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Introduction

Due to its simplicity, k-means algorithm, introduced in [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], is one of the most popular clustering tool. It has been proved fruitful in many applications: as a last step of a spectral clustering algorithm [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF], for clustering electricity demand curves [START_REF] Antoniadis | Clustering functional data using wavelets[END_REF], clustering DNA microarray data [START_REF] Tavazoie | Systematic determination of genetic network architecture[END_REF][START_REF] Kim | Measuring similarities between gene expression profiles through new data transformations[END_REF] or EEG signals [START_REF] Orhan | EEG signals classification using the kmeans clustering and a multilayer perceptron neural network model[END_REF] among others. As a clustering procedure, k-means intends to group data that are relatively similar into several well-separated classes. In other words, for a data set {X 1 , . . . , X n } drawn in a Hilbert space H, k-means outputs Ĉ = (C 1 , . . . , C k ) that is a collection of subsets of {1, . . . n}. To assess the quality of such a classification, it is often assumed that a target or natural classification C * = (C * 1 , . . . , C * k ) is at hand. Then a classification error may be defined by

Rclassif ( Ĉ, C * ) = inf σ∈S k 1 n k j=1 Ĉσ(j) ∩ (C * j ) c ,
where σ ranges in the set of k-permutations S k . Such a target classification C * may be provided by a mixture assumption on the data, that is hidden i.i.d latent variables Z 1 , . . . , Z n ∈ {1, . . . , k} are drawn and only i.i.d X i 's such that X|Z = j ∼ φ j are observed. This mixture assumption on the data is at the core of model-based clustering techniques, that cast the clustering problem into the density estimation framework. In this setting, efficient algorithms may be designed, provided that further assumptions on the φ j 's are made. For instance, if the φ j 's are supposed to be normal densities, this classification problem may be processed in practice using an EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF].

that the empirically optimal cluster centers are separated enough. This empirical separation condition has deterministic counterparts that provide classification guarantees for k-means related algorithms, under model-based assumptions. Namely, if the sample is drawn according to a subGaussian mixture, then a separation condition on the true means of the mixture entails guarantees for the classification error Rclassif ( Ĉ, C * ), where C * is the latent variable classification [START_REF] Lu | Statistical and Computational Guarantees of Lloyd's Algorithm and its Variants[END_REF][START_REF] Bunea | PECOK: a convex optimization approach to variable clustering[END_REF]. As will be detailed in Section 2, it is possible to define a separation condition without assuming that the underlying distribution is a subGaussian mixture (see, e.g., [START_REF] Levrard | Fast rates for empirical vector quantization[END_REF][START_REF] Levrard | Nonasymptotic bounds for vector quantization in Hilbert spaces[END_REF]). This so-called margin condition turns out to be satisfied under model-based clustering assumptions such as quasi-Gaussian mixtures. It also holds whenever the distribution is supported on finitely many points.

Section 2 introduces notation and basic structural properties that the margin condition entails for probability distributions. To be more precise, a special attention is paid to the connection between classification and compression such a condition provides. For instance, it is exposed that whenever P satisfies a margin condition, there exist finitely many optimal classifications. Section 3 focuses on the compression performance that an empirical risk minimizer ĉn achieves under this margin condition. We state that fast convergence rates for the distortion are attained, that imply some guarantees on the classification error of ĉn . At last, Section 4 intends to provide similar results, both in compression and classification, for an output ĉKM,n of the Lloyd's algorithm. We show that our deterministic separation condition ensures that an empirical one in satisfied with high probability, allowing to connect our approach to that of [START_REF] Tang | On Lloyd's algorithm: New theoretical insights for clustering in practice[END_REF]. On the whole, we prove that ĉKM,n performs almost optimal compression, as well as optimal classification in the framework of [START_REF] Azizyan | Minimax theory for highdimensional gaussian mixtures with sparse mean separation[END_REF].

Notation and margin condition

Throughout this paper, for M > 0 and a in H, B(a, M ) will denote the closed ball with center a and radius M . For a subset A of H, a∈A B(a, M ) will be denoted by B(A, M ). With a slight abuse of notation, P is said to be Mbounded if its support is included in B(0, M ). Furthermore, it will also be assumed that the support of P contains more than k points. Recall that we define the closed j-th Voronoi cell associated with c = (c 1 , . . . , c k ) by V j (c) = {x| ∀i = j

x -c j ≤ x -c i }. We let X 1 , . . . , X n be i.i.d. random variables drawn from a distribution P , and introduce the following contrast function,

γ : (H) k × H -→ R (c, x) -→ min j=1,...,k x -c j 2 ,
so that R dist (c) = P γ(c, .) and Rdist (c) = P n γ(c, .). We let M denote the set of minimizers of P γ(c, .) (possibly empty). The most basic property of the set of minimizers is its stability with respect to isometric transformations that are P -compatible. Namely Let T be an isometric transformation such that T P = P , where T P denotes the distribution of T (X), X ∼ P . Then

T (M) = M.
Other simple properties of M proceed from the fact that c → x -c j 2 is weakly lower semi-continuous (see, e.g., [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]Proposition 3.13]), as stated below. Assume that P is M -bounded, then

i) M = ∅. ii) If B = inf c * ∈M,i =j c * i -c * j , then B > 0. iii) If p min = inf c * ∈M,i P (V i (c * )), then p min > 0.
Proposition 1 ensures that there exist minimizers of the true and empirical distortions R dist and Rdist . In what follows, ĉn and c * will denote minimizers of Rdist and R dist respectively. A basic property of distortion minimizers, called the centroid condition, is the following.

Proposition 2. [16, Theorem 4.1] If c * ∈ M, then, for all j = 1, . . . , k, P (V j (c * ))c * j = P x1 Vj (c * ) (x) .
As a consequence, for every c ∈ H k and c * ∈ M,

R dist (c) -R dist (c * ) ≤ c -c * 2 .
A direct consequence of Proposition 2 is that the boundaries of the Voronoi diagram V (c) has null P -measure. Namely, if

N (c * ) = i =j x| x -c * i = x -c * j , then P (N (c * )) = 0.
Hence the quantizer Q c * that maps V j (c * ) onto c * j is welldefined P a.s. For a generic c in B(0, M ), this is not the case. Thus, we adopt the following convention:

W 1 (c) = V 1 (c), W 2 (c) = V 2 (c) \ W 1 (c), . . ., W k (c) = V k (c) \ W k-1 (c), so that the W j (c)'s form a tessellation of R d . The quantizer Q c can now be properly defined as the map that sends each W j (c) onto c j . As a remark, if Q is a k-points quantizer, that is a map from R d with images c 1 , . . . , c k , then it is immediate that R dist (Q) ≥ R dist (Q c )
. This shows that optimal quantizers in terms of distortion are to be found among nearest-neighbor quantizers of the form

Q c , c in (R d ) k .
An other key parameter for quantization purpose is the separation factor, that seizes the difference between local and global minimizers in terms of distortion. for any i = 1, . . . , k. Let ε > 0, then P is said to be ε-separated if

inf c∈ M\M R dist (c) -R dist (c * ) ≥ ε, where c * ∈ M.
The separation factor ε quantifies how difficult the identification of global minimizer might be. Its empirical counterpart in terms of Rdist can be thought of as the minimal price one has to pay when the Lloyd's algorithm ends up at a stationary point that is not an optimal codebook.

