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The Couette viscometer is a well-known problem of fluid mechanics, well-suited for
the verification of numerical methods. The aim of this work is to extend the classical
steady state mechanical solution obtained in fluid mechanics, both to strongly-coupled
thermomechanical problems in the case of laminar and incompressible fluid flows, and to
solid-type nonlinear behaviours. Extended solutions will allow for the verification of new
formulations of amixed P1+/P1 finite element developedboth in fluid and solidmechanics,
within a temperature/velocity/pressure formulation coupled with an implicit (backward)
Euler algorithm in time. In the present Part I, we address the case of the laminar flow of
incompressible fluids with inertia effects and thermomechanical coupling. The verification
performed on the reference solutions developed clearly evidence the good behaviour of the
fluid finite element. The extension to solid-type nonlinear behaviours for strongly-coupled
thermomechanical problems will be the subject of Part II.

1. Introduction

The Couette viscometer is awell-known apparatus designed tomeasure the viscosity of a fluid that consists of two coaxial
rotating cylinderswhose relativemotion leads to shear the fluid enclosed between both cylinders. Though traditionally used
in rheology, this viscometer is also a well-known problem of fluid mechanics and can be used as a benchmark test to verify
the implementation of numerical methods. Its analytical steady solution for a laminar, isothermal and incompressible flow
is reported in the early paper of Couette [1] in the case of a fixed inner cylinder and a rotating outer one, but was already
addressed in the pioneering work of Stokes [2].

We intend in this work to extend the elementary solution in a simple way for numerical verification purposes. More
specifically, we extend the solution to account for inertia effects and strong thermomechanical coupling. Two original ana-
lytical solutions are thus developed, for an unsteady mechanical state, and for a coupling (unsteady thermal state)–(steady
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mechanical state) respectively, considering a Newtonian fluid.1 Each of these analytical solutions is developed with appro-
priate initial and boundary conditions in order to allow for easy comparisons with numerical results. These solutions are
the topic of Section 2.

These new solutions permit to assess the implementation of an extension of the classical P1+/P1 finite element, or MINI
element, initially introduced by Arnold et al. [5]. This element uses a mixed method which enables us to deal with the in-
ternal constraint of incompressibility. It has already been used in fluid mechanics [6], but also in the framework of material
forming [7–10]. Moreover, it has already been implemented in fluid mechanics for a steady laminar flow, including a strong
thermomechanical coupling [11–13] in the finite element code SYSWELD R⃝ [14], for welding applications. We present in
this paper an extension of Feulvarch et al. [11,12]’s previous works on this element to the unsteady case in fluid mechan-
ics, thus including convection terms, with a temperature/velocity/pressure formulation, coupled with an implicit (back-
ward) Euler algorithm in time. The extension to transient states is performed by introducing a specific approximation of
the acceleration field, to allow for the local elimination of the ‘‘bubble’’ degrees of freedom. It is shown that this approxi-
mation is compatible with an exact representation of rigid body motions. The formulation of this element is presented in
Section 3.

The assessment of the fluid P1+/P1 finite element is subsequently performed using the reference solutions developed,
and presented in Section 4. The aim of these solutions is to test the dynamic behaviour and the thermomechanical coupling
embedded in the formulation of the finite element. Comparisons between analytical and numerical solutions are made on
the transient velocity field for the first solution (unsteady mechanical case) and on the transient temperature field for the
second solution (coupling (unsteady thermal state)–(steady mechanical state)). These comparisons show a good agreement
between analytical and numerical solutions and evidence the good behaviour of the finite element.

Part II will be devoted to the extension of the Couette viscometer problem to solid-type nonlinear behaviours, in the case
of strongly-coupled thermomechanical problems, and to the assessment of a solid P1+/P1 finite element developed within
a (large displacement)–(large strain) framework, with a temperature/velocity/pressure formulation.

Such formulations appear to be desirable especially for some welding applications in which the material is stirred in
the neighbourhood of a rotating tool, like in Friction Stir Welding-type processes. In such processes, the heat generated by
friction and the motion of the material generates a mix which joins the parts to be welded after cooling. Thus, a strong
interaction between thermal and mechanical effects drives the welding stage. Actually, the new elements are developed
within the context of the modelling of the Friction Stir Spot Welding process [15,16] recently implemented in the finite
element code SYSWELD R⃝ [14].

