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Quantization /Clustering: when and why
does k-means work.

Clément Levrard

Abstract: Though mostly used as a clustering algorithm, k-means are ori-
ginally designed as a quantization algorithm. Namely, it aims at providing
a compression of a probability distribution with k points. Building upon
[21, 34], we try to investigate how and when these two approaches are com-
patible. Namely, we show that provided the sample distribution satisfies
a margin like condition (in the sense of [28] for supervised learning), both
the associated empirical risk minimizer and the output of Lloyd’s algorithm
provide almost optimal classification in certain cases (in the sense of [6]).
Besides, we also show that they achieved fast and optimal convergence rates
in terms of sample size and compression risk.

MSC 2010 subject classifications: 62H30, 62E17.
Keywords and phrases: k-means, clustering, quantization, separation
rate, distortion.

1. Introduction

Due to its simplicity, k-means algorithm, introduced in [26], is one of the most
popular clustering tool. It has been proved fruitful in many applications: as
a last step of a spectral clustering algorithm [29], for clustering electricity
demand curves [1], clustering DNA microarray data [35, 17| or EEG signals
[30] among others. As a clustering procedure, k-means intends to group data
that are relatively similar into several well-separated classes. In other words,
for a data set {Xi,...,X,} drawn in a Hilbert space H, k-means outputs
C = (Cy,...,Cy) that is a collection of subsets of {1,...n}. To assess the quality
of such a classification, it is often assumed that a target or natural classification

C* = (Cf,...,C}) is at hand. Then a classification error may be defined by

k
~ . 1 A *\C
Retassis(€.€7) = inf — 3 |Coy 0],
j=1

ceESL N

where o ranges in the set of k-permutations Si. Such a target classification
C* may be provided by a mixture assumption on the data, that is hidden i.i.d
latent variables Z1,...,Z, € {1,...,k} are drawn and only i.i.d X;’s such that
X|Z = j ~ ¢; are observed. This mixture assumption on the data is at the
core of model-based clustering techniques, that cast the clustering problem into
the density estimation framework. In this setting, efficient algorithms may be
designed, provided that further assumptions on the ¢;’s are made. For instance,
if the ¢;’s are supposed to be normal densities, this classification problem may
be processed in practice using an EM algorithm [13].

1
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C. Levrard/When does k-means work? 2

However, by construction, k-means may rather be thought of as a quan-
tization algorithm. Indeed, it is designed to output an empirical codebook
¢, = (én,1,-..,Cn k), that is a k-vector of codepoints ¢, ; € H, minimizing

. 1 <& .
Raza() =2 ) amin 11X = 1P

over the set of codebooks ¢ = (cy, ..., cx). Let V;(c) denote the j-th Voronoi cell
associated with c, that is Vj(c) = {z| Vi#j |z —¢i| <|z—cl}, and Q.
the function that maps every V;(c) onto c;, with ties arbitrarily broken. Then
Ruaist(c) is Pullz — Qe(z)||2, where P, f means integration with respect to the
empirical distribution P,. From this point of view, k-means aims at providing a
quantizer (s, that realizes a good k-point compression of P, namely that has
a low distortion Ry;s:(€,) = Pllz — Qs, (z)]|?.

This quantization field was originally developed to answer signal compression
issues in the late 40’s (see, e.g. [15]), but quantization may also be used as a
pre-processing step for more involved statistical procedures, such as modeling
meta-models for curve prediction by k “local” regressions as in [4]. This domain
provides most of the theoretical results for k-means (see, e.g., [23, 7]), assessing
roughly that it achieves an optimal k-point compression up to 1/4/n in terms of
the distortion P||z — Qc()||?, under a bounded support assumption on P. Note
that other distortion measures can be considered: L, distances, r > 1 (see, e.g.,
[16]), or replacing the squared Euclidean norm by a Bregman divergence ([14]).

In practice, k-means clustering is often performed using Lloyd’s algorithm
[24]. This iterative procedure is based on the following: from an initial code-
book ¢, partition the data according to the Voronoi cells of ¢(9), then update
the code point by computing the empirical mean over each cell. Since this step
can only decrease the empirical distortion ]:Zdist, repeat until stabilization and
output €xp,n. Note that this algorithm is a very special case of the Classifi-
cation EM algorithm in the case where the components are assumed to have
equal and spherical variance matrices [10]. As for EM’s algorithms, the overall
quality of the Lloyd’s algorithm output mostly depends on the initialization.
Most of the effective implementation use several random initializations, as for
k-means ++ [3], resulting in an approximation of the true empirical distortion
minimizer. This approximation may be build as close as desired (in terms of
distortion) to the optimum [19] with high probability, provided that enough
random initializations are allowed.

Roughly, these approximation results quantify the probability that a random
initialization falls close enough to the empirical distortion minimizer ¢,. It has
been recently proved that, provided such a good random initialization is found, if
P, satisfies some additional clusterability assumption, then some further results
on the misclassification error of the Lloyd’s algorithm output can be stated.
For instance, if min;; [|€,,; — €, ;||/v/n is large enough, then it is proved that
Cx M. provides a close classification to €, [34]. In other words, if C(€xas,) and
C(¢,,) denote the classifications associated with the Voronoi diagrams of ¢k a1,
and ¢, then Relassi #(C(€xnrn),C(€y)) is small with high probability, provided
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C. Levrard/When does k-means work? 3

that the empirically optimal cluster centers are separated enough.

This empirical separation condition has deterministic counterparts that pro-
vide classification guarantees for k-means related algorithms, under model-based
assumptions. Namely, if the sample is drawn according to a subGaussian mix-
ture, then a separation condition on the true means of the mixture entails gua-
rantees for the classification error Reigssi ¥ ((f ,C*), where C* is the latent variable
classification [25, 9]. As will be detailed in Section 2, it is possible to define
a separation condition without assuming that the underlying distribution is a
subGaussian mixture (see, e.g., [20, 21]). This so-called margin condition turns
out to be satisfied under model-based clustering assumptions such as quasi-
Gaussian mixtures. It also holds whenever the distribution is supported on fini-
tely many points.

Section 2 introduces notation and basic structural properties that the margin
condition entails for probability distributions. To be more precise, a special
attention is paid to the connection between classification and compression such
a condition provides. For instance, it is exposed that whenever P satisfies a
margin condition, there exist finitely many optimal classifications. Section 3
focuses on the compression performance that an empirical risk minimizer ¢,
achieves under this margin condition. We state that fast convergence rates for
the distortion are attained, that imply some guarantees on the classification error
of ¢,. At last, Section 4 intends to provide similar results, both in compression
and classification, for an output €x s, of the Lloyd’s algorithm. We show that
our deterministic separation condition ensures that an empirical one in satisfied
with high probability, allowing to connect our approach to that of [34]. On the
whole, we prove that Cx s, performs almost optimal compression, as well as
optimal classification in the framework of [6].