Note that local minimizers of the distortion satisfy the centroid condition, as well as p-optimal codebooks, for p < k. Whenever H = R d , P has a density and P x 2 < ∞, it can be proved that the set of minimizers of R dist coincides with the set of codebooks satisfying the centroid condition, also called stationary points (see, e.g., Lemma A of [START_REF] Pollard | A central limit theorem for k-means clustering[END_REF]). However, this result cannot be extended to non-continuous distributions, as proved in Example 4.11 of [START_REF] Graf | Foundations of quantization for probability distributions[END_REF].

Up to now, we only know that the set of minimizers of the distortion M is non-empty. From the compression point of view, this is no big deal if M is allowed to contain an infinite number of optimal codebooks. From the classification viewpoint, such a case may be interpreted as a case where P carries no natural classification of H. For instance, if H = R 2 and P ∼ N (0, I 2 ), then easy calculation and Lemma

1 show that M = (c 1 , c 2 )| c 2 = -c 1 , c 1 = 2/ √ 2π , hence |M| = +∞.
In this case, it seems quite hard to define a natural classification of the underlying space, even if the c * 's are clearly identified. The following margin condition is intended to depict situations where a natural classification related with P exists.

Definition 2 (Margin condition). A distribution P satisfies a margin condition with radius r 0 > 0 if and only if

i) P is M -bounded, ii) for all 0 ≤ t ≤ r 0 , sup c * ∈M P (B(N (c * ), t)) := p(t) ≤ Bp min 128M 2 t. (1) 
Since p(2M ) = 1, such a r 0 must satisfy r 0 < 2M . The constant 1/128 in (1) is not optimal and should be understood as a small enough absolute constant. The margin condition introduced above asks that every classification associated with an optimal codebook c * is a somehow natural classification. In other words P has to be concentrated enough around each c * j . This margin condition may also be thought of as a counterpart of the usual margin conditions for supervised learning stated in [START_REF] Mammen | Smooth discrimination analysis[END_REF], where the weight of the neighborhood of the critical area {x| P (Y = 1|X = x) = 1/2} is controlled.

The scope of the margin condition allows to deal with several very different situations in the same way, as illustrated below.

Some instances of 'natural classifications'

Finitely supported distributions: If P is supported on finitely many points, say x 1 , . . . , x r . Then, M is obviously finite. Since, for all c * in M, P (N (c * )) = 0, we may deduce that inf c * ,j d(x j , N (c * )) = r 0 > 0. Thus, p(t) = 0 for t ≤ r 0 , and P satisfies a margin condition with radius r 0 .

Truncated Gaussian mixtures: A standard assumption assessing the existence of a natural classification is the Gaussian mixture assumption on the underlying distribution, that allows to cast the classification issue into the density estimation framework. Namely, for H = R d , P is a Gaussian mixture if it has density

f (x) = k i=1 θ i (2π) d/2 |Σ i | e -1 2 (x-mi) t Σ -1 i (x-mi) ,
where the θ i 's denote the weights of the mixture, the m i 's the means and the Σ i 's are the d × d covariance matrices of the components. Also denote by B = min i =j m i -m j the minimum distance between two components, and by σ 2 and σ 2 -the largest and smallest eigenvalues of the Σ i 's. It seems natural that the larger B is compared to σ, the easier the classification problem would be. To this aim, we may define, for C and C * two classifications the classification risk as the probability that a random point is misclassified, that is

R classif (C, C * ) = inf σ∈S k P   k j=1 C σ(j) ∩ (C * j ) c   .
In the case k = 2, θ i = 1/2 and Σ i = σ 2 I d , [6, Theorem 1 and 2] show that

inf Ĉ sup σ/ B≤κ ER classif ( Ĉ, C * ) κ 2 d n ,
up to log factors, where C * denote the Bayes classification. Note that in this case, the Bayes classification is given by C * j = V j (m), that is the Voronoi diagram associated with the vector of means. Similarly we will show that for σ/ B small enough, a margin condition is satisfied.

Since Gaussian mixture have unbounded distributions, we may define a truncated Gaussian mixture distribution by its density of the form

f (x) = k i=1 θ i (2π) d/2 N i |Σ i | e -1 2 (x-mi) t Σ -1 i (x-mi) 1 B(0,M ) (x),
where N i denotes a normalization constant for each truncated Gaussian variable.

To avoid boundary issues, we will assume that M is large enough so that M ≥ 2 sup j m j . On the other hand, we also assume that M scales with σ, that is M ≤ cσ, for some constant c. In such a setting, the following hold. 

• If σ/ B ≤ 1 16c1 √ d , then for all j and c * in M, c * j -m j ≤ c 1 σ √ d.
• Assume that σ -≥ c -σ, for some constant c -. If σ/ B ≤ c 2 , then c * is unique and P satisfies a margin condition with radius B/8.

A possible choice of c 1 is k2 d+2

(1-η)θmin .

A short proof is given in Section 6.1. Proposition 3 entails that (truncated) Gaussian mixtures are in the scope of the margin condition, provided that the components are well-separated. As will be detailed in Section 4, this implies that under the conditions of Proposition 3 the classification error of the outputs of the k-means algorithm is of order κ 2 d/n as in [START_REF] Azizyan | Minimax theory for highdimensional gaussian mixtures with sparse mean separation[END_REF].

An almost necessary condition

As described above, if the distribution P is known to carry a natural classification, then it is likely that it satisfies a margin condition. It is proved below that conversely an optimal codebook c * provides a not so bad classification, in the sense that the mass around N (c * ) must be small. To this aim, we introduce, for c in B(0, M ) k , and i = j, the following mass

p ij (c, t) = P x| 0 ≤ x - c i + c j 2 , c j -c i r i,j (c) ≤ t ∩ V j (c) ,
where r i,j (c) = c i -c j . It is straightforward that P (B(N (c), t)) ≤ i =j p i,j (c, t).

The necessary condition for optimality in terms of distortion is the following.

Proposition 4. Suppose that c * ∈ M. Then, for all i = j and t < 1/2, tri,j (c * )

0 p i,j (c * , s)ds ≤ 2t 2 r i,j (c * ) p i (c * ) 1 -2t ∧ p j (c * ) 1 + 2t , tri,j (c * ) 0 p i,j (c * , s)ds ≤ t 2 r i,j (c * ) p i (c * ) + p j (c * ) 2 ,
where p j (c * ) denotes P (V j (c * )).

A proof of Proposition 4 is given in Section 6.2. Whenever p i,j (c * , .) is continuous, Proposition 4 can provide a local upper bound on the mass around N (c * ).

Corollary 1. Assume that c * ∈ M and, for all i = j and t ≤ t 0 p i,j is continuous on [0, t 0 ]. Then there exists r 0 > 0 such that, for all r ≤ r 0 ,

P (B(N (c * ), r)) ≤ 8k B r.
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Note that whenever H = R d and P has a density, the assumptions of Corollary 1 are satisfied. In this case, Corollary 1 states that all optimal codebooks satisfy a condition that looks like Definition 2, though with a clearly worse constant than the required one. Up to a thorough work on the constants involved in those results, this suggests that margin conditions (or at least weaker but sufficient versions) might be quite generally satisfied. As exposed below, satisfying such a condition provides interesting structural results.