2. Analytical solutions of the Couette viscometer problem

Solutions developed in Sections 2.1 and 2.2 are obtainedwith appropriate initial and boundary conditions promoting the
simplest expression of the solution fields, in order to allow for easy comparisons with the numerical results, rather than for
the sake of physical interest. It should be noted that more physical initial and boundary conditions could be introduced, but
would lead to solutions expressed as infinite sums, which proves less convenient for numerical verification.

We consider the Couette viscometer problem described on Fig. 1. The inner and outer cylinder radii are denoted a and b
respectively. We shall consider in the following the outer cylinder as fixed and the motion of the inner one as driven.

2.1. Unsteady mechanical resolution

The laminar and incompressible flow of a Newtonian fluid is governed by the Navier–Stokes equations, written in the
domain Ω as:

ρ


∂v
∂t

+ ∇v · v


= −∇p + f + µ∆v

∇ · v = 0
∀ x ∈ Ω, (1)

supplemented with appropriate initial and boundary conditions. In these equations ρ and µ denote the density and the
dynamic viscosity of the fluid, p, f and v the hydrostatic pressure, the body force and the velocity vector respectively. The
symbols ∇ and ∆ denote the gradient and laplacian operators.

With regard to the Couette viscometer, the assumptions made in the unsteady mechanical solution are as follows:

• the problem is transient and axisymmetric,
• gravity forces are neglected,
• the dynamic viscosity is fixed, independently of temperature and velocity,
• the problem is isothermal.

1 Unsteady mechanical solutions for the Couette problem have already been derived by Bernardin [3] and Kamran et al. [4], considering even more
complex non-Newtonian fluid behaviours, but the solution expounded in Section 2.1 is expressed in a different and simpler format.
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Fig. 1. Parameterization of the Couette viscometer problem.

The velocity field is orthoradial and of the form:

v(r) = vθ (r)eθ (2)

where r ∈ [a, b] is the current radius. Also, the motion equations (1)1 read:
ρv2

θ

r
=

∂p
∂r

ρ
∂vθ

∂t
= µ

∂

∂r


1
r

∂

∂r
(rvθ )


.

(3)

Eq. (3)2 combined with appropriate initial and boundary conditions gives the velocity field, the hydrostatic pressure then
derives from Eq. (3)1. Assume now a velocity field in ‘‘separated form’’:

vθ (r, t) = f (r)g(t). (4)

Introducing hypothesis (4) into Eq. (3)2, one gets the following ordinary differential equations:

g ′(t)
g(t)

= −α

r2f ′′(r) + rf ′(r) +


ρα

µ
r2 − 1


f (r) = 0

(5)

where α is an arbitrary constant homogeneous to the inverse of a time. The differential equation (5)1 is solved classically
and gives an exponential solution fully determined by some initial condition. Eq. (5)2 is a Bessel differential equation [17],
whose solution is a linear combination of Bessel’s functions of the first and second kinds. More precisely, we define the
following change of variable and function:

x = λr, F(x) = f (r) (6)

where λ is homogeneous to the inverse of a length so that x is dimensionless. Eq. (5)2 can then be rewritten as:

x2F ′′(x) + xF ′(x) +


ρα

λ2µ
x2 − 1


F(x) = 0 (7)

which can be identified to be a Bessel equation of the first order by imposing the following relation between the constants
α and λ:

ρα

λ2µ
= 1. (8)

The solution of this equation is of the form:

F(x) = f (r) = C1J1(λr) + C2Y1(λr) (9)
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where C1 and C2 are two constants to be determined from appropriate boundary conditions, J1(λr) and Y1(λr) being Bessel’s
functions of the first and second kinds at the first order.

Initial and boundary conditions are determined so as to be compatible with the assumption of separated variables. The
boundary conditions of the problem are taken in the following form:

vθ (r = a, t) = Ω0a exp(−αt)
vθ (r = b, t) = 0

(10)

which implies by compatibility the following initial condition:

vθ (r = a, t = 0) = Ω0a. (11)

The boundary conditions lead to the following system of equations:
C1J1(λa) + C2Y1(λa) = Ω0a
C1J1(λb) + C2Y1(λb) = 0.

