lipschitz.
The main reason the author thinks it is a good idea to introduce f ⊗ (M 1 , . . . , M k ) is that it allows to give a rather simple expression of derivatives of a function of a square matrix. If we iterate Theorem 23, we can get the following expression for the n-th derivative of f (M ) = f ⊗ (M ).

Proposition 26 Let M and H be two endomorphisms of a finite-dimensional C-vector space E. Let f : C → C be a function which is holomorphic in the neighborhood of each eigenvalue of M . Then the function F : U ⊂ C → L(E, E) given by F (z) = f (M + zH) is holomorphic in a neighborhood of 0 and furthermore, we have:

F (n) (z) i j = n!f ⊗ n (M + zH, M + zH, . . . , M + zH n+1 times ) i j 1 i 1 j 2 . . . i n-1 jn in j H j 1 i 1 . . . H jn in ,
where U is an open subset of C which contains 0, and

f n (x 0 , . . . , x n ) = f [x 0 , . . . , x n ]
is the (generalized) divided difference of the function f on the nodes x 0 , . . . , x n .

Proof: We proceed by induction on n. The case n = 0 is trivial. Assume that

F (n) (z) i j = n!f ⊗ n (M + zH, . . . , M + zH) i j 1 i 1 j 2 . . . i n-1 jn in j H j 1 i 1 . . . H jn in .
then if we want to differentiate this expression one more time with respect to z, we have to differentiate f ⊗ n (M + zH, . . . , M + zH) with respect to each (matricial) variable. So using Theorem 23, we get

F (n+1) (z) i j = n! n k=0 f ⊗ n+1 (M + zH, . . . , M + zH) i j 1 i 1 j 2 . . . i k i ′ j ′ j k+1 . . . i n-1 jn in j H i ′ j ′ H j 1 i 1 . . . H jn in = n! n k=0 f ⊗ n+1 (M + zH, . . . , M + zH) i j 1 i 1 j 2 . . . in j n+1 i n+1 j H j 1 i 1 . . . H j n+1 i n+1 = (n + 1)!f ⊗ n+1 (M + zH, . . . , M + zH) i j 1 i 1 j 2 . . . in j n+1 i n+1 j H j 1 i 1 . . . H j n+1 i n+1 ,
where we just relabelled the indexes to derive line 2 from line 1. So the induction hypothesis is true at the rank n + 1.

Remark 27 In the case where H and M commute, we can get a simpler expression. Indeed, we can write

F (n) (z) i j = n!g ⊗ n (M +zH, . . . , M +zH, H, . . . , H) i j 1 i 1 j 2 . . . i n-1 jn in j j 1 i 1 . . . jn in ,
where g n is the function of 2n + 1 variables defined by g n (x 0 , . . . , x n , y 1 , . . . , y n ) = f [x 0 , . . . , x n ]y 1 . . . y n .

Since H and M commute, H and M + zH commute too. Using Proposition 21 sufficiently many times, we can get

F (n) (z) i j = n!g ⊗ n (M + zH, . . . , M + zH, H, . . . , H) i j 1 j 1 i 1 i 1 j 2 . . . jn in in j .
Using Theorem 20, one gets:

F (n) (z) i j = n!ḡ ⊗ n (M + zH, H) i k k j
where ḡn (x, y) = g n (x, . . . , x, y, . . . , y) = f [x, . . . , x]y n = f (n) (x) n! y n . So finally, we get:

F (n) (z) = f (n) (M + zH)H n .
Remark 28 If we differentiate Tr(f (M + zH)), one gets

F (n) (z) i i = n!f ⊗ n (M + zH, . . . , M + zH) i j 1 i 1 j 2 . . . i n-1 jn in i H j 1 i 1 . . . H jn in .
Using Theorem 20, we get

F (n) (z) i i = n!h ⊗ n,n (M + zH, . . . , M + zH) in j 1 i 1 j 2 . . . i n-1 jn H j 1 i 1 . . . H jn in ,
with h n,n the function of n variables defined by h n,n (x 1 , . . . , x n ) = f n (x n , x 1 , . . . , x n ).