Structural properties under margin condition

The existence of a natural classification, stated in terms of a margin condition in Definition 2, gives some guarantees on the set of optimal codebooks M. Moreover, it also allows local convexity of the distortion R dist . These properties are summarized in the following fundamental Proposition. Proposition 5. [21, Proposition 2.2] Assume that P satisfies a margin condition with radius r 0 , then the following properties hold.

i) For every c * in M and c in B(0, M ) k , if c -c * ≤ Br0 4 √ 2M , then R dist (c) -R dist (c * ) ≥ p min 2 c -c * 2 . (2) ii) M is finite. iii) There exists ε > 0 such that P is ε-separated. iv) For all c in B(0, M ) k , 1 16M 2 Var(γ(c, .) -γ(c * (c), .)) ≤ c -c * (c) 2 ≤ κ 0 (R dist (c) -R dist (c * )) , (3) 
where

κ 0 = 4kM 2 1 ε ∨ 64M 2 pminB 2 r 2 0
, and c * (c) ∈ arg min

c * ∈M c -c * .
Properties ii) and iii) guarantee that whenever a margin condition is satisfied, there exist finitely many optimal codebooks that are clearly separated in terms of distortion. When P ∼ N (0, I d ), since |M| = +∞, P does not satisfy a margin condition. This finite set property also allows to give some structural results about the optimal codebooks. Namely, we can easily deduce the following. j denotes the rth coordinate of m j . Under the conditions of Proposition 3, if we further require that for all j and r, s in S(m) × S(m) c , Σ j,rs = 0, then it is immediate that S(c * ) ⊂ S(m). Such a property might be of particular interest when variable selection is performed as in [START_REF] Levrard | Sparse oracle inequalities for variable selection via regularized quantization[END_REF].
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Properties i) and iv) of Proposition 5 allow to make connections between the margin condition defined in Definition 2 and earlier results on improved convergence rates for the distortion. To be more precise, it is proved in [START_REF] Chou | The distortion of vector quantizers trained on n vectors decreases to the optimum as O p (1/n)[END_REF] that if P has a continuous density, unique optimal codebook c * , and if the distortion function R dist has a positive Hessian matrix at c * , then

R dist (ĉ n ) -R dist (c * ) = O P (1/n).
It is straightforward that in the case where P has a continuous density and a unique optimal codebook, (2) yields that the Hessian matrix of the distortion is positive, hence the margin condition gives the convergence rate in O P (1/n) for the distortion in this case.

On the other hand, it is proved in [2, Theorem 2] that, if Var(γ(c, .) -

γ(c * (c), .) ≤ A(R dist (c) -R dist (c * )), for some constant A, then the convergence rate E(R dist (ĉ n ) -R dist (c * )) ≤ C/n
can be attained for the expected distortion of an empirical distortion minimizer. Thus, if P satisfies a margin condition, then (3) shows that P is in the scope of this result. In the following section, more precise bounds are derived for this excess distortion when P satisfies a margin condition.

At last, Properties i) and iv) allow to relate excess distortion and excess classification risk, when appropriate. For a codebook c in H k , we denote by C(c) its associated Voronoi partition (with ties arbitrarily broken). Corollary 3. Assume that P satisfies a margin condition (Definition 2) with radius r 0 . Let δ denote the quantity

pminB 2 r 2 0 64M 2 ∧ ε. For every c ∈ H k such that R dist (c) -R dist (c * ) ≤ δ, we have R classif (C(c), C(c * (c))) ≤ √ p min 16M R dist (c) -R dist (c * ),
where c * (c) is a closest optimal codebook to c.

A short proof of Corollary 3 is given in Section 6.3. Corollary 3 summarizes the connection between classification and distortion carried by the margin condition: if a natural classification exists, that is if P is separated into k spherical components, then this classification can be inferred from quantizers that are designed to achieve a low distortion. As exposed in the following section, an other interest in satisfying a margin condition is achieving an improved convergence rate in terms of distortion for the empirical distortion minimizer.

Convergence of an empirical risk minimizer

If P is M -bounded, then the excess distortion of an empirical distortion minimizer can be bounded by

E(R dist (ĉ n ) -R dist (c * )) ≤ C(k)M 2 √ n .
Such a result can be found in [START_REF] Linder | Learning-Theoretic Methods in Vector Quantization[END_REF] for the case H = R d , and in [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF] for the general case where H is a separable Hilbert space. When P satisfies a margin condition, Theorem 1. We assume that P satisfies a margin condition (Definition 2) with radius r 0 , and we let δ denote the quantity

pminB 2 r 2 0 64M 2 ∧ ε. Then, E (R dist (ĉ n ) -R dist (c * )) ≤ C k + log M M 2 np min + 20kM 2 √ n -δ 1 δ< 12kM 2 √ n + e -n 2M 4 (δ-12kM 2 √ n ) 2 M 2 √ n 1 δ≥ 12kM 2 √ n
, where C denotes a (known) constant and M denotes the number of optimal codebooks up to relabeling.

A short proof is given in Section 6.4. Theorem 1 confirms that the fast 1/n rate for the distortion may be achieved as in [START_REF] Pollard | A central limit theorem for k-means clustering[END_REF] or [START_REF] Antos | Individual convergence rates in empirical vector quantizer design[END_REF], under slightly more general conditions. It also emphasizes that the convergence rate of the distortion is "dimension-free", in the sense that it only depends on the dimension through the radius of the support M . For instance, quantization of probability distributions over the unit L 2 -ball of L 2 ([0, 1]) (squared integrable functions) is in the scope of Theorem 1. Note that a deviation bound is also available for R dist (ĉ n ) -R dist (c * ), stated as [START_REF] Bunea | PECOK: a convex optimization approach to variable clustering[END_REF].

In fact, this result shows that the key parameters that drive the convergence rate are rather the minimal distance between optimal codepoints B, the margin condition radius r 0 and the separation factor ε. These three parameters provide a local scale δ such that, if n is large enough to distinguish codebooks at scale δ in terms of slow-rated distortion, i.e.

√ nδ ≥ 12kM 2 , then the distortion minimization boils down to k well separated mean estimation problems, leading to an improved convergence rate in kM 2 /(np min ). Indeed, Theorem 1 straightforwardly entails that, for n large enough,

E (R dist (ĉ n ) -R dist (c * )) ≤ C (k + log(| M|)M 2 np min .
Thus, up to the log(| M|) factor, the right-hand side corresponds to

k j=1 E X -c * j 2 |X ∈ V j (c * ) .
Combining Theorem 1 and Corollary 3 leads to the following classification error bound for the empirical risk minimizer ĉn . Namely, for n large enough, it holds

E [R classif (C(ĉ n ), C(c * (ĉ n )))] ≤ C k + log(| M| √ n .
Next we intend to assess the optimality of the convergence rate exposed in Theorem 1, by investigating lower bounds for the excess distortion over class of distributions that satisfy a margin condition. We let D(B -, r 0,-, p -, ε -) denote the set of distributions satisfying a margin condition with parameters B ≥ B -, r 0 ≥ r 0,-, p min ≥ p -and ε ≥ ε -. Some lower bound on the excess distortion over these sets are stated below.