(12)

From there follows the transient velocity field:

vθ (r, t) = Ω0a
J1(λr)Y1(λb) − J1(λb)Y1(λr)
J1(λa)Y1(λb) − J1(λb)Y1(λa)

exp(−αt) with α =
µλ2

ρ
(λ arbitrary parameter). (13)

2.2. Resolution for a coupling (unsteady thermal state)–(steady mechanical state)

Weconsider now the Couette viscometerwith a thermomechanical coupling. The thermal part of the solution is governed
by the equation of energy conservation:

ρC


∂T
∂t

+ ∇T · v


= ∇ · (k∇T ) + S ∀ x ∈ Ω (14)

supplementedwith appropriate initial and boundary conditions. The symbolsρ, C and kdenote the density, the heat capacity
per unit mass and the thermal conductivity of the fluid, and S denotes a source term discussed below. This equation is
combined with the Navier–Stokes equations (1) for the coupling. In this study, we assume that thermal and mechanical
material parameters are fixed, independently of temperature and velocity. The kinematic assumptions introduced in the
previous section are retained.

Accounting for the assumptions made, Eq. (14) can be simplified into:

ρC
∂T
∂t

=
k
r

∂

∂r


r
∂T
∂r


+ S. (15)

As already stated, themechanical dissipation appears in Eqs. (14) and (15) as a source term S.We consider the casewhere this
termmaybe computed from themechanical solution alone; it then serves as an input in the thermal problem.Moreprecisely,
we assume this term to be given by the solution of the steady state mechanical problem and thus be time-independent.

These assumptions lead to a coupled fluid/thermal problem in which the sole thermal problem is transient.
The dissipation generated reads:

S = 2µD : D (16)

whereµ is the dynamic viscosity of the fluid andD the eulerian strain rate tensor. The velocity field, in the steady state case,
reads:

vθ (r) =
Ω1a2

b2 − a2


b2

r
− r


(17)

where Ω1 denotes the angular velocity imposed on the inner cylinder. This allows us to express the mechanical dissipation
as:

S(r) =
A
r4

, with A = 4µΩ2
1

(ab)4

(b2 − a2)2
. (18)

The main difficulty encountered in the solution of Eq. (15) is the presence of the source term which prevents the use of a
technique of separation of variables. However, it is possible to reduce the problem to a partial differential equation without
any source term on a new variable T̄ , defined by:

T̄ (r, t) = T (r, t) + h(r) (19)
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where h(r) is a function to be defined. Introducing the decomposition (19) into Eq. (15), it is quite easy to identify h(r) so as
to get a partial differential equation without any source term; it suffices to take:

h(r) =
A

4kr2
. (20)

The thermal problem can then be rewritten on the variable T̄ as:

ρC
∂ T̄
∂t

=
k
r

∂

∂r


r
∂ T̄
∂r


. (21)

The technique of separation of variables is now applicable, the resolution is straightforward. Set

T̄ (r, t) = f (r)g(t). (22)

Introducing hypothesis (22) into Eq. (21) leads to the following ordinary differential equations:

g ′(t)
g(t)

= −α

f ′′(r) +
f ′(r)
r

+
α

κ
f (r) = 0

(23)

where α is an arbitrary constant, and κ the thermal diffusivity defined as:

κ =
k

ρC
. (24)

One may observe that Eq. (23)2 can be identified to be a Bessel equation, but this time at the order zero. The identification
is made using the change of variable and function defined by Eq. (6), which leads to:

x2F ′′(x) + xF ′(x) +
αx2

κλ2
F(x) = 0. (25)

This equation is a Bessel equation of order zero provided the constants α and λ are related by:
α

κλ2
= 1. (26)

The solution reads:

F(x) = C1J0(x) + C2Y0(x) (27)

where C1 and C2 are two constants to be determined from appropriate boundary conditions, J0(x) and Y0(x) being Bessel’s
functions of the first and second kinds at order zero.

Boundary conditions are defined so as to lead to the simplest possible expression of the solution field. Homogeneous
Dirichlet conditions on T̄ are therefore prescribed on both cylinders of the viscometer:

T̄ (r = a, t) = 0 ⇒ f (a) = 0 ⇒ F(λa) = 0

T̄ (r = b, t) = 0 ⇒ f (b) = 0 ⇒ F(λb) = 0.
(28)

These boundary conditions give nonzero imposed values when going back to the temperature T :

T (a, t) = −
A

4ka2

T (b, t) = −
A

4kb2
.