2. Notation and margin condition

Throughout this paper, for M > 0 and a in H, B(a, M) will denote the clo-
sed ball with center a and radius M. For a subset A of H, (J,c4 B(a, M) will
be denoted by B(A, M). With a slight abuse of notation, P is said to be M-
bounded if its support is included in B(0, M). Furthermore, it will also be as-
sumed that the support of P contains more than k points. Recall that we de-
fine the closed j-th Voronoi cell associated with ¢ = (c1,...,¢x) by Vj(c) =
{z| Vizj lo—c¢l <z —ecll}.

We let X4,...,X,, be ii.d. random variables drawn from a distribution P,
and introduce the following contrast function,

H)xH — R
v (c,x) +— min Hacfch2 ’
j=1,...,k
so that Rg;s¢(c) = Py(c,.) and Rdist(c) = P,v(c,.). We let M denote the set
of minimizers of Pv(c,.) (possibly empty). The most basic property of the set
of minimizers is its stability with respect to isometric transformations that are
P-compatible. Namely
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C. Levrard/When does k-means work? 4

Lemma 1. [16, Lemma 4.7]
Let T be an isometric transformation such that TP = P, where T4P denotes
the distribution of T(X), X ~ P. Then

T (M) =M.

Other simple properties of M proceed from the fact that ¢ — ||z — ¢;||? is
weakly lower semi-continuous (see, e.g., [8, Proposition 3.13]), as stated below.

Proposition 1. [14, Corollary 3.1] and [21, Proposition 2.1]
Assume that P is M-bounded, then

i) M#£0.
ii) If B = infesem,izj ] — 5|, then B > 0.
190) If pmin = infexepm,; P(Vi(c®)), then pmin > 0.
Proposition 1 ensures that there exist minimizers of the true and empirical
distortions Rg;s¢ and Rg;s:. In what follows, ¢, and c¢* will denote minimizers

of Rdist and Ry;s: respectively. A basic property of distortion minimizers, called
the centroid condition, is the following.

Proposition 2. [16, Theorem 4.1] If c* € M, then, for all j =1,... k,
P(V(e")ej = P (zly; (e ()

As a consequence, for every ¢ € HF and c* € M,
Ryist(€) = Raist(c) < [le — c*[|*.

A direct consequence of Proposition 2 is that the boundaries of the Voronoi
diagram V'(c) has null P-measure. Namely, if

N(e) =l le=cll=llz =},

i#]

then P(N(c*)) = 0. Hence the quantizer Qc- that maps V;(c*) onto ¢} is well-
defined P a.s. For a generic ¢ in B(0, M), this is not the case. Thus, we adopt
the following convention: Wi(c) = Vi(c), Wa(c) = Va(c) \ Wi(c), ..., Wi(c) =
Vie(e) \ Wi_1(c), so that the W;(c)’s form a tessellation of R?. The quantizer
Q. can now be properly defined as the map that sends each Wj(c) onto c¢;.
As a remark, if Q is a k-points quantizer, that is a map from R? with images
Cl,.-.,Ck, then it is immediate that Rgist(Q) > Raist(Qc). This shows that
optimal quantizers in terms of distortion are to be found among nearest-neighbor
quantizers of the form Q., ¢ in (R?)*.

An other key parameter for quantization purpose is the separation factor, that
seizes the difference between local and global minimizers in terms of distortion.

Definition 1. Denote by M the set of codebooks that satisfy

P(W;(c)e;=P (x]lWi(c)(x)) ,
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C. Levrard/When does k-means work? 5

foranyi=1,... k. Let € > 0, then P is said to be e-separated if

iI_lf Rdist(c) - Rdist(C*) 2 €,
ce M\ M

where c* € M.

The separation factor £ quantifies how difficult the identification of global
minimizer might be. Its empirical counterpart in terms of Rdist can be thought
of as the minimal price one has to pay when the Lloyd’s algorithm ends up at
a stationary point that is not an optimal codebook.

Note that local minimizers of the distortion satisfy the centroid condition, as
well as p-optimal codebooks, for p < k. Whenever H = R?, P has a density and
P||z||*> < oo, it can be proved that the set of minimizers of Ry;s; coincides with
the set of codebooks satisfying the centroid condition, also called stationary
points (see, e.g., Lemma A of [32]). However, this result cannot be extended to
non-continuous distributions, as proved in Example 4.11 of [16].

Up to now, we only know that the set of minimizers of the distortion M is
non-empty. From the compression point of view, this is no big deal if M is allo-
wed to contain an infinite number of optimal codebooks. From the classification
viewpoint, such a case may be interpreted as a case where P carries no natural
classification of . For instance, if H = R? and P ~ N(0, I3), then easy cal-
culation and Lemma 1 show that M = {(c1,¢c2)| 2 = —c1, |a1] =2/V2r},
hence |[M| = +o0. In this case, it seems quite hard to define a natural classifica-
tion of the underlying space, even if the c*’s are clearly identified. The following
margin condition is intended to depict situations where a natural classification
related with P exists.

Definition 2 (Margin condition). A distribution P satisfies a margin condition
with radius ro > 0 if and only if

1) P is M-bounded,
1) for all 0 <t <y,

sup P (BN, 0) = () < 10t 0

Since p(2M) = 1, such a ro must satisfy ro < 2M. The constant 1/128 in (1)
is not optimal and should be understood as a small enough absolute constant.
The margin condition introduced above asks that every classification associated
with an optimal codebook c* is a somehow natural classification. In other words
P has to be concentrated enough around each c¢j. This margin condition may
also be thought of as a counterpart of the usual margin conditions for supervised
learning stated in [28], where the weight of the neighborhood of the critical area
{z| P(Y =1|X =z) = 1/2} is controlled.

The scope of the margin condition allows to deal with several very different
situations in the same way, as illustrated below.
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C. Levrard/When does k-means work? 6
2.1. Some instances of ’natural classifications’

Finitely supported distributions: If P is supported on finitely many points,
say 1, ..., ;. Then, M is obviously finite. Since, for all ¢* in M, P(N(c*)) =0,
we may deduce that infe- ; d(z;, N(c*)) = 1o > 0. Thus, p(t) = 0 for ¢ < 7o,
and P satisfies a margin condition with radius rq.

Truncated Gaussian mixtures: A standard assumption assessing the ex-
istence of a natural classification is the Gaussian mixture assumption on the
underlying distribution, that allows to cast the classification issue into the den-
sity estimation framework. Namely, for H = R, P is a Gaussian mixture if it
has density

3 . 01 7l(x7mi)t2f1(:v7mi)
T) = — ¢ 2 i
o ; (2m) /2 /154] ’
where the 60;’s denote the weights of the mixture, the m;’s the means and the
Y;’s are the d x d covariance matrices of the components.