With n = 1, one gets the classical result that

d dz Tr(f (M + zH)) = Tr(f ′ (M + zH)H).
If one differentiates n -1 extra times this formula, one gets

F (n) (z) i i = (n-1)!f ′⊗ n-1 (M +zH, . . . , M +zH) in j 1 i 1 j 2 . . . i n-1 jn H j 1 i 1 . . . H jn in ,
which seems to be different from the other formula above. In fact we get the same thing because if we take h n,k (x 1 , . . . , x n ) = h n,n (x k+1 , . . . , x n , x 1 , . . . , x k ), we have

h ⊗ n,n (M + zH, . . . , M + zH) in j 1 i 1 j 2 . . . i n-1 jn H j 1 i 1 . . . H jn in = h ⊗ n,k (M + zH, . . . , M + zH) in j 1 i 1 j 2 . . . i n-1 jn H j 1 i 1 .
. . H jn in by relabelling the indexes, and the equality

f ′ n-1 (x 1 , . . . , x n ) = n k=1 h n,k (x 1 , . . . , x n ) holds.
Remark 29 Despite the fact that the tensor f ⊗ n (M, . . . , M ) has a lot of symmetries (due to the fact that f n is a symmetric function), the n-linear application F (n) (0).(H 1 , . . . , H n ) obtained by polarization is not in general given by n! times this tensor, but by a symmetrization of it.

F (n) (0).(H 1 , . . . , H n ) i j = σ∈Sn f ⊗ n (M, . . . , M ) i j σ(1) i σ(1) j σ(2) . . . i σ(n-1) j σ(n) i σ(n) j (H 1 ) j 1 i 1 . . . (H n ) jn in = n!f ⊗ n (M, . . . , M ) i j 1 i 1 j 2 . . . i n-1 jn in j (H 1 ) j 1 i 1 . . . (H n ) jn in
, where S n is the set of permutations of {1, . . . , n}.

For example, if f (z) = z n , we have f n = 1 and then f ⊗ n (M, . . . , M ) = I ⊗n+1 , but we have

σ∈Sn H σ(1) . . . H σ(n) = n!H 1 . . . H n .
If a function f : C → C is R-differentiable but not holomorphic, then f (M ) is well defined if M has no multiple eigenvalues. One can wonder if f (M ) is R-differentiable. The answer is yes, but to the author's knowledge, one does not have a nice expression of the derivative like we have in the holomorphic case. But we can use the fact that

f (M ) = λ eigenvalue of M f (λ)P M (λ),
where P M (λ) is the projection on the eigensubpace of M corresponding to the eigenvalue λ, parallelwise to all the other eigensubspaces of M .

We set M (t) = M + tH. Because of the continuity of eigenvalues, there exist continuous functions λ k (t) for 1 ≤ k ≤ dim(E), defined in a neighborhood of 0, such that for a given t, the λ k (t) are the eigenvalues of M (t). The projectors P M (t) (λ k (t)) are also continuous. As we will see below, the λ k (t) and P M (t) (λ k (t)) are analytic. So if we set F (t) = f (M (t)), we have

F (t) = dim(E) k=1 f (λ k (t))P M (t) (λ k (t)) 22 Thus if f is n times R-differentiable, we get F (n) (t) = dim(E) k=1 n h=0 n h d dt h f (λ k (t)) d dt n-h P M (t) (λ k (t)).
The derivatives of f (λ k (t)) can be expressed with the derivatives of f and λ k thanks to the Faa di Bruno formula. Now we look at the behaviour of λ k (t) and P M (t) (λ k (t)) near 0. Since the eigenvalues of M are different, we can set 2δ > 0 the minimum of the distance between two of them. So the balls B(λ k , δ) do not overlap (with λ k = λ k (0)). Because of the continuity of eigenvalues, there exists ε > 0 such that for |t| ≤ ε, we have λ k (t) ∈ B(λ k , δ) for all 1 ≤ k ≤ dim(E). Let us denote by u (λ) (δ) the characteristic function of B(λ, δ), which is holomorphic everywhere except on the boundary of B(λ, ε). Then we have, for t < ε,

λ k (t) = Tr(M (t)u (λ k ) (δ) (M (t))) P M (t) (λ k (t)) = u (λ k ) (δ) (M (t)).
To get the derivatives of these two guys, one can use Proposition 26, but using the fact that the derivative of zu

(λ k ) (δ) (z) is u (λ k ) (δ) (z) and Remark 28, we get λ (n) k (t) = Tr d dt n-1 P M (t) (λ k (t)
) H , so we only have to look at the derivatives of P M (t) (λ k (t)). Using Proposition 26, we get:

d dt n (P M (t) (λ k (t))) i j = n!u (λ k )⊗ (δ)n (M (t), . . . , M (t)) i j 1 i 1 j 2 . . . i n-1 jn in j H j 1 i 1 . . . H jn in .
If we compute that at t = 0, we can replace u

(λ k ) (δ) with u (λ k ) (δ ′ )
with δ ′ ≤ δ, since this two functions coincide on a neighborhood of the spectrum of M .