(29)

Condition (28) leads to the following system of equations:
J0(λa) Y0(λa)
J0(λb) Y0(λb)

 
C1
C2


=


0
0


. (30)

The determinant of the matrix on the left-hand side must vanish for a non-trivial solution to exist:

z(λ) = J0(λa)Y0(λb) − J0(λb)Y0(λa) = 0. (31)

The constants C1 and C2 depend on the roots λi of Eq. (31), which cannot be derived explicitly. Therefore, the roots of (31)
have to be computed numerically for given values of the inner and outer radii of the viscometer, the solution becomes
therefore semi-analytical. In the sequel, the inner radius is set to a = 0.1 m and the outer radius is set to b = 1 m. With
these numerical values, the function z(λ) is plotted in Fig. 2.
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Fig. 2. Plot of the function z(λ) on the interval λb ∈ [0, 20].

Combining Eqs. (30) and (31), one gets:

η =
C1

C2
= −

Y0(λia)
J0(λia)

= −
Y0(λib)
J0(λib)

(32)

where λi denotes the chosen root of equations (30). Therefore, the spatial form of the solution reads:

T̄ (r, t) = K

J0(λir) +

Y0(λir)
η


exp(−αt) with α = κλ2

i (33)

where K is a constant homogeneous to a temperature, arising from the integration of Eq. (23)1. Once the solution T̄ is known,
we can come back to the original problem posed on the temperature T by means of the inverse change of variable defined
by (19). The transient temperature field of the thermomechanically coupled viscometer problem is expressed as:

T (r, t) = K

J0(λir) +

Y0(λir)
η


exp(−αt) −

A
4kr2

with η = −
Y0(λia)
J0(λia)

, A = 4µΩ2
1

(ab)4

(a2 − b2)2
α = κλ2

i , κ =
k

ρC

T (a, t) = −
A

4ka2

T (b, t) = −
A

4kb2
T (r, t = 0) = T0(r).

(34)

Comments

• Homogeneous Dirichlet boundary conditions (Eqs. (28)) have been imposed on T̄ , this has led to the homogeneous
equations (30) and thus to an equation governing conditions of existence of a non-trivial solution (31). It is possible
to solve this problem with other couples of homogeneous boundary conditions. If we seek for a simple expression of the
solution field, we can prescribe a combination of zero temperature and flux on the cylinders or only zero fluxes on both
cylinders. In these cases, it turns out that the form of the analytical solution (Eq. (34)) remains the same, the change in
the solution occurs only through a change of Eq. (31) defining the possible values of λ.

• Non-homogeneous boundary conditions imposed on T̄ would lead to a non-homogeneous system of equations in place
of (30) that would admit a unique solution for constants C1 and C2, for all values of λ leading to a nonzero determinant.

3. Mixed and unsteady temperature/velocity/pressure formulation for the P1+/P1 fluid finite element

3.1. Weak form of the equations

Inwelding applications, a strong thermomechanical coupling occurs due to the importance of themechanical dissipation.
Therefore, one must simultaneously solve the equations of conservation of energy and momentum, with the internal
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constraint of incompressibility. We shall assume that the boundary ∂Ω of the domain Ω admits the decompositions

∂Ω = ∂Ωv ∪ ∂ΩF ∅ = ∂Ωv ∩ ∂ΩF (35)
∂Ω = ∂Ωθ ∪ ∂Ωq ∅ = ∂Ωθ ∩ ∂Ωq (36)

where ∂Ωv and ∂ΩF denote respectively these parts on which the velocities and tractions are prescribed, and ∂Ωθ and ∂Ωq
those on which the temperature and heat fluxes are prescribed.