Also denote by B = min;x; |[m; —m;|| the minimum distance between two
components, and by 02 and 02 the largest and smallest eigenvalues of the 3;’s.
It seems natural that the larger Bis compared to o, the easier the classification
problem would be. To this aim, we may define, for C and C* two classifications
the classification risk as the probability that a random point is misclassified,
that is

k
Rclassif(cvc*) = inf P U Ca’(j) N (C]*)c
j=1

€Sk

In the case k =2, 0; = 1/2 and %; = 01, [6, Theorem 1 and 2| show that

A d
inf sup ERciassif(C,C7) =< K24 =,
C O'/BSK n

up to log factors, where C* denote the Bayes classification. Note that in this case,
the Bayes classification is given by CF = V;(m), that is the Voronoi diagram
associated with the vector of means. Similarly we will show that for o/B small
enough, a margin condition is satisfied.

Since Gaussian mixture have unbounded distributions, we may define a trun-
cated Gaussian mixture distribution by its density of the form

k

B 0;
flz) = Z —(277)‘”21\71-\/@6

i=1

—L(z—m;y)t ~1 T—m;
3 ( )P )HB(O,M)(x)a

where V; denotes a normalization constant for each truncated Gaussian variable.
To avoid boundary issues, we will assume that M is large enough so that M >
2sup; [[m;||. On the other hand, we also assume that M scales with o, that is
M < co, for some constant c. In such a setting, the following hold.

imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018



C. Levrard/When does k-means work? 7

Proposition 3. Denote byn = min; 1 — N;. Then there exists constants c1(k,n, d, Omin)
and co(k,n,d, Omin, c—, c) such that

e Ifo/B< m, then for all j and c* in M, ||c; — mJ;H < coVd.
o Assume that o_ > c_o, for some constant c_. If a/B~ < ¢g, then c* is
unique and P satisfies a margin condition with radius B/8.

k2d+2

A possible choice of ¢y is TEE et

A short proof is given in Section 6.1. Proposition 3 entails that (truncated)
Gaussian mixtures are in the scope of the margin condition, provided that the
components are well-separated. As will be detailed in Section 4, this implies
that under the conditions of Proposition 3 the classification error of the outputs
of the k-means algorithm is of order k2\/d/n as in [6].

2.2. An almost necessary condition

As described above, if the distribution P is known to carry a natural classifica-
tion, then it is likely that it satisfies a margin condition. It is proved below that
conversely an optimal codebook c¢* provides a not so bad classification, in the
sense that the mass around N(c*) must be small. To this aim, we introduce, for
cin B(0, M)*, and i # j, the following mass

pij(e,t) =P ({m| 0< <m— c;rc]ffj_(cc)> < t} mVj(c)) :

where 7; ;(c) = |lci—c;|. It is straightforward that P(B(N(c),t)) < >_,.; pij(c,t).
The necessary condition for optimality in terms of distortion is the following.

Proposition 4. Suppose that c* € M. Then, for alli# j and t < 1/2,

friate?) = (o
/ pij(c*, s)ds < 2t%r; j(c*) [pz(c ) A pg(C)] 7
0

1-—2t 1+ 2t
tri ;(c™) = ¥
/ pij(c*, s)ds < ﬁer:QM,
0

where p;(c*) denotes P(V;(c*)).

A proof of Proposition 4 is given in Section 6.2. Whenever p; ;(c*,.) is con-
tinuous, Proposition 4 can provide a local upper bound on the mass around
N(c*).

Corollary 1. Assume that ¢ € M and, for all i # j and t < to pij s
continuous on [0,t9]. Then there exists ro > 0 such that, for all r < rg,

. 8k
P(B(N(c"),r)) < 3"
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C. Levrard/When does k-means work? 8

Note that whenever H = R? and P has a density, the assumptions of Corollary
1 are satisfied. In this case, Corollary 1 states that all optimal codebooks satisfy
a condition that looks like Definition 2, though with a clearly worse constant
than the required one. Up to a thorough work on the constants involved in those
results, this suggests that margin conditions (or at least weaker but sufficient
versions) might be quite generally satisfied. As exposed below, satisfying such
a condition provides interesting structural results.

2.3. Structural properties under margin condition

The existence of a natural classification, stated in terms of a margin condition
in Definition 2, gives some guarantees on the set of optimal codebooks M.
Moreover, it also allows local convexity of the distortion Ry;s:. These properties
are summarized in the following fundamental Proposition.

Proposition 5. [21, Proposition 2.2] Assume that P satisfies a margin condi-
tion with radius ro, then the following properties hold.

i) For every c* in M and c in B(0, M), if |[c — c*|| < 4%3’\4, then

Raiss(€) = Raise(c”) = P2 e — 2. (2)

i) M is finite.
i1i) There exists € > 0 such that P is e-separated.
iv) For all ¢ in B(0, M)k,

mﬁVar(v(c, ) —7(c*(€),.)) < |le — ¢*(c)||* < Ko (Raist(c) — Raist(c)),
(3)

where ko = 4kM? (% \Y %), and c*(c) € argminl|jc — c*|.
Pmin 5570 c*reM
Properties i) and #ii) guarantee that whenever a margin condition is satisfied,
there exist finitely many optimal codebooks that are clearly separated in terms of
distortion. When P ~ N(0, I;), since | M| = +oo, P does not satisfy a margin
condition. This finite set property also allows to give some structural results
about the optimal codebooks. Namely, we can easily deduce the following.

Corollary 2. Let T be the isometry group of P, and let c* € M. If P satisfies
a margin condition, then |T(c*)| < +o0.

An easy instance of application of Corollary 2 can be stated in the truncated
Gaussian Mixture model exposed in Section 2.1. Let S(m) denote the subset of

{1,...,d} such that, for all j and r ¢ S(m) mg-r) = 0, where my) denotes the 7-
th coordinate of m;. Under the conditions of Proposition 3, if we further require
that for all j and r,s in S(m) x S(m)®, ;s = 0, then it is immediate that
S(c*) € S(m). Such a property might be of particular interest when variable
selection is performed as in [22].
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C. Levrard/When does k-means work? 9

Properties i) and iv) of Proposition 5 allow to make connections between the
margin condition defined in Definition 2 and earlier results on improved conver-
gence rates for the distortion. To be more precise, it is proved in [11] that if P has
a continuous density, unique optimal codebook ¢*, and if the distortion function
Ry;st has a positive Hessian matrix at ¢*, then Ry;st () — Raise(c*) = Op(1/n).
It is straightforward that in the case where P has a continuous density and a
unique optimal codebook, (2) yields that the Hessian matrix of the distortion is
positive, hence the margin condition gives the convergence rate in Op(1/n) for
the distortion in this case.

On the other hand, it is proved in [2, Theorem 2| that, if Var(y(c,.) —
~v(c*(c),.) < A(Rgist(c) — Raist(c*)), for some constant A, then the convergence
rate E(Rgist(€rn) — Raist(c*)) < C/n can be attained for the expected distortion
of an empirical distortion minimizer. Thus, if P satisfies a margin condition,
then (3) shows that P is in the scope of this result. In the following section,
more precise bounds are derived for this excess distortion when P satisfies a
margin condition.