Proposition 6. [21, Proposition 3.1] If H = R d , k ≥ 3 and n ≥ 3k/2, then inf ĉ sup P ∈D(c1M k -1/d ,c2M k -1/d ,c3/k,c4M 2 k -2/d / √ n) E [R dist (ĉ) -R dist (c * )] ≥ c 0 M 2 k 1 2 -1 d √ n ,
where c 0 , c 1 , c 2 , c 3 and c 4 are absolute constants.

Thus, for a fixed choice of r 0 , B and p min , the upper bound given by Theorem 1 turns out to be optimal if the separation factor ε is allowed to be arbitrarily small (at least δ kM 2 / √ n). When all these parameters are fixed, the following Proposition 7 ensures that the 1/n rate is optimal.

Proposition 7. Let d = dim(H). Assume that n ≥ k, then there exist constants c 1 , c 2 , c 3 and c 0 such that inf ĉ sup P ∈D(c1M k -1/d ,c2M k -1/d ,1/k,c3M 2 k -(1+2/d ) E [R dist (ĉ) -R dist (c * )] ≥ c 0 M 2 k 1-2 d n .
A proof of Proposition 7 can be found in Section 6.5. Proposition 7 ensures that the 1/n-rate is optimal on the class of distributions satisfying a margin condition with fixed parameters. Concerning the dependency in k, note that Proposition 7 allows for d = +∞, leading to a lower bound in k. In this case the lower bound differs from the upper bound given in Theorem 1 up to a 1/p min ∼ k factor. A question raised by the comparison of Proposition 6 and Proposition 7 is the following: can we retrieve the 1/ √ n rate when allowing other parameters such as B -or r 0,-to be small enough and ε -fixed? A partial answer is provided by the following structural result, that connects the different quantities involved in the margin condition. Proposition 8. Assume that P satisfies a margin condition with radius r 0 . Then the following properties hold.

i) ε ≤ B 2 4 . ii) r 0 ≤ B.
A proof of Proposition 8 is given in Section 6.7. Such a result suggests that finding distributions that have B small enough whereas ε or r 0 remains fixed is difficult. As well, it also indicates that the separation rate in terms of B should be of order M k -1/d n -1/4 . Slightly anticipating, this can be compared with the n -1/4 rate for the minimal separation distance between two means of a Gaussian mixture to ensure a consistent classification, as exposed in [6, Theorem 2].

Convergence of the k-means algorithm

Up to now some results have been stated on the performance of an empirical risk minimizer ĉn , in terms of distortion or classification. Finding such a minimizer is in practice intractable (even in the plane this problem has been proved N Phard, [START_REF] Mahajan | The planar k-means problem is NP-hard[END_REF]). Thus, most of k-means algorithms provide an approximation of such a minimizer. For instance, Lloyd's algorithm outputs a codebook ĉKM,n that is provably only a stationary point of the empirical distortion Rdist . Similarly to the EM algorithm, such a procedure is based on a succession of iterations that can only decrease the considered empirical risk Rdist . Thus many random initializations are required to ensure that at least one of them falls into the basin of attraction of an empirical risk minimizer.

Interestingly, when such a good initialization has been found, some recent results ensure that the output ĉKM,n of Lloyd's algorithm achieves good classification performance, provided that the sample is in some sense well-clusterable. For instance, under the model-based assumption that X is a mixture of sub-Gaussian variables with means m and maximal variances σ 2 , [25, Theorem 3.2] states that, provided B/σ is large enough, after more that 4 log(n) iterations from a good initialization Lloyd's algorithm outputs a codebook with classification error less that e -B2 /(16σ 2 ) . Note that the same kind of results hold for EM-algorithm in the Gaussian mixture model, under the assumption that B/σ is large enough and starting from a good initialization (see, e.g., [START_REF] Dasgupta | A probabilistic analysis of EM for mixtures of separated, spherical Gaussians[END_REF]).

In the case where P is not assumed to have a mixture distribution, several results on the classification risk Rclassif (ĉ KM,n , ĉn ) are available, under clusterability assumptions. Note that this risk accounts for the misclassifications encountered by the output of Lloyd's algorithm compared to the empirical risk minimizer, in opposition to a latent variable classification as above. Definition 3. [34, Definition 1] A sample X 1 , . . . , X n is f -clusterable if there exists a minimizer ĉn of Rdist such that, for j = i,

ĉn,i -ĉn,j ≥ f Rdist (ĉ n ) 1 √ n i + 1 √ n j , where n denotes | {i| X i ∈ V (ĉ n )} |.
It is important to mention that other definitions of clusterability might be found, for instance in [START_REF] Kumar | Clustering with spectral norm and the k-means algorithm[END_REF][START_REF] Awasthi | Improved spectral-norm bounds for clustering[END_REF], each of them requiring that the optimal empirical codepoints are well-separated enough. Under such a clusterability assumption, the classification error of ĉKM,n can be proved small provided that a good initialization is chosen.

Theorem 2. [34, Theorem 2] Assume that X 1 , . . . , X n is f -clusterable, with f > 32 and let ĉn denote the corresponding minimizer of Rdist . Suppose that the initialization codebook c (0) satisfies Rdist (c (0) ) ≤ g Rdist (ĉ n ), imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018 with g < f 2 128 -1. Then the outputs of Lloyd's algorithm satisfies

Rclassif (ĉ KM,n , ĉn ) ≤ 81 8f 2 .
The requirement on the initialization codebook c (0) is stated in terms of gapproximation of an empirical risk minimizer. Finding such approximations can be carried out using approximated k-means techniques (k-means ++ [START_REF] Arthur | k-means++: the advantages of careful seeding[END_REF]), usual clustering algorithms (single Linkage [START_REF] Tang | On Lloyd's algorithm: New theoretical insights for clustering in practice[END_REF], spectral clustering [START_REF] Lu | Statistical and Computational Guarantees of Lloyd's Algorithm and its Variants[END_REF]), or even more involved procedures as in [START_REF] Ostrovsky | The effectiveness of Lloyd-type methods for the k-means problem[END_REF] coming with complexity guarantees. All of them entail that a g-approximation of an empirical risk minimizer can be found with high probability (depending on g), that can be used as an initialization for the Lloyd's algorithm.

Interestingly, the following Proposition allows to think of Definition 3 as a margin condition (Definition 2) for the empirical distribution. Proposition 9. Let p(t), B and pmin denote the empirical counterparts of p(t), B and p min . If

p 16M 2 f √ np min B ≤ pmin , then X 1 , . . . , X n is f -clusterable.
A proof of Proposition 9 can be found in Section 6.8. Intuitively, it seems likely that if X 1 , . . . , X n is drawn from a distribution P that satisfies a margin condition, then X 1 , . . . , X n is clusterable in the sense of Definition 3. This is formalized by the following Theorem. Theorem 3. Assume that P satisfies a margin condition. Let p > 0. Then, for n large enough, with probability larger than 1 -3n -p -e

-n 2M 4 (δ-12kM 2 √ n ) 2 , X 1 , . . . , X n is √ p min n-clusterable.
Moreover, on the same event, we have

ĉn -ĉKM,n ≤ 60M np 2 min .
A proof of Theorem 3 can be found in Section 6.9. Combining Theorem 3 and Theorem 2 ensures that whenever P satisfies a margin condition, then with high probability the classification error of the k-means codebook starting from a good initialization, Rclassif (ĉ KM,n , ĉn ), is of order 1/(np min ). Thus, according to Corollary 3, the classification error Rclassif (ĉ KM,n , c * (ĉ KM,n )) should be of order (k + log(| M|)/n, for n large enough. This suggests that the misclassifications of ĉKM,n are mostly due to the misclassifications of ĉn , rather than the possible difference between ĉn and ĉKM,n .