In a mixed formulation, the weak form of the problem reads as follows: given the body forces f, the heat source r , the
prescribed tractions Fd on ∂ΩF , and the thermal flux φd on ∂Ωq, plus some initial conditions T0(x), v0(x),

(W )



Find(T , v, p) ∈ (Tad × Vad × Pad), ∀ t ∈ [0, T ], such that

∀(T ∗, v∗, p∗) ∈ (T 0
ad × V0

ad × Pad),

−


Ω

k∇T · ∇T ∗dΩ +


∂Ωq

φdT ∗dS +


Ω

2µD : DT ∗dΩ +


Ω

rT ∗dΩ

=


Ω

ρC
∂T
∂t

T ∗dΩ +


Ω

ρC(∇T ) · vT ∗dΩ

−


Ω

2µD : D∗dΩ +


Ω

p∇ · v∗dΩ +


∂ΩF

Fd · v∗dS +


Ω

f · v∗dΩ

=


Ω

ρ
∂v
∂t

· v∗dΩ +


Ω

ρ(∇v) · v · v∗dΩ
Ω

p∗
∇ · vdΩ = 0

T (x, t = 0) = T0(x)
v(x, t = 0) = v0(x)

(37)

where Tad, Vad and Pad are temperature, velocity and pressure function spaces, while T 0
ad and V0

ad refer to the weighting
spaces associated, that is with homogeneous Dirichlet boundary conditions.

3.2. The P1+/P1 finite element

The P1+/P1 finite element initially proposed by Arnold et al. [5] ensures in the proposed version the continuity of
temperature, velocity and pressure fields. The velocity field approximation is enriched with a bubble function that enables
this element to satisfy the Brezzi–Babuska conditions [5], and is thus interpolated as:

vh(x) = N (p)(ξ , η, ζ )v(p)
+ N (b)(ξ , η, ζ )λ 1 ≤ p ≤ 4 (38)

where N (p) and N (b) denote the shape functions associated respectively to the current vertex node p, and the bubble node
b; λ is the vector of degrees of freedom of the bubble node, homogeneous to some velocity. Implicit summation is used in
Eq. (38) with respect to the index p.

3.3. Semidiscrete equations

The weak form (37) is discretized with the P1+/P1 finite element; this leads to the following system of semidiscrete
equations:

Mq̇ + fconv + fint = fext (39)

where q is the vector of degrees of freedom of the system defined as:

qT
= {T v p λ}. (40)

The internal forces fint, external forces fext, convection forces fconv are assembled from elementary quantities:

fint =

Ne
e=1


f int,(p)T
fint,(p)v

f int,(p)p


fintb

 , fext =

Ne
e=1


f ext,(p)T
fext,(p)v

0


fextb

 , fconv =

Ne
e=1


f conv,(p)T
fconv,(p)v

0


fconvb

 (41)
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and consist of components pertaining to temperature, velocity and pressure equations, associated to the degrees of freedom
of the vertex nodes (denoted p, 1 ≤ p ≤ 4), plus components relative to bubble velocity equations associated to degrees of
freedom of the bubble node (denoted b). The components of internal forces are detailed below:

f int,(p)T = −


Ωe

∇N (p)
· hdΩ

fint,(p)v =


Ωe

2µD : D(N (p)ei)dΩ −


Ωe

p∇N (p)dΩ

=




Ωe

µ∇N (q)
⊗ ∇N (p)dΩ


+


Ωe

µ∇N (q)
· ∇N (p)dΩ


1


· v(q)

+


Ωe

µ∇N (b)
⊗ ∇N (p)dΩ


+


Ωe

µ∇N (b)
· ∇N (p)dΩ


1


· λ

−


Ωe

p∇N (p)dΩ

f int,(p)p = −


Ωe

N (p)
∇ · vdΩ

fintb =


Ωe

2µD : D(N (b)ei)dΩ −


Ωe

p∇N (b)dΩ

=




Ωe

µ∇N (q)
⊗ ∇N (b)dΩ


+


Ωe

µ∇N (q)
· ∇N (b)dΩ


1


· v(q)

+


Ωe

µ∇N (b)
⊗ ∇N (b)dΩ


+


Ωe

µ∇N (b)
· ∇N (b)dΩ


1


· λ

−


Ωe

p∇N (b)dΩ

(42)

where Ωe is the volume of the element, 1 the second-rank identity tensor, and h the heat flux vector linked to the
temperature through the Fourier’s law h = −k∇T , k being the thermal conductivity. External forces are given by:

f ext,(p)T =


∂Ωe∩∂Ωq

φdN (p)dS +


Ωe

r N̄ (p)dΩ +


Ωe

(2µD : D)N̄ (p)dΩ

fext,(p)v =


∂Ωe∩∂ΩF

FdN (p)dS +


Ωe

fN (p)dΩ

fextb =


Ωe

fN (b)dΩ.