At last, Properties i) and iv) allow to relate excess distortion and excess
classification risk, when appropriate. For a codebook ¢ in H*, we denote by
C(c) its associated Voronoi partition (with ties arbitrarily broken).

Corollary 3. Assume that P satisfies a margin condition (Definition 2) with

2 2
radius vo. Let & denote the quantity % Ae. For every c € H* such that
Ryist(c) — Raist(c®) < 6, we have

\/ pm'm,
Rclassif (C(C)7 C(C (C = "16M \/Rdzs't Rdist (C* )7

where ¢*(c) is a closest optimal codebook to c.

A short proof of Corollary 3 is given in Section 6.3. Corollary 3 summarizes
the connection between classification and distortion carried by the margin con-
dition: if a natural classification exists, that is if P is separated into k spherical
components, then this classification can be inferred from quantizers that are de-
signed to achieve a low distortion. As exposed in the following section, an other
interest in satisfying a margin condition is achieving an improved convergence
rate in terms of distortion for the empirical distortion minimizer.

3. Convergence of an empirical risk minimizer

If P is M-bounded, then the excess distortion of an empirical distortion mini-
mizer can be bounded by

C(k)M?
=

Such a result can be found in [23] for the case H = R<, and in [7] for the general
case where H is a separable Hilbert space. When P satisfies a margin condition,

]E(Rdist(én) - Rdist(C*)) S
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C. Levrard/When does k-means work? 10

faster rates can be achieved. The following Theorem is a refined version of [21,
Theorem 3.1].
Theorem 1. We assume that P satisfies a margin condition (Definition 2) with

T p2.2
radius ro, and we let & denote the quantity M&‘# Ae. Then,

log (|M])) M2 ’
C (k+log (M) M> | [QOkM S 1 T
NPmin n v
. 2.\ 2 2
- [e‘w((‘s_u%)) Afﬁ} Lg> 1262

where C denotes a (known) constant and |M| denotes the number of optimal
codebooks up to relabeling.

E (Rdz'st (én) - Rdist (C*>) <

A short proof is given in Section 6.4. Theorem 1 confirms that the fast 1/n rate
for the distortion may be achieved as in [32] or [2], under slightly more general
conditions. It also emphasizes that the convergence rate of the distortion is
“dimension-free”, in the sense that it only depends on the dimension through the
radius of the support M. For instance, quantization of probability distributions
over the unit Lo-ball of Ly([0,1]) (squared integrable functions) is in the scope
of Theorem 1. Note that a deviation bound is also available for Rg;st(€,) —
Rgist(c*), stated as (9).

In fact, this result shows that the key parameters that drive the convergence
rate are rather the minimal distance between optimal codepoints B, the margin
condition radius ry and the separation factor €. These three parameters pro-
vide a local scale § such that, if n is large enough to distinguish codebooks at
scale § in terms of slow-rated distortion, i.e. \/nd > 12kM?, then the distor-
tion minimization boils down to k& well separated mean estimation problems,
leading to an improved convergence rate in kM?/(npmn). Indeed, Theorem 1
straightforwardly entails that, for n large enough,

& * C'(k + log(|M]) M2
E (Rdist(cn) — Rdist(c )) < ( n;g(l |) .

Thus, up to the log(]M|) factor, the right-hand side corresponds to Zle E(|X - SIPIX € Vj(eh)).
Combining Theorem 1 and Corollary 3 leads to the following classification error
bound for the empirical risk minimizer ¢,,. Namely, for n large enough, it holds

E [Reiassif(C(€r),C(c*(€n)))] < C’@_

This might be compared with the 1/1/n rate obtained in [6, Theorem 1] for the
classification error under Gaussian mixture with well-separated means assump-
tion. Note however that in such a framework C(c*) might not be the optimal
classification. However, under the assumptions of Proposition 3, C(c*) and C(m)
can be proved close, and even the same in some particular cases as exposed in
Corollary 4.
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C. Levrard/When does k-means work? 11

Next we intend to assess the optimality of the convergence rate exposed in
Theorem 1, by investigating lower bounds for the excess distortion over class of
distributions that satisfy a margin condition. We let D(B_, 19, _,p_,e_) denote
the set of distributions satisfying a margin condition with parameters B > B_,
70 > T0,—, Pmin = P— and € > e_. Some lower bound on the excess distortion
over these sets are stated below.

Proposition 6. /21, Proposition 8.1] If H =R, k >3 and n > 3k/2, then

o
[N
|
=

. o M2
inf sup E [Raist(€) — Raise(c™)] > co
€ PeD(ciMk—1d,coMk=1/d,c5/k,ca M2k—2/4 /\/n)

B

where cq, c1,co,c3 and ¢4 are absolute constants.

Thus, for a fixed choice of ¢, B and py,n, the upper bound given by Theorem
1 turns out to be optimal if the separation factor € is allowed to be arbitrarily
small (at least & < kM?/,/n). When all these parameters are fixed, the following
Proposition 7 ensures that the 1/n rate is optimal.

Proposition 7. Let d = dim(H). Assume that n > k, then there exist constants
c1, €2, c3 and co such that

M2ki—3

inf sup E [Raist(€) — Raist(c™)] > co
¢ PeD(cr Mk=1/4,co Mk=1/4,1/k,cs M2k~ (1+2/d) n

A proof of Proposition 7 can be found in Section 6.5. Proposition 7 ensures
that the 1/n-rate is optimal on the class of distributions satisfying a margin
condition with fixed parameters. Concerning the dependency in k, note that
Proposition 7 allows for d = 400, leading to a lower bound in k. In this case
the lower bound differs from the upper bound given in Theorem 1 up to a
1/Pmin ~ k factor. A question raised by the comparison of Proposition 6 and
Proposition 7 is the following: can we retrieve the 1/4/n rate when allowing
other parameters such as B_ or ro,_ to be small enough and e_ fixed? A partial
answer is provided by the following structural result, that connects the different
quantities involved in the margin condition.

Proposition 8. Assume that P satisfies a margin condition with radius .
Then the following properties hold.

. B2
i) e < 5.
ZZ) TogB.

A proof of Proposition 8 is given in Section 6.7. Such a result suggests that
finding distributions that have B small enough whereas € or ry remains fixed is
difficult. As well, it also indicates that the separation rate in terms of B should
be of order Mk~1/4n=1/4, Slightly anticipating, this can be compared with the
n~1/4 rate for the minimal separation distance between two means of a Gaussian
mixture to ensure a consistent classification, as exposed in [6, Theorem 2].
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4. Convergence of the k-means algorithm

Up to now some results have been stated on the performance of an empirical risk
minimizer ¢,, in terms of distortion or classification. Finding such a minimizer
is in practice intractable (even in the plane this problem has been proved N P-
hard, [27]). Thus, most of k-means algorithms provide an approximation of such
a minimizer. For instance, Lloyd’s algorithm outputs a codebook €xas ., that
is provably only a stationary point of the empirical distortion Ryist. Similarly
to the EM algorithm, such a procedure is based on a succession of iterations
that can only decrease the considered empirical risk Rdist. Thus many random
initializations are required to ensure that at least one of them falls into the basin
of attraction of an empirical risk minimizer.