Combining the bound on ĉn -ĉKM,n with a bound on ĉnc * (ĉ n ) that may be deduced from Theorem 1 and Proposition 5 may lead to guarantees on the distortion and classification risk R dist (ĉ KM,n ) and R classif (ĉ KM,n , c * (ĉ KM,n )). An illustration of this point is given in Corollary 4.

Note also that the condition on the initialization in Theorem 2, that is g ≤ f 2 /128 -1, can be written as g ≤ np min /2 -1 in the framework of Theorem 3. Thus, for n large enough, provided that R dist (c * ) > 0, every initialization c (0) turns out to be a good initialization. 

ER classif (C(ĉ KM,n ), C(m)) ≤ Cσ log(n) n ,
where ĉKM,n denotes the output of the Lloyd's algorithm.

Note that in this case C(m) corresponds to the Bayes classification C * . Thus, in the "easy" classification case σ B small enough, the output of the Lloyd's algorithm achieves the optimal classification error. It may be also worth remarking that this case is peculiar in the sense that C(c * ) = C(m), that is the classification targeted by k-means is actually the optimal one. In full generality, since c * = m, a bias term accounting for R classif (C(c * ), C(m)) is likely to be incurred.

Conclusion

As emphasized by the last part of the paper, the margin condition we introduced seems a relevant assumption when k-means based procedures are used as a classification tool. Indeed, such an assumption in some sense postulates that there exists a natural classification that can be reached through the minimization of a least-square criterion. Besides, it also guarantees that both a true empirical distortion minimizer and the output of the Lloyd's algorithm approximate well this underlying classification.

From a technical point a view, this condition was shown to connect a risk in distortion and a risk in classification. As mentioned above, this assesses the relevance of trying to find a good classifier via minimizing a distortion, but this also entails that the distortion risk achieves a fast convergence rate of 1/n. Though this rate seems optimal on the class of distributions satisfying a margin condition, a natural question is whether fast rates of convergence for the distortion can occur more generally.

In full generality, the answer is yes. Indeed, consider P 0 a two-component truncated Gaussian mixtures on R satisfying the requirements of Proposition 3. Then set P has a distribution over R 2 , invariant through rotations, and that has marginal distribution P 0 on the first coordinate. According to Corollary 2, P cannot satisfy a margin condition. However, by decomposing the distortion of codebooks into a radial and an orthogonal component, it can be shown that such a distribution gives a fast convergence rate for the expected distortion of the empirical distortion minimizer.

The immediate questions issued by Proposition 4 and the above example are about the possible structure of the set of optimal codebooks: can we find distributions with infinite set of optimal codebooks that have finite isometry group?

If not, through quotient-like operations can we always reach a fast convergence rate for the empirical risk minimizer? Beyond the raised interrogations, this short example allows to conclude that our margin condition cannot be necessary for the distortion of the ERM to converge fast.

Proofs

Proof of Proposition 3

The proof of Proposition 3 is based on the following Lemma. 

R(m) ≤ σ 2 kθ max d (1 -η) , (4) 
where θ max = max j=1,...,k θ j . For any 0 < τ < 1/2, let c be a codebook with a code point c i such that c i -m j > τ B, for every j in {1, . . . , k}. Then we have

R(c) > τ 2 B2 θ min 4 1 - 2σ √ d √ 2πτ B e -τ 2 B2 4dσ 2 d , (5) 
where θ min = min j=1,...,k θ j . At last, if σ -≥ c -σ, for any τ such that 2τ + τ < 1/2, we have

∀t ≤ τ B p(t) ≤ t 2k 2 θ max M d-1 S d-1 (2π) d/2 (1 -η)c d -σ d e -[ 1 2 
-(2τ +τ ) ] 2 B2 2σ 2 , ( 6 
)
where S d-1 denotes the Lebesgue measure of the unit ball in R d-1 .

Proof. Proof of Proposition 3 We let τ = c1

√ dσ B , with c 1 = k2 d+2 (1-η)θmin . Note that σ B ≤ 1 16 √ dc1 entails τ ≤ 1 16 .
Let c be a codebook with a code point c i such that c i -m j > τ B, for every j in {1, . . . , k}. Then [START_REF] Awasthi | Improved spectral-norm bounds for clustering[END_REF] gives

R(c) > c 2 1 σ 2 θ min d2 -d 4 > kσ 2 d (1 -η) > R(m),
according to (4). Thus, an optimal codebook c * satisfies, for all j = 1, . . . , k, c * j -m j ≤ c 1 We thus deduce that

p min ≥ θ min (2π) d 2 B(0, B 4 ) e -u 2 2 du ≥ θ min d 2 1 - 4σ √ d √ 2π B e -B2 16dσ 2 d ≥ θ min 2 d (2π) d 2
.

Recall that we have M ≤ cσ for some constant c > 0, and

σ -≥ c -σ. If B/σ additionally satisfies B2 σ 2 ≥ 32 log 2 d+5 S d-1 k 2 c d+1 (1-η)θminc d - , choosing τ = 1 8 in (6) leads to, for t ≤ B 8 , p(t) ≤ t 2k 2 M d-1 S d-1 (2π) d 2 (1 -η)c d -σ d e -B2 32σ 2 ≤ t θ min M d-1 2 d+4 c d+1 σ d (2π) d 2 ≤ t Bθ min (2π) d 2 2 d+8 M 2 ≤ Bp min 128M 2 .
Hence P satisfies a margin condition with radius B/8. Note that according to Proposition 5, no local minimizer of the distortion may be found in B(c * , r), for c * ∈ M and r = Br0

4 √ 2M . Note that r ≥ B2 64 √ 2cσ and c * -m ≤ c 1 σ √ kd. Thus, if σ 2 B2 ≤ 1 128 √ 2c1c √
kd , c * is unique (up to relabeling).