(43)

Notice that

∂Ωe∩∂ΩF

FdN (b)dS = 0 since the bubble function vanishes on the element boundary. The function N̄ (p) introduced
in (43) is associated to the Petrov–Galerkin method [18–20] used on the thermal equations to avoid numerical instabilities
as the Peclet number increases. This function is chosen in the case of an incompressible flow as:

N̄ (p)
= N (p)

+ τv · ∇N (p) (44)

where τ is an adjustable parameter. The same type of numerical instabilities is expected for the mechanical equations,
governed by the Reynolds number. However in welding applications, the flow is pasty and the Reynolds number is small.
Therefore, the Petrov–Galerkin method is not used for the mechanical equations. Finally, convection forces read:

f conv,(p)T =


Ωe

ρC(∇T ) · vN̄ (p)dΩ

fconv,(p)v =


Ωe

ρ(∇v) · vN (p)dΩ

fconvb =


Ωe

ρ(∇v) · vN (b)dΩ.

(45)

Convection and internal forces may be expressed using a convective matrix L and a stiffness matrix K as:fconv = Lq
fint = Kq

(46)
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where q is the vector of degrees of freedom of the system already defined in (40). The system of semidiscrete equations (39)
may be written more explicitly, gathering matrices L and K:

Ne
e=1


Mpq

T 0 0 0
0 Mpq

v 1 0 Mpb
v 1

0 0 0 0
0 Mbq

v 1 0 Mbb
v 1



Ṫ (q)

v̇(q)

ṗ(q)

λ̇

 +


LpqT + K pq

T 0 0 0
0 Lpqv 1 + Kpq

v kpq
v Lpbv 1 + Kpb

v

0 (kpq
p )T 0 (kpb

p )T

0 Lbqb 1 + Kbq
b kbp

b Lbbb 1 + Kbb
b



T (q)

v(q)

p(q)

λ




=

Ne
e=1



f ext,(p)T
fext,(p)v

0
fextb


 (47)

where terms or submatrices �
xy
z , � = {M, L,K, k}, are defined relative to equations z = {T , v, p, b}, with shape functions

associated to the couple of nodes (x, y) = (p, q), (p, b), (b, q) or (b, b) (1 ≤ p, q ≤ 4).

3.3.1. Linearization
We consider a fully implicit temporal discretization of the system (39). The residue at time t + ∆t is written as:

r = fext − fconv − fint − Mq̇ = 0. (48)
The residue is linearized with a Newton–Raphsonmethod at iteration k of the computation leading to the following system:

M(k)q̇(k+1)
+ K(k)δq(k)

= R(k) (49)
where δq(k)

= q(k+1)
− q(k) denotes the increment of the vector of degrees of freedom between two iterations and R(k) a

residue without the inertia termsMq̇. The stiffness matrix K(k) is defined as:

K(k)
= −

∂R
∂q

(k) (50)

and is assembled from contributions of submatrices pertaining to temperature, velocity and pressure degrees of freedom of
vertex nodes and to degrees of freedom of the bubble node:

Kxy = −
∂Rx

∂y
, (x, y) = (T, v, p, λ). (51)

The system (49) is of the form:C 0 0 0
0 Mvv 0 Mvb
0 0 0 0
0 MT

vb 0 Mbb


(k) 

Ṫ
v̇
ṗ
λ̇


(k+1)

+

KTT KTv 0 KTb
KvT Kvv Kvp Kvb
0 Kpv 0 Kpb

KbT Kbv Kbp Kbb


(k) 

δT
δv
δp
δλ


(k)

=


RT
Rv

Rp
Rb


(k)

. (52)

The degrees of freedom of the bubble node λ are usually eliminated to save some computation cost by reducing the size
of the system to be solved [9]. However, the presence of rates of bubble degrees of freedom λ̇ makes this operation more
complex. We therefore introduce below an approximation that allows to drop these rates.