Interestingly, when such a good initialization has been found, some recent
results ensure that the output €x s, of Lloyd’s algorithm achieves good classi-
fication performance, provided that the sample is in some sense well-clusterable.
For instance, under the model-based assumption that X is a mixture of sub-
Gaussian variables with means m and maximal variances o, [25, Theorem 3.2]
states that, provided B/o is large enough, after more that 4log(n) iterations
from a good initialization Lloyd’s algorithm outputs a codebook with classifi-
cation error less that e=B°/(167") Note that the same kind of results hold for
EM-algorithm in the Gaussian mixture model, under the assumption that B /o
is large enough and starting from a good initialization (see, e.g., [12]).

In the case where P is not assumed to have a mixture distribution, several
results on the classification risk Rclassi #(€xMn;Cn) are available, under clus-
terability assumptions. Note that this risk accounts for the misclassifications
encountered by the output of Lloyd’s algorithm compared to the empirical risk
minimizer, in opposition to a latent variable classification as above.

Definition 3. [3/, Definition 1] A sample X1,..., X, is f-clusterable if there
exists a minimizer €, of Rgist such that, for j # 1,

lemsi — ensll = £/ Raion(@n) (

where ny denotes | {i| X; € Vo(¢n)}.

It is important to mention that other definitions of clusterability might be
found, for instance in [18, 5], each of them requiring that the optimal empirical
codepoints are well-separated enough. Under such a clusterability assumption,
the classification error of €xps, can be proved small provided that a good
initialization is chosen.

Theorem 2. [3/, Theorem 2] Assume that Xq,...,X, is [f-clusterable, with
f > 32 and let ¢,, denote the corresponding minimizer of Rgist. Suppose that
the initialization codebook ¢ satisfies

Rdist(c(o)) < gédist(én)a

imsart-generic ver. 2014/10/16 file: QuantizationandClusteringHAL.tex date: January 29, 2018



C. Levrard/When does k-means work? 13

with g < % — 1. Then the outputs of Lloyd’s algorithm satisfies

A 81
Rc assi C n An S o0
l f(CKM, c ) 8f2

The requirement on the initialization codebook ¢(©) is stated in terms of g-
approximation of an empirical risk minimizer. Finding such approximations can
be carried out using approximated k-means techniques (k-means ++ [3]), usual
clustering algorithms (single Linkage [34], spectral clustering [25]), or even more
involved procedures as in [31] coming with complexity guarantees. All of them
entail that a g-approximation of an empirical risk minimizer can be found with
high probability (depending on g), that can be used as an initialization for the
Lloyd’s algorithm.

Interestingly, the following Proposition allows to think of Definition 3 as a
margin condition (Definition 2) for the empirical distribution.

Proposition 9. Let p(t), B and poin denote the empirical counterparts of p(t),

B and ppin- If
[ 16M?f .
p - ~ S DPmin,
\% npman
then X1,...,X, is f-clusterable.
A proof of Proposition 9 can be found in Section 6.8. Intuitively, it seems
likely that if X,..., X, is drawn from a distribution P that satisfies a margin

condition, then Xi,..., X, is clusterable in the sense of Definition 3. This is
formalized by the following Theorem.

Theorem 3. Assume that P satisfies a margin condition. Let p > 0. Then,
_ n 12eM24)2
for n large enough, with probability larger than 1 —3n™P — e W<(§ v )) ,

X1,..., Xy 18 \/Pminn-clusterable. Moreover, on the same event, we have

. . 60M
||Cn _CKM,n” S n 5 .
Pnin

A proof of Theorem 3 can be found in Section 6.9. Combining Theorem 3
and Theorem 2 ensures that whenever P satisfies a margin condition, then with
high probability the classification error of the k-means codebook starting from a
good initialization, Rclassif (Ex M, Cn), is of order 1/(npmin). Thus, according
to Corollary 3, the classification error Rclassif (€xan, € (Exarn)) should be of
order \/(k + log(|]M|)/n, for n large enough. This suggests that the misclassifi-
cations of €k ar,n are mostly due to the misclassifications of ¢,,, rather than the
possible difference between ¢,, and €x s -

Combining the bound on ||€,, — €x s, || With a bound on ||&, — c*(¢&,)|| that
may be deduced from Theorem 1 and Proposition 5 may lead to guarantees on
the distortion and classification risk Rgist(€xar,n) and Reiassif(ExMn, € (Exarn))-
An illustration of this point is given in Corollary 4.
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C. Levrard/When does k-means work? 14

Note also that the condition on the initialization in Theorem 2, that is g <
f?/128 — 1, can be written as g < npmin/2 — 1 in the framework of Theorem 3.
Thus, for n large enough, provided that Rg;s:(c*) > 0, every initialization c©®
turns out to be a good initialization.

Corollary 4. Under the assumptions of Proposition 3, for k = 2, X; = olg,
and Pmin = 1/2, if n is large enough then

. log(n
II':':]%classif (C(CKM,7L)7C(m)) S Co g’rg )7

where Cip,n denotes the output of the Lloyd’s algorithm.

Note that in this case C(m) corresponds to the Bayes classification C*. Thus,
in the “easy” classification case % small enough, the output of the Lloyd’s algo-
rithm achieves the optimal classification error. It may be also worth remarking
that this case is peculiar in the sense that C(c*) = C(m), that is the classification
targeted by k-means is actually the optimal one. In full generality, since ¢* # m,
a bias term accounting for Reessif (C(c*),C(m)) is likely to be incurred.

5. Conclusion

As emphasized by the last part of the paper, the margin condition we introduced
seems a relevant assumption when k-means based procedures are used as a
classification tool. Indeed, such an assumption in some sense postulates that
there exists a natural classification that can be reached through the minimization
of a least-square criterion. Besides, it also guarantees that both a true empirical
distortion minimizer and the output of the Lloyd’s algorithm approximate well
this underlying classification.

From a technical point a view, this condition was shown to connect a risk in
distortion and a risk in classification. As mentioned above, this assesses the rele-
vance of trying to find a good classifier via minimizing a distortion, but this also
entails that the distortion risk achieves a fast convergence rate of 1/n. Though
this rate seems optimal on the class of distributions satisfying a margin condi-
tion, a natural question is whether fast rates of convergence for the distortion
can occur more generally.

In full generality, the answer is yes. Indeed, consider Py a two-component
truncated Gaussian mixtures on R satisfying the requirements of Proposition
3. Then set P has a distribution over R?, invariant through rotations, and that
has marginal distribution Py on the first coordinate. According to Corollary 2,
P cannot satisfy a margin condition. However, by decomposing the distortion
of codebooks into a radial and an orthogonal component, it can be shown that
such a distribution gives a fast convergence rate for the expected distortion of
the empirical distortion minimizer.