We have the following interesting fact: for all n the functions u

(δ)n simply converge to a limit we will denote by u (λ) n when δ tends to 0 (these functions are not defined on the whole space C n+1 , but for any single point, there are only finitely many bad δ's, and furthermore, for any (x 0 , . . . , x n ), the function δ → u

(λ) (δ)n (x 0 , . . . , x n ) is constant by parts). The function u (λ)
n is the symmetric function of n + 1 variables such that for all 0 ≤ m ≤ n + 1 and z 0 , . . . , z n-m = λ, we have

u (λ) n (λ, . . . , λ m times , z 0 , . . . , z-m) =      0 if m = 0 1 (m-1)! d dz m-1 n-m h=0 1 z-z h z=λ =(-1) (m-1) k 0 +...+k n-m =m-1 n-m h=0 1 (λ-z h ) 1+k h else. So we get d dt n (P M (t) (λ k (t))) i j = n!u (λ k (t))⊗ n (M (t), . . . , M (t)) i j 1 i 1 j 2 . . . i n-1 jn in j H j 1 i 1 . . . H jn in .
And finally, we have

d dt n (P M (t) (λ k (t)))=n! 1≤k 0 ,...,kn≤dim(E) u (λ k (t)) n (λ k 0 (t),...,λ kn (t))P M (t) (λ k 0 (t))HP M (t) (λ k 1 (t))H...HP M (t) (λ kn (t)) λ (n) k (t)=(n-1)! 1≤k 0 ,...,k n-1 ≤dim(E) u (λ k (t)) n-1 (λ k 0 (t),...,λ k n-1 (t)) Tr(P M (t) (λ k 0 (t))H...HP M (t) (λ k n-1 (t))H).
The following proposition shows how we can get i 1 =i 2 =... =i k f (λ i 1 , . . . , λ i k ) from the tensor f ⊗ (M, . . . , M ), where the λ i 's are the eigenvalues of M . This is a generalization of Tr(f (M )) = i f (λ i ).

Proposition 30 Let M be an endomorphism of a C-vector space E of finite dimension d. Let f be a function of k variables such that f ⊗ (M, . . . , M ) is well defined. We set λ 1 , . . . , λ d the eigenvalues of M (appearing with their multiplicities). Then we have the following:

1≤n 1 ,...,n k ≤d ∀l =l ′ ,n l =n l ′ f (λ n 1 , . . . , λ n k ) = k!f ⊗ (M, . . . , M ) i 1 j 1 . . . i k j k (Π ∧ k ) j 1 i 1 . . . j k i k , where (Π ∧ k ) j 1 i 1 . . . j k i k = 1 k! σ∈S k ǫ(σ)I j 1 i σ(1) I j 2 i σ(2) . . . I j k i σ(k) ,
with ǫ(σ) the signature of the permutation σ. The tensor (Π ∧ k ) is the one corresponding to the canonical projection from E ⊗k to the subspace E ∧k of antisymmetric tensors of order k.

Proof: Let σ ∈ S k . We set Ω(σ) the number of orbits of σ, and we denote by ω 0 , . . . , ω Ω(σ) these orbits. For 1 ≤ l ≤ k, we set 1 ≤ c(l) ≤ Ω(σ) the unique index such that l ∈ ω c(l) .

Then, using theorems 19 and 20, we have the following:

f ⊗ (M, . . . , M ) i 1 j 1 . . . i k j k I j 1 i σ(1) I j 2 i σ(2) . . . I j k i σ(k) = 1≤n 1 ,...,n Ω(σ) ≤d f (λ n c(1) , . . . , λ n c(k) ). Now, for 1 ≤ n 1 , . . . , n k ≤ d, we look at the number of times the term f (λ n 1 , . . . , λ n k ) appears when we use the formula above to compute σ∈S k ǫ(σ)f ⊗ (M, . . . , M ) i 1 j 1 . . . i k j k I j 1 i σ(1) I j 2 i σ(2) . . . I j k i σ(k) .

This term appears once for each σ such that l → n l is constant on all the orbits of σ, with the prefactor ǫ(σ). The set of such permutations is in fact a subgroup of S k , more precisely the one of permutations which stabilize the equivalence classes of the relation l ∼ l ′ ⇔ n l = n l ′ .

If there exist two different indexes p and q such that n p and n q are equal, then the above-mentionned subgroup contains the transposition (p, q) which has signature -1, and thus, since ǫ is a group morphism, half of the elements of the subgroup has signature 1 and the other half has signature -1, so the sum of the signatures is 0.

If all the n l are different, then the subgroup is just the identity, so our term only appears once.