3.3.2. Introduction of an extra approximation
Let us express the acceleration of the bubble node:

v̇(x(b), t) =

4
p=1

N (p)(x(b))v̇(p)(t) + N (b)(x(b))λ̇(t). (53)

The relation
4

p=1 N
(p)

= 1 and the fact that the bubble node is located at the centroid of the tetrahedron enable us to
simplify expression (53). Indeed these elements imply that N (p)(x(b)) =

1
4 . Moreover, the shape function associated to the

bubble node is normalized so that N (b)(x(b)) = 1. The acceleration at the bubble node can thus be rewritten as:

v̇(x(b), t) =
1
4

4
p=1

v̇(p)(t) + λ̇(t). (54)

We shall now introduce an approximation. We assume that the bubble acceleration is roughly equal to the average of those
of vertex nodes, which leads to:

v̇(x(b), t) ≃
1
4

4
p=1

v̇(p)(t). (55)
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Fig. 3. Mesh of the viscometer.

This assumption is valid when the acceleration field varies little on the element, and is compatible with a rigid body motion
as detailed in the Appendix. Combination of expressions (54) and (55) leads to:

λ̇ ≃ 0. (56)

The elimination of the quantity λ in Eq. (52) becomes then straightforward.

3.3.3. Solution
The elimination is performed at the element level accounting for (56), and time discretization is performed leading to

the following linear system at each iteration:

A(k)δq̄(k)
= B(k) with

A(k)
=


M̄(k)

∆t
+ K̄(k)


B(k)

= R̄(k)
− M̄(k) ˙̄q

(k)
(57)

where q̄ denotes the reduced vector of degrees of freedom of the system, defined as:

q̄T
= {T v p}. (58)

4. Comparison of analytical and numerical solutions

In this section, we present a comparison between analytical and numerical solutions for both cases of the viscometer
problem considered in Section 2. The fluid domain is discretized with P1+/P1 finite elements, the mesh used is shown in
Fig. 3. The inner and outer radii of the mesh are respectively set to a = 0.1 m and b = 1 m.

4.1. Unsteady mechanical state

In Eq. (13) for the unsteady mechanical state, the parameter λ is arbitrary and arises from the change of variable (6)
made in order to identify the differential equation (7) found to be a Bessel equation. A comparison between analytical and
numerical solutions is made for two different values of this parameter to assess its influence.

The initial conditions are prescribed on each node, and velocities of the inner cylinder nodes are imposed according
to a decreasing exponential. Thermal degrees of freedom have been fixed to zero at all nodes of the mesh. The numerical
parameter values taken are the following: the rotation speed Ω0 (see Eq. (13)) of the inner radius is set to Ω0 = 100 rad s−1

and the kinematic viscosity is fixed to ν =
µ

ρ
= 1 m2 s−1. Actually, this high kinematic viscosity value does not correspond

to any particular fluid; it is chosen in order to test more severely the dynamic behaviour of the formulation of the P1+/P1
finite element.

Fig. 4 presents the first plot obtained setting λ = 1 m−1, at various instants. The velocity field is plotted on a radial line,
points identified on the graph correspond to finite element solutions extracted from the nodes of the mesh on a radial line
apparent in Fig. 3. We can observe a good correlation between analytical and numerical solutions.

It is worth noting that the case λ = 1 m−1 enables a physical interpretation. Indeed, this case is similar to a brake test of
the inner cylinder, its rotation speed decreasing exponentially.
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Fig. 4. Transient velocity field for λ = 1.

Fig. 5. Transient velocity field for λ = 5.

In Fig. 5, a plot obtained by setting λ = 5 m−1 is presented at various instants. Some comments are in order:
• As the arbitrary parameterλ appears squared in the exponential of the solution (13), the transient velocity field decreases

much more rapidly.
• The velocity field vanishes at some point. As λ continues to grow, more and more oscillations of the velocity field will

appear. This phenomenon arises from the fact that λ appears in the argument of Bessel’s functions in Eq. (13), which are
oscillating functions.

• Again, we observe a good correlation between analytical and numerical solutions.

4.2. Unsteady thermal state–steady mechanical state

For this test case, the rotation speed of the inner cylinder is kept constant atΩ0 = 100 rad s−1. The thermal conductivity k,
the densityρ and the heat capacity C are arbitrarily set so that the thermal diffusivity (Eq. (24)) be sufficiently high to test the
thermal transient behaviour of the P1+/P1 finite element. Therefore, material parameters are fixed at k = 200Wm−1 K−1,
ρ = 10 kg m−3 and C = 90 J kg−1 K−1.