Proof of Proposition 4

Proof. Let 0 ≤ t < 1 2 , c * ∈ M, and for short denote by r ij , V i , p i the quantities c * i -c * j , V i (c * ) and p i (c * ). Also denote by u ij the unit vector

c * j -c * i rij , c t i = c * i + 2t(c * j -c * i ),
and by

H t ij = x| x -c t i ≤ x -c * j
. We design the quantizer

Q t i as follows: for every = i, j, Q t (V ) = c * , Q t ((V i ∪ V j ) ∩ H t ij ) = c t i , and Q t ((V i ∪ V j ) ∩ (H t ij ) c ) = c * j .
Then we may write

0 ≤ R dist (Q t i ) -R dist (c * ) = 4p i r 2 ij t 2 + P ( x -c t i 2 -x -c * j 2 )1 Vj ∩H t ij (x) . (7) 
On the other hand, straightforward calculation show that 

V j ∩H t ij = x| 0 ≤ x - c * i +c * j 2 , u ij ≤ tr ij . Besides, for any x ∈ V j ∩ H t ij ,
have x -c t i 2 -x -c * j 2 = 2 (1 -2t)(c * j -c * i ), x - c * i + c * j 2 -t(c * j -c * i ) = 2 r ij s(1 -2t) -t(1 -2t)r 2 ij = 2r ij (1 -2t)(s -tr ij ).
Thus ( 7) may be written as

(1 -2t) trij 0 (tr ij -s)dp ij (s) ≤ 2p i r ij t 2 .
Integrating by parts leads to trij 0

(tr ij -s)dp ij (s) = trij 0 p ij (u)du. Thus trij 0 p ij (c * , s)ds ≤ 2t 2 r ij (c * ) p i (c * ) 1 -2t .
The other inequalities follows from the same calculation, with the quantizer moving c * i to c * i -2t(c * j -c * i ), and the quantizer moving c * i and c * j to c * i +t(c * j -c * i ) and c * j + t(c * j -c i ) * , leaving the other cells V unchanged.

Proof of Corollary 3

Proof.

According to [21, Lemma 4.4], if R dist (c) -R dist (c * ) ≤ δ, then c - c * (c) ≤ r, with r = Br0 4 √
2M . We may decompose the classification error as follows.

R classif (C(c), C(c * (c))) = P   j =i V j (c * ) ∩ V i (c)   . According to [21, Lemma 4.2], j =i V j (c * ) ∩ V i (c) ⊂ B N (c * (c)), 4 √ 2M B c -c * (c) .
Thus, since P satisfies a margin condition with radius r 0 ,

R classif (C(c), C(c * (c))) ≤ 4 √ 2p min 128M c -c * (c) ≤ √ p min 16M R dist (c) -R dist (c * ),
according to Proposition 5.
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Proof of Theorem 1

The proof of Theorem 1 relies on the techniques developed in the proof of [21, Theorem 3.1] and the following result from [START_REF] Biau | On the performance of clustering in Hilbert spaces[END_REF].

Theorem 4. [7, Corollary 2.1] Assume that P is M -bounded. Then, for any x > 0, we have

R dist (ĉ n ) -R dist (c * ) ≤ 12kM 2 + M 2 √ 2x √ n ,
with probability larger than 1 -e -x .

We are now in position to prove Theorem 1.

Proof. Proof of Theorem 1 Assume that P satisfies a margin condition with radius r 0 , and denote by r = Br0

√

2M , δ = pmin 2 r 2 ∧ ε, where ε denotes the separation factor in Definition 1. For short denote, for any codebook c ∈ (R) k , by

(c, c * ) = R dist (c) -R dist (c * ). According to [21, Lemma 4.4], if c -c * (c) ≥ r, then (c, c * ) ≥ pmin 2 r 2 ∧ ε. Hence, if (c, c * ) < δ, c -c * (c) < r.
Using Theorem 4, we may write

P ( (ĉ n , c * ) > δ) ≤ e -n 2M 4 (δ-12kM 2 √ n ) 2 . (8) 
Now, for any x > 0 and constant C we have

P (ĉ n , c * ) > C 2 p min k + log M M 2 n + 288M 2 p min n x + 64M 2 n x ∩ ( (ĉ n , c * ) < δ) ≤ P (ĉ n , c * ) > C 2 p min k + log M M 2 n + 288M 2 p min n x + 64M 2 n x ∩ (ĉ n ∈ B(M, r)) .
Proceeding as in the proof of [21, Theorem 3.1] entails, for every x > 0,

P (ĉ n , c * ) > C 2 p min k + log M M 2 n + 288M 2 p min n x + 64M 2 n x ∩ (ĉ n ∈ B(M, r)) ≤ e -x , (9) 
for some constant C > 0. Note that ( 8) and ( 9 On one hand, Theorem 4 and (8) yield that

E( (ĉ n , c * )1 (ĉn,c * )>δ ) ≤ ∞ δ P( (ĉ n , c * ) > u)du ≤ 12kM 2 √ n -δ + ∞ 12kM 2 √ n P( (ĉ n , c * ) > u)du 1 δ< 12kM 2 √ n + ∞ 0 P( (ĉ n , c * ) - 12kM 2 √ n ≥ (δ - 12kM 2 √ n ) + u)du 1 δ≥ 12kM 2 √ * n ≤ 20kM 2 √ n -δ 1 δ< 12kM 2 √ n + ∞ 0 e -n 2M 4 (δ-12kM 2 √ n )+u 2 du 1 δ≥ 12kM 2 √ * n ≤ 20kM 2 √ n -δ 1 δ< 12kM 2 √ n + e -n 2M 4 (δ-12kM 2 √ n ) 2 M 2 √ n 1 δ≥ 12kM 2 √ n
, where we used √ π ≤ 2 and (a + b) 2 ≥ a 2 + b 2 whenever a,b ≥ 0. On the other hand, ( 9) entails

E( (ĉ n , c * )1 (ĉn,c * )≤δ ) ≤ (β -δ)1 δ<β + β + ∞ β P(( (ĉ n , c * ) ≥ u) ∩ (ĉ n ∈ B(M, r)))du 1 δ≤β ≤ β + 252M 2 np min ,
where we used p min ≤ 1. Collecting the pieces gives the result of Theorem 1.

Proof of Proposition 7

Proof. Assume that dim(H) = d, and let z 1 , . . . , z k be in B(0, M -∆/8) such that z i -z j ≥ ∆, and ∆ ≤ 2M . Then slightly anticipating we may choose

∆ ≤ 3M 4k 1/d .
Let ρ = ∆/8, and for σ ∈ {-1, 1} k and δ ≤ 1 denote by P σ the following distribution. For any A ⊂ H, and i = 1, . . . , k,

P σ (A∩B(z i , ρ)) = 1 2ρk [(1 + σ i δ)λ 1 (e * 1 (A -z i ) ∩ [0, ρ] + (1 -σ i δ)λ 1 (e * 1 (A -z i ) ∩ [-ρ, 0]] ,
where e * 1 denotes the projection onto the first coordinate and λ 1 denote the 1-dimensional Lebesgue measure. Note that for every i, P σ (B(z i , ρ)) = 1/k. We let c σ denote the codebook whose codepoints are c σ,i = z i + σ i δ/2. For such distributions P σ 's, it is shown in Section 6.6 that

       p min = 1 k , B ≥ 3∆ 4 , r 0 ≥ ∆ 4 , ε ≥ ∆ 2 96k .
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Half of the proof of Proposition 7 is based on the following Lemma. For simplicity, we write R(ĉ, P σ ) for the distortion of the codebook ĉ when the distribution is P σ .