Hence we have σ∈S k ǫ(σ)f ⊗ (M, . . . , M ) i 1 j 1 . . . i k j k I j 1 i σ(1) I j 2 i σ(2) . . . I j k i σ(k) = The eigenvalues of f ∧ (M, . . . , M ) are 1 k! σ∈S k f (λ n σ(1) , . . . , λ n σ(k) ) for 1 ≤ n 1 < n 2 < . . . < n k ≤ d (the corresponding eigenvector is v n 1 ∧ . . . ∧ v n k if M is diagonalizable and if v 1 , . . . , v d is a basis of eigenvectors of M , such that v n is an eigenvector of M for the eigenvalue λ n ).

One could want to extend the definition of f ∧ (M, . . . , M ) to some cases in which f ⊗ (M, . . . , M ) is not well defined. For example, for f (x, y) = 1 (x-y) 2 , f ∧ (M, M ) should have a sense if M only has simple eigenvalues, whereas f ⊗ (M, M ) has no sense, whatever M is. But the minimal conditions we should put on f and the M l 's to extend the definition of f ∧ (M 1 , . . . , M k ) are not clear.

If the fact that f ⊗ (M 1 , . . . , M k ) is a tensor and not a matrix is disturbing, there could be a way to define a kind of f (M 1 , . . . , M k ) which would be a matrix. One way to get a matrix from the tensor f ⊗ (M 1 , . . . , M k ) is to use contractions. Assume that one can write f (x 1 , . . . , x k ) = a n 1 ,...,n k x n 1 1 . . . x n k k , where we have |a n 1 ,...,n k |ρ n 1 1 . . . ρ n k k < ∞ for some ρ 1 , . . . , ρ k > 0. Assume that for every 1 ≤ l ≤ k, we have sup λ eigenvalue of M l |λ| < ρ l . Then the sum:

a n 1 ,...,n k (M n 1 1 M n 2 2 . . . M n k k ) i j
is convergent, and this matrix is exactly

f ⊗ (M 1 , . . . , M k ) i i 1 i 1 i 2 . . . i k-2 i k-1 i k-1 j .
It is what we expect f (M 1 , . . . , M k ) to be when all the M l commute. But if they do not commute, this may introduce a dissymetry. It does still work well if f (x 1 , . . . , x k ) = k l=1 f l (x l ). But in the simple example f (x, y) = (x + y) 2 , we have f ⊗ (A, B) i k k j = (A 2 + B 2 + 2AB) i j and not ((A + B) 2 ) i j as one could want.

If f (x, y) = 1 x+y , and provided none of the eigenvalues of A is the opposite of an eigenvalue of B, it gives you the unique matrix M such that AM + M B = I, and this matrix is not (A + B) -1 in general.

,

  the λ lm are the eigenvalues of M l and the r lm are the sizes of the Jordan blocks of M l . Let P be a polynomial on k variables.Let us choose the values of the indexes i 1 , . . . , i k and j 1 , . . . , j k . Then for each 1 ≤ l ≤ k, there exist1 ≤ c l , d l ≤ b l such that c l -1 m=1 r lm < i l ≤ c l m=1 r lm and d l -1 m=1 r lm < j l ≤ d l m=1 r lm . Then the coefficient P ⊗ (M 1 , .

  kq l=1 ∂ j l l R(λ q1m 1 , . . . , λ qkqm kq ) = 0 and then by Proposition 6, one has R ⊗ (M q1 , . . . , M qkq ), and hence Q( Mq ) = 0 as stated. Now let P be a suitable interpolation polynomial of g, i.e. such that µ 1p 1 , . . . , µ rpr ),

  λ 11m 11 , . . . , λ rkrm rkr ) = λ 11m 11 , . . . , λ rkrm rkr ),

1≤n 1 ,

 1 ...,n k ≤d ∀l =l ′ ,n l =n l ′ f (λ n 1 , . . . , λ n k ), as wanted.A classical example is given by taking k = d, and f (x 1 , . . . , x d ) = x 1 . . . x d , in which case we can getdet(M ) = a 1 +2a 2 +...+da d =d (-1) d-a 1 -a 2 -...-a d a 1 !a 2 ! . . . a d !1 a 1 2 a 2 . . . d a d Tr(M ) a 1 Tr(M 2 ) a 2 . . . Tr(M d ) a d .The restriction to E ∧k of Π ∧ k f ⊗ (M, . . . , M ), where Π ∧ k and f ⊗ (M, . . . , M ) are seen as endomorphisms of E ⊗ k, can also be itself interesting (and not only its trace). Let us denote it by f ∧ (M, . . . , M ).Indeed, since E ∧k has dimension d k , f ∧ (M, . . . , M ) lives in a space of dimension d k 2 , whereas f ⊗ (M, . . . , M ) lives in a space of much greater dimension d 2k .