Initial thermal and mechanical conditions extracted from the analytical solutions are prescribed on each node. The
velocity field prescribed is given by Eq. (17), and the temperature field is given by Eq. (34) accounting for an initial condition
such that K be unity. The parameter λi arising in (34) is a solution of Eq. (31).

Fig. 6 shows a comparison between analytical and numerical solutions for the unsteady thermal case at various instants,
taking the first root λ1. The temperature field is plotted on a radial line of the viscometer until its steady state. A good
agreement between both solutions for the temperature field can be observed. The fully coupled thermofluid problem is
nonlinear and may require a few iterations to converge (less than 10), thus the computation may last a little longer than
those of the unsteady mechanical case, but never more than a few minutes.
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Fig. 6. Transient temperature field with λ1 = 3.31394.

Fig. 7. Transient temperature field with λ2 = 6.85758.

In Fig. 7, a comparison is presented taking the second root λ2 of Eq. (31). This root arising in the argument of Bessel’s
functions in Eq. (34), the temperature field oscillates over the viscometer radius. In the same manner as for the unsteady
mechanical case, in which the parameter λ arises in (13), more andmore oscillations of the temperature field will appear as
a higher root λi is used. A good agreement between analytical and numerical solutions is also observed.

5. Conclusion

In present Part I, extensions of the classical Couette viscometer solution in fluid mechanics have been developed to
account for inertia effects and strong coupling between thermal and mechanical effects, the purpose of which is to assess
numerical methods embedding such features. The benchmark tests developed are applied to the verification of a new
formulation of the P1+/P1 finite element for transient laminar flow of incompressible fluids.

First, two analytical solutions of the Couette viscometer have been developed respectively for an unsteady mechanical
state, and for a coupling (unsteady thermal state)–(steady mechanical state), considering a Newtonian fluid. Solutions have
been obtained with appropriate initial and boundary conditions promoting the simplest expression of the solution fields,
in order to allow for easy comparisons with the numerical results; these solutions are expressed with Bessel’s functions of
the first and second kinds. More physically meaningful initial and boundary conditions could easily be considered, at the
expense, however of greater complexity of the solution.

Subsequently, the mixed and unsteady temperature/velocity/pressure formulation of the P1+/P1 fluid finite element
has been presented. This formulation is relevant for some welding applications in which a strong interaction between
thermal andmechanical effects drives the formation of theweld, as in Friction StirWelding-type processes. This formulation
is an extension of Feulvarch et al. [11,12]’s previous works to the unsteady case including convection terms. The time
discretization is based on the implicit (backward) Euler finite difference scheme leading to an iterative resolution. In order
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to save computational cost, the bubble degrees of freedom are eliminated at the element level before the global procedure
of the solution. An extra approximation made on the acceleration field enables to make this elimination, preserving the
consistency of the semidiscrete equations with respect to rigid body motions.

Finally, comparisons between analytical and numerical solutions have been performed. These comparisons show a good
agreement of both solutions developed, and attests to the good behaviour of the dynamic part and the thermomechanical
coupling of the formulation of the finite element. However, it is worth noting that since the kinematics of the Couette
viscometer associated to the incompressibility condition lead to a velocity and a temperature gradient orthogonal to each
other, analytical solutions are developed with vanishing convection terms and therefore cannot claim to test the robustness
of the implementation of these specific terms.

Part II will be devoted to the extension of the Couette viscometer problem to solid-type nonlinear behaviours, in the case
of a purely quasi-static mechanical problem then in the case of a thermomechanical strongly-coupled problem, both for
small and large geometry changes. These solutions will permit to assess a new formulation of a solid P1+/P1 finite element
developed in the framework of large geometry changes with a temperature/velocity/pressure formulation.

Appendix. Compatibility of the extra approximation with a rigid body motion

The approximation made on the bubble field is compatible with rigid body motions, in the sense that the weak form
expressed with such motions reduces exactly to the Newton’s second law. Indeed, the bubble node being located at the
centroid of the tetrahedron, we have:

x(b)
=

1
4

4
p=1

x(p). (A.1)

For all rigid body motions, the bubble node remains located at the centroid of the element, therefore:

d2x(b)

dt2
=

1
4

4
p=1

d2x(p)

dt2
⇔ v̇(x(b)) =

1
4

4
p=1

v̇(p). (A.2)

This means that rigid body motions exactly satisfy approximations (55), which therefore does not introduce any error for
such motions.
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