The immediate questions issued by Proposition 4 and the above example are
about the possible structure of the set of optimal codebooks: can we find distri-
butions with infinite set of optimal codebooks that have finite isometry group?
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C. Levrard/When does k-means work? 15

If not, through quotient-like operations can we always reach a fast convergence
rate for the empirical risk minimizer? Beyond the raised interrogations, this
short example allows to conclude that our margin condition cannot be neces-
sary for the distortion of the ERM to converge fast.

6. Proofs
6.1. Proof of Proposition 3

The proof of Proposition 3 is based on the following Lemma.

Lemma 2. [22, Lemma 4.2] Denote by n = sup;_, 1 — N;. Then the risk
R(m) may be bounded as follows.

2k0mard
R(m) < £ maz€ (4)
(1—=mn)
where Opqy = maxj=1,  0;. For any 0 < 7 < 1/2, let ¢ be a codebook with a
code point ¢; such that ||c; —mj|| > 7B, for every j in {1,...,k}. Then we have

R(c) >

~ d
2[320,.; 2 L2552
7B Omin (1 ovd _ ) 7 )

— — € 4do2
4 V2rTB

where Oy, = minj—y, . 0;. At last, if 6~ > c_o, for any 7" such that 2147 <
1/2, we have

_ 226, MA1S, , _[4-cri-0]'5?
Vvt <7'B p(t) <t dncad - 2 6
ST p(t) < (2ﬂ)d/2(1—n)c‘iode 2 ) (6)

where Sy_, denotes the Lebesgue measure of the unit ball in RI~T.

Proof. Proof of Proposition 3 We let 7 = %, with ¢ = % Note

o 1 : 1 . . )
that = < v entails 7 < 6 Let ¢ be a codebook with a code point ¢; such

that ||c; — m;| > 7B, for every j in {1,...,k}. Then (5) gives

c%a2ﬁmind2_d
4
ko?d
(L—=n)
> R(m),

R(c) >

according to (4). Thus, an optimal codebook c* satisfies, for all j = 1,... k,

. L 1
[c; —myill < a Vdo, up to relabeling. Under the condition z < Tovder and
% L for every c* € Mand j=1,...,k,

T = 167

, we have, since 7 <

~ B B
> = = (c*).
RS 4)cwc)

and B (mj,
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C. Levrard/When does k-means work? 16

We thus deduce that

. w 2
Drin > f;;; / e
m)2 JB(, £

d
> Ormin 1-— 40’f 16d
g VarB©

0

> min
T 2d(27)%

Recall that we have M < ¢o for some constant ¢ > 0, and o_ > c_o. If B/U

addltlonally satlsﬁes = > 32log (2d+ssd*]k20d+l), choosing 7/ = L in (6) leads

(1_71)977”'%01 8
to, for ¢ < B 5
27 rd—1 _,
plt) < 1w M S
(2m)2 (1 —n)clod
emi'rsz_l

2d+4cd+1gd(27) ¢
<t Fi < .
(2m) 2 24+8 2 128 M2

Hence P satisfies a margin condition with radius B /8. Note that according to
Proposition 5, no local minimizer of the distortion may be found in B(c*,r), for

cceMandr= 45& Note that r > % and [[c* —m| < c10Vkd. Thus,
if gz < 128\[ 750 © c* is unique (up to relabeling). O
clc

6.2. Proof of Proposition /4

Proof. Let 0 <t < 5, ¢ € M, and for short denote by r;;, V;, pl the quantities
c =c +
2t(c; — ¢;), and by Hf; = {z| |z —cl|| < |z — ¢} We d681gn the quantizer
Q; as follows: for every ¢ # i,7, Q'(Vy) = ¢, Q((Vi UV;) N HY;) = ¢}, and
Q'((V;UV;) N (H{;)°) = ¢;. Then we may write

le; =5l Vile™) and pi(c*). Also denote by u;; the unit vector

0 < Rasst(QF) = Ra(€”) = dpirt? + P ((llz = et = = &) Ly, ey, ()
(7)

On the other hand, straightforward calculation show that V;NH, fj = {x| 0< <x —

. . c;+c’
Besides, for any = € V; N HU, denoting by s the quantity <x — Tf,uij>, we

c;+c;

. >uij> < trij}~

2
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C. Levrard/When does k-means work? 17
have
7 J

¢ +c;
o= cl? = le = I =2 ({1 = 20(6; - i) = 5L — el - )

=2 [’I"ijS(l - 2t> - t(l - 2t)ri2j}
=2r;;(1 — 2t)(s — tri;).

Thus (7) may be written as
t?"i,j
(1- 2t)/ (tri; — 8)dpij(s) < 2pirijt>.
0

Integrating by parts leads to fomj (tri; — s)dpi;(s) = fomj pij(u)du. Thus

t'f‘ij . *

* 2 * pl(c )
/0 pij(c”,s)ds < 2t°r;5(c )1 mrye
The other inequalities follows from the same calculation, with the quantizer
moving c; to ¢j —2t(c; —cj), and the quantizer moving ¢} and ¢ to ¢} +t(c} —c;)
and ¢} +t(cj — ¢;)*, leaving the other cells V; unchanged. O

6.3. Proof of Corollary 3

Proof. According to [21, Lemma 4.4], if Rgist(c) — Raist(c*) < 4, then |c —

c*(o)]] < r, with r = 4%‘1’%. We may decompose the classification error as

follows.

Retassiy (C(c),C(c*(c))) = P | |J Vj(e") NVi(c)
J#i

According to [21, Lemma 4.2],

Uvie)nvie) ¢ B <N<c*<c>>, CEL c*<c>||> .

i
Thus, since P satisfies a margin condition with radius r,
Vi o))
————|lc —c*(c
128 M

vV Pmin
16M \/Rdist (C) - Rdist (C*)7

Rclassif (C(C),C(C* (C))) S

IN

according to Proposition 5. O
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6.4. Proof of Theorem 1

The proof of Theorem 1 relies on the techniques developed in the proof of [21,
Theorem 3.1] and the following result from [7].

Theorem 4. [7, Corollary 2.1] Assume that P is M-bounded. Then, for any
x > 0, we have

12kM? + M2\ 2x

Rdist (én) - Rdist(C*) S \/ﬁ )

x

with probability larger than 1 —e™7.
We are now in position to prove Theorem 1.

Proof. Proof of Theorem 1 Assume that P satisfies a margin condition with

radius 7o, and denote by r = 45%’\/[, § = bmin r2 A €, where € denotes the

separation factor in Definition 1. For short denote, for any codebook ¢ € (R)*, by
£(c,c*) = Rgist(c) — Raist(c*). According to 21, Lemma 4.4], if |[c —c*(¢)|| > r,
then £(c, ¢*) > E=iny? Ae. Hence, if £(c,c*) < 4, [|c — c*(c)|| < 7.