Lemma 3. For every σ, σ in {-1, +1} k , R(c σ , P σ ) -R(c σ , P σ ) = 2δ 2 ρ 2 k H(σ, σ ) = 2 k c σ -c σ 2 ,
where

H(σ, σ ) = k i=1 |σ i -σ i |/2.
Moreover, for every codebook ĉ there exist σ such that, for all σ,

R(ĉ, P σ ) -R(c σ , P σ ) ≥ 1 4k c σ -c σ 2 .
Lemma 3, whose proof is to be found in Section 6.6, ensures that our distortion estimation problem boils down to a σ estimation problem. Namely, we may deduce that

inf Q sup σ E(R( Q, P σ ) -R(c σ , P σ )) ≥ δ 2 ρ 2 4k inf σ sup σ H(σ, σ)).
The last part of the proof derives from the following. Thus, recalling that ∆ = 3M /(4k 

inf Q sup σ E(R( Q, P σ ) -R(c σ , P σ )) ≥ 9 2 16 M 2 k 1-2 d n .
6.6. Intermediate results for Section 6.5

First we prove Lemma 3.

Proof. Proof of Lemma 3 We let I i denote the 1 dimensional interval [z iρe 1 , z i + ρe 1 ], and V i the Voronoi cell associated with z i . At last, for a quantizer Q we denote by R i (Q, P σ ) the contribution of I i to the distortion, namely

R i (Q, P σ ) = P σ x -Q(x) 2 1 Vi (x) = P σ x -Q(x) 2 1 Ii (x). Since ∆/2 -3ρ > 0, I i ⊂ V i (c σ )
, for every i and σ. According to the centroid condition (Proposition 2), if |Q(I i )| = 1, that is only one codepoint is associated with I i , then 

R(Q, P σ ) = R(c σ , P σ ) + k i=1 P σ (I i ) Q(I i ) -c σ,i 2 , (10) 
i = |Q(I i )|, n in i = |Q(I i ) ∩ V i | and n out i = |Q(I i ) ∩ V c i . If n out i ≥ 1, then there exists x 0 ∈ I i such that Q(x 0 ) -x 0 ≥ ∆/2 -ρ. Then, for any x ∈ I i it holds Q(x) -x ≥ Q(x) -x 0 -2ρ ≥ ∆/2 -3ρ.
We deduce that for such an i, and every σ,

R i (Q, σ) ≥ 1 k ∆ 2 -3ρ 2 = ρ 2 k .
The second base inequality is that, for every Q such that Q(I i ) = z i , and every σ,

R i (Q, σ) = ρ 2 3k .
We are now in position to build a new quantizer Q that outperforms Q.

• If n in i = 1 and n out i = 0, then Q(I i ) = π Ii (Q(I i ))
, where π Ii denote the projection onto

I i . • If n out i ≥ 1, then Q(I i ) = z i . • If n in i ≥ 2 and n out i = 0, then Q(I i ) = z i .
Such a procedure defines a k-point quantizer Q that sends every I i onto I i . Moreover, we may write, for every σ

R(Q, P σ ) = n in i =1,n out i =0 R i (Q, P σ ) + n out i ≥1 R i (Q, P σ ) + n out i =0,n in i ≥2 R i (Q, P σ ) ≥ i R i ( Q, P σ ) + {i|n out i ≥ 1} 2ρ 2 3k -{i|n out i = 0, n in i ≥ 2} ρ 2 3k . Since |{i|n out i ≥ 1}| ≥ {i|n out i = 0, n in i ≥ 2} , we have R(Q, P σ ) ≥ R( Q, P σ )
, for every σ. Note that such a quantizer Q is indeed a nearest-neighbor quantizer, with images ci ∈ I i . For such a quantizer c, (10) yields, for every σ,

R(c, P σ ) -R(c σ , P σ ) = c -c σ 2 k .
Now, if c σ denotes arg min cσ c σ -c , then, for every σ we have

c -c σ ≥ c σ -c σ 2 .
Thus, recalling our initial codebook c, for every σ, R(c, P

σ ) -R(c σ , P σ ) ≥ 1 4k c σ -c σ 2 .

Proof of Proposition 8

Let c * ∈ M and i = j such that c * i -c * j = B. We denote by Q i,j the (k -1)points quantizer that maps V (c * ) onto c * , for = i, j, and V i (c * ) ∪ V j (c * ) onto imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018

c * i +c * j 2 . Then R dist (Q i,j ) -R dist (c * ) = (p i (c * ) + p j (c * )) B 2 4 ≤ B 2
4 . Thus, denoting by c * ,(k-1) an optimal (k -1)-points quantizer, R dist (c * ,(k-1) )-R dist (c * ) ≤ B 2 4 . Since ε ≤ R dist (c * ,(k-1) ) -R dist (c * ), the first part of Proposition 8 follows.

For the same optimal codebook c * , we denote for short by p(t) the quantity

p(t) = P x| 0 ≤ x - c i + c j 2 , c i -c j r i,j (c * ) ≤ t ∩ V i (c) ,
and by p i = p i (c * ). According to Proposition 2, we have

p i B 2 = P x - c * i + c * j 2 , c * i -c * j r i,j 1 Vi(c * ) (x) = 2M 0 tdp(t). (11) 
Assume that r 0 > B. Then

p(B) ≤ Bp min 128M 2 B ≤ p min 32 .
On the other hand, (11) also yields that ≤ pmin . Then Lemma 5 entails that for all ĉn minimizing Rdist and r = s, ĉr -ĉs ≥ d rs . Hence X 1 , . . . , X n is f -clusterable.

p i B 2 ≥ 2M B tdp(t) ≥ B (p i -p(B)) ≥ p i B 31 
6.9. Proof of Theorem 3

Proof. Assume that P satisfies a margin condition with radius r 0 . For short we denote R dist (c)-R dist (c * ) by (c, c * ). As in the proof of Theorem when n is large enough so that r n < r 0 and for t ≤ r 0 -r n , with r n = CM √ p log(n) pmin √ n . It remains to connect pmin and B with their deterministic counterparts. First, it is straightforward that

B ≥ B - √ 2r n ≥ B 2 , (14) 
for n large enough. The bound for pmin is slightly more involved. Let i and ĉn such that pmin = P n (V i (ĉ n )). Then we may write

pmin = P n (V i (ĉ n )) = P n (V i (c * (ĉ n ))) -P n (V i (c * (ĉ n )) ∩ V i (ĉ n ) c ) + P n (V i (c * (ĉ n )) c ∩ V i (ĉ n )) .
According According to Theorem 2, on this probability event, at most 10 pmin points are misclassified by ĉKM,n compared to ĉn . Thus, denoting by n j = nP n V j (ĉ n ) and nj = n(P n V j (ĉ KM,n )), we may write This occurs with probability larger than 1 -n -1 -e

-n 32M 4 (δ-12kM 2 √ n ) 2 .
It can be deduced from [7, Corollary 2.1] that, with probability larger than 1 -2e -x ,

sup c∈B(0,M ) k Rdist (c) -R dist (c) ≤ 6kM 2 + 8M 2 √ 2x √ n .
Therefore, for n large enough, it holds

Rdist (ĉ n ) ≥ R dist (c * ) 2 ,
with probability larger than 1 -1/n. On this probability event, a large enough n entails that every initialization of the Lloyd's algorithm is a good initialization.

According to Theorem 1 and 3, we may write 

Proposition 1 .