Using Theorem 4, we may write

_12kM2 ))2

P ((6n,c*) > 8) < ¢~ it (=224

(8)

Now, for any = > 0 and constant C' we have

k 1 v M2 2 2
2 (k+1log (JM])) N 288 M - 64M x) A (Uen, ) <5)1
Pmin n PminT n
1 ~ M2 2 2
2 (k+log (|M])) L 288M2 L GAM2

Pmin n PminT n

P [(E(én,c*) >C

<P Ke(en,c*) e ) N (e, € B(M,r))] .

Proceeding as in the proof of [21, Theorem 3.1] entails, for every x > 0,

k +log (|M])) M? 2 2
2 (k+log (|M])) L 288M2  GAM

P [(f(én,c*) >C a:) N(e, € B(M,r))] <e™®,

(9)
for some constant C' > 0. Note that (8) and (9) are enough to give a deviation

2C (k+log(| M|)) M2 '

NPmin

bound in probability. For the bound in expectation, set 8 =
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On one hand, Theorem 4 and (8) yield that

E(6(&n, ¢*) Lige, cyos) < / P(E(&n, c*) > u)du
)

lleMz

2k1v12

o 12kM2 12kM?

-0+ / P(é(én,c*) > U)dul ]]-5< 12k M2
1 n

20k M? (s izEa?) )2
[ b 12502 + [/0 e 2 (=245 +) du 5>1%2

§_ 12kM? 2 VM2
(( vr )) \/H:| 16212%2’

a?® + b? whenever a,b > 0. On the other

ME
12k1v[2 + |:€ 27

}
[

where we used /7 < 2 and (a + b)?
hand, (9) entails

E(l(€n, ")y, cr)<s) < (B —0)15<p + [ﬁ + /BOO P((¢(¢,c*) > u)N (¢, € B(M,r)))du] Ls<p

252M2
<B4+ ;

where we used p,in < 1. Collecting the pieces gives the result of Theorem 1. [

6.5. Proof of Proposition 7

Proof. Assume that dim(H) = d, and let z1,...,2; be in B(0, M — A/8) such
that ||z; — 2] > A, and A < 2M. Then slightly anticipating we may choose

3M

Let p = A/8, and for 0 € {—1,1}" and § < 1 denote by P, the following
distribution. For any A C H,andi=1,...,k,

1 . .
Po(ANB(zi, p)) = 5 0 [(1+ 0i0)Aa(er(A = ) N[0, ] + (1 = oid) M (eq(A = z:) N [=p, 0],
where e] denotes the projection onto the first coordinate and A; denote the
1-dimensional Lebesgue measure. Note that for every i, P,(B(z;,p)) = 1/k. We
let ¢, denote the codebook whose codepoints are ¢, ; = z; + 0;0/2. For such
distributions P,’s, it is shown in Section 6.6 that

1

3
Bz
To > 4

A2
€ 2 ek
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Half of the proof of Proposition 7 is based on the following Lemma. For simpli-
city, we write R(€, P,) for the distortion of the codebook ¢ when the distribution
is P,.

Lemma 3. For every o, o' in {—1,+1}*,

26%p? 2
R(co, Py) = R(eq. Po) = == H(0.0') = L le, — ¢, .

where H(o,0") = Zle |o; — ol|/2. Moreover, for every codebook ¢ there exist &
such that, for all o,
R(¢, P,) — R(c,, Py)

2 E”C& - c0H2~
Lemma 3, whose proof is to be found in Section 6.6, ensures that our distor-
tion estimation problem boils down to a ¢ estimation problem. Namely, we may
deduce that
. . 52p? . R
inf sup E(R(Q, P,) — R(c,, Py)) > ’ inf sup H(5,0)).

Q o g o

The last part of the proof derives from the following.

Lemma 4. If k > n and § < Vk/2\/n, then, for every o and o' such that
H(o,0') =1,
W (PF", PR <1/4,

where h? denotes the Hellinger distance.

Thus, recalling that A = 3M /(4k'/?) and p = A/8, if we choose § = %, a

direct application of [36, Theorem 2.12] yields

, . 9 kia
%fSIipIE(R(Q,P[,)—R(cg,Pg)) ZﬁM2 —

6.6. Intermediate results for Section 6.5

First we prove Lemma 3.

Proof. Proof of Lemma 3 We let I; denote the 1 dimensional interval [z; —
pe1, zi + pe1], and V; the Voronoi cell associated with z;. At last, for a quanti-
zer @ we denote by R;(Q, P,) the contribution of I; to the distortion, namely
Ri(Q, Py) = Py |z — Q()|*1v,(z) = Py ||z — Q(2)[[*1y,(2). Since A/2—3p >0,
I; C Vi(c,), for every i and o. According to the centroid condition (Proposition
2), if |Q(I;)| = 1, that is only one codepoint is associated with I;, then

k

R(Q7 PU) = R(CUa Po‘) + ZPU(Il)”Q(Iz) - Ccf,iHQ’ (10)

i=1
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hence the first part of Lemma 3, with @ associated to c,.

Now let ¢ be a codebook, and denote by @Q the associated quantizer. Denote
by n; = |Q(L)], ni™ = |Q(L;) N'V;| and n¢** = |Q(L;) N V. If ng“t > 1, then
there exists zg € I; such that [|Q(x0) — zo|| > A/2 — p. Then, for any x € I; it
holds ||Q(z) — z|| > ||Q(x) — xol| — 20 > A/2 — 3p. We deduce that for such an

i, and every o,

2

o

1A
. > |2 23,2
Ri(Q,0) > k‘H2 3p

The second base inequality is that, for every ) such that Q(I;) = z;, and every
07
02

We are now in position to build a new quantizer Q that outperforms Q.
e If ni" = 1 and n¢* = 0, then Q(I;) = 7,(Q(I;)), where 7;, denote the
projection onto I;.
o If ng"* > 1, then Q(I;) = z;.
o If n™ > 2 and n? = 0, then Q(I;) = z;.

Ri(Qva)

Such a procedure defines a k-point quantizer Q that sends every I; onto I;.
Moreover, we may write, for every o

R@P)= Y  R(@P)+ > R(QP)+ D  R(QPF)
nin=1,n2ut=0 nout>1 nout—0nin>2

~ - out 2[)2 -1 _out n p2
;Ri(Q7PU)+|{Z‘ni 21}’§7|{Z|ni =0,n; ZQH@'

v

Since [{i[ng"* > 1}| > [{i|ng"* = 0,ni" > 2}|, we have R(Q, P,) > R(Q, P,), for
every o. Note that such a quantizer @ is indeed a nearest-neighbor quantizer,
with images ¢; € I;. For such a quantizer ¢, (10) yields, for every o,

_ e — CaH2

R(¢, P,) — R(c,, Py) 2

Now, if ¢z denotes arg min._ ||c, — €||, then, for every o we have

HC& - CUH

&~ el 2 2

Thus, recalling our initial codebook ¢, for every o, R(c,P,) — R(c,, P,)
1 2
arlles — col”.

v

6.7. Proof of Proposition 8

Let ¢* € M and i # j such that [|c; — ¢}|| = B. We denote by Q; ; the (k —1)-
points quantizer that maps Vi(c*) onto ¢, for £ # 4, j, and V;(c*) U V;(c*) onto
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T +cl « 2 2 .
“2% Then Ryist(Qi ) — Raist(c*) = (pi(c*) +p;(c*)) B~ < B-. Thus, denotlr;g
by c¢**~1) an optimal (k— 1)-points quantizer, Ry;s (c**~1) = Ryigr(c*) < BT.
Since € < Rdist(c**(kfl)) — Ry;st(c*), the first part of Proposition 8 follows.