 1 [START_REF] Fischer | Quantization and clustering with Bregman divergences[END_REF] Corollary 3.1] and[START_REF] Levrard | Nonasymptotic bounds for vector quantization in Hilbert spaces[END_REF] Proposition 2.1] 

Definition 1 .

 1 Denote by M the set of codebooks that satisfyP (W i (c)) c i = P x1 Wi(c) (x) , imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018

Corollary 2 .

 2 Let T be the isometry group of P , and let c * ∈ M. If P satisfies a margin condition, then |T (c * )| < +∞.An easy instance of application of Corollary 2 can be stated in the truncated Gaussian Mixture model exposed in Section 2.1. Let S(m) denote the subset of {1, . . . , d} such that, for all j and r / ∈ S(m) m

Corollary 4 .

 4 Under the assumptions of Proposition 3, for k = 2, Σ i = σI d , and p min = 1/2, if n is large enough then

Lemma 2 .

 2 [START_REF] Levrard | Sparse oracle inequalities for variable selection via regularized quantization[END_REF] Lemma 4.2] Denote by η = sup j=1,...,k 1 -N i . Then the risk R(m) may be bounded as follows.

√BB 2 , and B m j , B 4 ⊂

 24 dσ, up to relabeling. Under the condition σ B ≤ , we have, since τ ≤ 1 16 , for every c * ∈ M and j = 1, . . . , k, B ≥ V j (c * ). imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018

  ) are enough to give a deviation bound in probability. For the bound in expectation, set β = 2C(k+log(| M|))M 2 npmin . imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018

Lemma 4 .

 4 If k ≥ n and δ ≤ √ k/2 √ n, then, for every σ and σ such that H(σ, σ ) = 1, h 2 (P ⊗n σ , P ⊗n σ ) ≤ 1/4, where h 2 denotes the Hellinger distance.

nX i ( 1 2 min. 6 . 10 .

 12610 j ĉj -ĉKM,j ≤ k j=1 n j ĉj -nj ĉKM,j + |n j -nj | ĉKM,j Vj (ĉn) (X i ) -1 Vj (ĉ KM,n ) (X i )) + 20M p min ,since ĉKM,n and ĉn satisfy the centroid condition (Proposition 2). Thus,kj=1 n j ĉj -ĉKM,j ≤ 30M p min . At last, since for all j = 1, . . . , k, nj n ≥ pmin ≥ pmin 2 , we deduce that ĉn -ĉKM,n ≤ 60M np Proof of Corollary 4 Proof. We recall that under the assumptions of Proposition 3, c * is unique and P satisfies a margin condition with radius B/8. As in the proof of Theorem 3, we assume that ĉnc * ≤ C 1 log(n) p min √ n .

  Denote by η = min i 1 -N i . Then there exists constants c 1 (k, η, d, θ min ) and c 2 (k, η, d, θ min , c -, c) such that

	Proposition 3.
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  denoting by s the quantity x -

	c * i +c * j 2 , u ij , we
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[START_REF] Orhan | EEG signals classification using the kmeans clustering and a multilayer perceptron neural network model[END_REF] 

  1/d ) and ρ = ∆/8, if we choose δ =

	√ 2 √ k n , a
	direct application of [36, Theorem 2.12] yields

  [START_REF] Orhan | EEG signals classification using the kmeans clustering and a multilayer perceptron neural network model[END_REF] hence the first part of Lemma 3, with Q associated to c σ . Now let c be a codebook, and denote by Q the associated quantizer. Denote by n
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  Lemma 5. [33,Lemma 10] Assume that there exist d rs 's, r = s, such that, for any r = s and x ∈ V s (ĉ n ), P n ({x| x rs -ĉr ≤ x rs -ĉs + d rs }) < pmin , where x rs denotes the projection of x onto the line joining ĉr and ĉs . Then, for all r = s, ĉr -ĉs ≥ d rs . Proof of Proposition 9 Now let x ∈ {x| x rs -ĉr ≤ x rs -ĉs + d rs }∩ V s (ĉ n ), for d rs ≤ 2M . Then x -ĉr ≤ x -ĉs + d rs x -ĉs ≤ x -ĉr . rs + 2d rs x -ĉr ≤ 8M d rs . We deduce from above that d(x, ∂V s (ĉ n )) ≤ 8M B d rs , hence x ∈ B(N (ĉ n ), 8M B d rs ).

	Taking squares of both inequalities leads to	
		ĉs -ĉr , x -	ĉr + ĉs 2	≥ 0		
		2 ĉs -ĉr , x -	ĉr + ĉs 2	≤ d 2		
	Set	d rs =	2M f √ n min	≥ f Rdist (ĉ n )	1 √ n r	+	1 √ n s	,
	and assume that p 16M 2 f √ n pmin B				
						32	,	
	hence the contradiction.					
	6.8. Proof of Proposition 9			
	The proof of Proposition 9 is based on the following Lemma, that connects the
	clusterability assumption introduced in Definition 3 to another clusterability
	definition introduced in [18].				
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Proof.

  to [21, Lemma 4.2], V i (c * (ĉ n ))∆V i (ĉ n ) ⊂ B N (c * (ĉ n ), 4 √ 2M B r n ), where ∆ denotes the symmetric difference. Hoeffding's inequality gives (P n -P ) r n ≤ r 0 . Concerning P n (V i (c * (ĉ n ))), using Hoeffding's inequality again we may writeP n (V i (c * (ĉ n ))) ≥ p min -sup c , . . . , X n is √ p min n-clusterable.

	c * ∈M	N (c * ,	4 √ B 2M	r n ) ≤	2p log(n) n	,
						4 √ B 2M	r n +	2p log(n) n
			≤ C			p log(n) √ n	,
	for n large enough so that 4 √	2M			
	pmin ≥ p min -C	p log(n) √ n	≥	p min 2	,
	for n large enough. Thus, (13) gives			
	p(t) ≤	B pmin 32M 2 t + C	B p log(n) M √ n	.
	For n large enough so that C	B√ M p log(n) √ n	≤ pmin 2 , Proposition 9 ensures that
	X 1					

with probability larger than 1 -n -p . Hence

P n (V i (c * (ĉ n ))∆V i (ĉ n )) ≤ p B * ∈ M,i=1,...,k |(P n -P )V i (c * )| ≥ p min -2(p log(n) + log(k| M|) n ,

with probability larger than 1 -n -p . We deduce that imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018
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This might be compared with the 1/ √ n rate obtained in [6, Theorem 1] for the classification error under Gaussian mixture with well-separated means assumption. Note however that in such a framework C(c * ) might not be the optimal classification. However, under the assumptions of Proposition 3, C(c * ) and C(m) can be proved close, and even the same in some particular cases as exposed in Corollary 4.imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date:[START_REF] Orhan | EEG signals classification using the kmeans clustering and a multilayer perceptron neural network model[END_REF] 

Since, according to [START_REF] Levrard | Nonasymptotic bounds for vector quantization in Hilbert spaces[END_REF]Lemma 4

ĉKM,nc * , the margin condition entails that

Using Markov's inequality yields the same result in expectation. It remains to note that in the case k = 2, Σ i = σ 2 I d and p 1 = p 2 = 1 2 , though c * may differ from m, we have C(c * ) = C(m).