For the same optimal codebook c¢*, we denote for short by p(t) the quantity

)= ({ol 0= (e 255 28 <l nvi).

and by p; = p;(c*). According to Proposition 2, we have

B c+c o —ck
(o= 5.5 1)
2 2 ri,j (e™)

_ /;M tp(t). (11)

Assume that rg > B. Then
B) <
PB) < e
< Pmin )
- 32

On the other hand, (11) also yields that

Dim > / tdp(t)
2 B

> B(p; — p(B))
31

> iBiv

> piBog

hence the contradiction.

6.8. Proof of Proposition 9

The proof of Proposition 9 is based on the following Lemma, that connects the
clusterability assumption introduced in Definition 3 to another clusterability
definition introduced in [18].

Lemma 5. [33, Lemma 10] Assume that there exist d,s’s, v # s, such that, for
any r # s and x € V5(&,),

P, ({z|  |zrs — &l < [Jors — &)l + drs}) < Prin,
where x,.¢ denotes the projection of x onto the line joining ¢, and ¢s. Then, for

all v # s,
l[ér — &l = drs.
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Proof. Proof of Proposition 9 Now let x € {z| ||zps — é|| < ||@rs — és|| + drs N
Vs(€n), for d,.s < 2M. Then

[ = ¢l < llo = &l + dus

lz = &l < flz = é|l.

Taking squares of both inequalities leads to
<és — G — CT;CS> >0

2 <c ey — CT;CS> <2, + 2|z — & || < 8Md,g.

We deduce from above that d(z, 0Vs(¢,)) < %drs, hence z € B(N(¢,), %drs).

Set
oMy eyl 1
drs == \/m 2 f Rdlst(cn) (\/n—r + \/E) )

A 16M? - . A
and assume that p (ﬁ) < Pmin. Then Lemma 5 entails that for all ¢,
minimizing Ry;s and 7 # s, ||é. — és|| > drs. Hence X1,..., X, is f-clusterable.

O

6.9. Proof of Theorem 3

Proof. Assume that P satisfies a margin condition with radius r¢. For short we
denote Rg;st(c)—Raist(c*) by £(c, c*). As in the proof of Theorem 1, according to
(8), (9), choosing x = plog(n), for n large enough, it holds, for every minimizer
én of Rdista

M?plog(n)

Uen,e’) = P52 e, — " (),

ey, c*) < C

12kM2

2
with probability larger than 1 —n™? —e 32M7 <(57 v )> . On this probability
event we may thus write

plog(n)

Since N(¢,) C B(N(c*(€,), V2||&n — c*(€,)]), we get

[€n —c™(en)| <CM (12)

< Bppint CB\/plog(n)

~ 128M?2 Myn 7

Pt <p <t +vacm VP log(”)> (13)
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when n is large enough so that r, < r9 and for t < rg — r,, with r, =

V/pl . . Ao . .
CM %g\(rz). It remains to connect p,,;, and B with their deterministic coun-

terparts. First, it is straightforward that

. B
B>B—V2r, >

= (14

for n large enough. The bound for p,,;, is slightly more involved. Let ¢ and ¢,
such that ppin = Py (Vi(€,)). Then we may write

ﬁmin = Pn (‘/z(én))
= P (Vi(c™(€n))) — P (Vi(c™(€n)) N Vi(€n)°) + Pu (Vi(c"(€n)) N Vi(€n)) .

According to [21, Lemma 4.2], V;(c*(&,))AVi(&,) C B (N(c*(én), @rn)),

where A denotes the symmetric difference. Hoeffding’s inequality gives

(P.—P) |J N(e, 4*/§Mrn) <
c*eM

2plog(n)
n b

with probability larger than 1 —n~P. Hence

4\/§Mrn> n 2plog(n)

P (Vi(e™(€n))AVi(Cn)) < p (

n
<C plog(n),
< 7\/5
for n large enough so that MTngn < ro. Concerning P, (V;(c*(¢,))), using

Hoeffding’s inequality again we may write

P, (M(C*(én))) > Dmin — SUE) |(Pn _P)Vz(c*)l

with probability larger than 1 — n™P. We deduce that

plog(n) _ Pmin

NG 2

Y

for n large enough. Thus, (13) gives

t) < t .
PO = ot O
B \/plog(n) < Pmin

For n large enough so that C'—%; o < B
X1,...,Xn 18 \/Pminn-clusterable.

Proposition 9 ensures that
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According to Theorem 2, on this probability event, at most - points are
misclassified by €x ar,n, compared to €,. Thus, denoting by n,; = nP V;(€y) and
n; =n(P,V; (CKM,")) we may write

k

> njlies — éxanll < ZNW%"MWN+W il x|

k

=2

n

20M
D Xi(ly, e (Xi) — ]1Vj(éKM.,n)(Xi))H + ;

i=1 pnnn

since €k a ., and €, satisfy the centroid condition (Proposition 2). Thus,

3OM
Z}wq—me<
_7 1 min
At last, since for all j =1,... k, 7’ > Pmin > P, we deduce that
. R 60M
||C7L_CKM,7L|| S 2 .
pmin

6.10. Proof of Corollary 4

Proof. We recall that under the assumptions of Proposition 3, ¢* is unique and
P satisfies a margin condition with radius B /8. As in the proof of Theorem 3,
we assume that

1log(n)

Pmin \/ﬁ '

_n__ _12kM?
This occurs with probability larger than 1 — n=! — ¢~ 32u7 ((6 o )) . It can
be deduced from [7, Corollary 2.1] that, with probability larger than 1 — 2e~%,

e, ' < C

. 6kM?2 + 8M?32\/2x
sup  |Rgist(c) — Raist(c)| < .
ceB(0,M)* NG

Therefore, for n large enough, it holds

~ N Rd' c*

Rdist(cn) Z %7

with probability larger than 1—1/n. On this probability event, a large enough n
entails that every initialization of the Lloyd’s algorithm is a good initialization.

According to Theorem 1 and 3, we may write

M/1
WKMn_aH§0444%&Q
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Since, according to [21, Lemma 4.2], V;(c*)AVi(€xa.n) C B (N(c*, WIM |6 pens  — c*||),

the margin condition entails that

Using Markov’s inequality yields the same result in expectation. It remains to
note that in the case k = 2, &; = 02I; and p; = ps = %, though c* may differ
from m, we have C(c*) = C(m). O
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