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1. Introduction

For the discrete-time models without friction, it is well known that the (self-
financing) portfolio processes are modelled by their liquidation values. An
arbitrage opportunity is the terminal value VT at time T of a portfolio pro-
cess starting from a zero initial capital, and such that P (VT ≥ 0) = 1 and
VT 6= 0. The Dalang–Morton–Willinger (DMW) theorem [4] formulates an
equivalent characterisation of absence of arbitrage opportunity NAw. Pre-
cisely, it states that the NAw condition is equivalent to the existence of a
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martingale probability measure, i.e. an equivalent probability measure under
which the price process is a martingale. Moreover, under the NAw condition,
it is shown that the set of all terminal portfolio processes starting from the
zero initial capital is closed in probability.

The models with friction were first considered in the pioneering paper [9]
and, later, were extensively studied, e.g. in the papers [11], [7], [14], [6], [13].
With proportional transaction costs, it is classical to express the portfolio
processes as stochastic vectors of Rd, d ≥ 1, whose components are the
quantities of different assets held by a portfolio manager. Indeed, in presence
of transaction costs, the exchanges are allowed between the assets at different
transaction rates so that it is not possible to describe directly the dynamics of
portfolio liquidation values. Fortunately, the self-financing property is simple
when the discrete-time portfolio processes V = (Vt)t=0,··· ,T are expressed in
physical units (see [12, Chapter 3]): it is given by Vt − Vt−1 ∈ −Gt where
Gt ⊆ Rd is the random set of all solvent positions whose liquidation values
are non negative at time t. It is usual to define the initial value of V as a vector
V0− ∈ Rd of initial investments in each asset such that V0−V0− ∈ −G0. This
means that it is possible to immediately rebalance at time 0 the initial capital
V0− into the new position V0. An arbitrage opportunity is defined as a (self-
financing) portfolio process (Vt)t=0,··· ,T with V0− = 0 such that the liquidation
value LT (VT ) at time T is non negative and P(LT (VT ) > 0) > 0. This is
clearly the definition which is also adopted for frictionless models. Absence
of such arbitrage opportunity is then denoted by NAw, i.e. one can not get a
positive terminal liquidation value when starting from the zero initial capital.
We may show that NAw holds if and only if there is no vector-valued portfolio
processes V starting from V0− = 0 and ending up with a terminal value
in the first orthant Rd

+, see [12, Section 3.2.1]. The Grigoriev theorem [5]
characterizes the condition NAw in the case of the two dimensional conic
model which may be seen as a financial market model with one Bond and one
risky asset defined by its Bid and Ask prices. This is a generalization of the
famous result of [9], which is formulated under the No Free Lunch condition
and appears to be equivalent to NAw by Grigoriev’s theorem. The Grigoriev
theorem states that NAw holds if and only if there exists a Consistent Price
System (CPS), i.e. a martingale Z ∈ R2 such that Zt ∈ G∗t \ {0} a.s. for all
t = 0, 1, · · · , T where G∗t := {z ∈ R2 : zx ≥ 0, ∀x ∈ Gt} is the positive
dual of Gt. When the solvency sets Gt are half-planes, the bid and ask prices
coincide with the middle price S meaning that there is no transaction cost.
In that case, G∗t is the half-line of R2

+ supported by the vector (1, St) and a
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CPS is of the form Z = (ρ, ρS) such that, by setting dQ/dP := ρT , we obtain
a risk neutral probability measure Q for S, i.e. the Grigoriev’s theorem and
the DMW theorem coincide.

Nevertheless, the set of all vector-valued terminal portfolio processes is
not generally closed under NAw, see [12, Example 1, Section 3.2.4 ] so that
the Grigoriev theorem is not exactly the analog of the DMW theorem which
also claims the closedness property under NAw for frictionless models. Actu-
ally, with proportional transaction costs, closedness is only obtained in the
literature under a strong absence of arbitrage opportunity, i.e. the robust
no-arbitrage property NAr, see [12, Lemma 3.2.8], meaning that the NAw

condition still holds with strictly smaller transaction costs. This is an essen-
tial property as it allows to deduce a dual characterization of super-hedging
prices (see [1] and [3]) for models with strictly positive transaction costs.

The reason why closedness does not hold under NAw for conic models
is actually due to the fact that terminal claims are expressed in physical
units contrarily to the DMW theorem where it is natural to work with the
liquidation values. This is indeed confirmed by our present contribution as we
propose to prove that the set of all terminal liquidation values is closed under
NAw for the bid and ask model including transaction costs. Therefore, we
have generalised the DMW theorem and NAw appears to be equivalent to the
existence of a risk-neutral probability measure under which the expectation
of all terminal liquidation values is non positive when starting from the zero
initial endowment. We also deduce a dual characterization of the prices super
hedging a contingent claim when they are only expressed in the first asset
(the bond).

2. Model and basic properties

Notations.
If x, y ∈ R2, we denote by xy the Euclidean scalar product between x and y.
We define e1 := (1, 0) ∈ R2.
For a subset G of R2, ∂G is the boundary of G and int G is its interior.
R2

+ is the set of all vectors in R2 having only non negative components.
E designates the expectation of a random variable. When necessary, we de-
note it EQ when it is considered under Q ∼ P.
For a set-valued random mapping E, L0(E,F) is the metric space of all
E-valued random variables which are F -measurable.
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Lp(E,F ,P), p ∈ [1,∞) (resp. p = ∞), is the normed space of all E-valued
random variables which are F -measurable and admitting a moment of order
p under the probability P (resp. bounded).
For any subset X of L0(R,F) containing −L0

+ and p ∈ [1,∞) ∪ {0}, we

denote by X p
, the closure of X p := X ∩ Lp(R,F ,P) with respect to the

Lp-topology (the topology of convergence in probability if p = 0). If Q ∼ P ,
we denote by X p

(Q) the closure under Q.

The Bid-Ask model. Let (Ω, IF := (Ft)t=0,··· ,T ,P) be a discrete-time
complete stochastic basis. The financial market model we consider is defined
by one Bond S0 = 1 and one risky asset characterised by Bid and Ask price
processes Sb and Sa adapted to the filtration IF.

Equivalently, the model may be defined by a sequence of IF-adapted closed
and conic sets (Gt)t=0,··· ,T of Rd which are measurable in the sense that:

Graph Gt := {(ω, x) ∈ Ω×Rd : x ∈ Gt(ω)} ∈ Ft ⊗ B(Rd), t = 0, · · · , T.

In finance, Gt, t = 0, · · · , T , is interpreted as the set of all financial posi-
tions it is possible to liquidate without any debt. Precisely, let us define the
liquidation value process as

Lt(x) := x1 + (x2)+Sbt − (x2)−Sat , x = (x1, x2) ∈ R2,

where x is the vector of physical units of assets S0 and S respectively held
in the portfolio at time t. We recall the notations x+ = max(x, 0) and x− =
−min(x, 0). We may show that Lt(x) = sup{α ∈ R : x − αe1 ∈ Gt}, i.e.
Lt(x) is the maximal amount of cash the portfolio manager may obtain when
liquidating the financial position x. We have Gt = {x ∈ R2 : Lt(x) ≥ 0}.
This is a particular case of the Kabanov model with proportional transaction
costs, see [12, Chapter 3]. At any time t = 0, · · · , T , we easily observe that
the following properties hold:

Lemma 2.1.

1. The mapping x 7→ Lt(x) is concave hence continuous.
2. Lt(x

0, z) = x0 + Lt((0, z)) for all x0, z ∈ R.
3. x− Lt(x)e1 ∈ ∂Gt for all x ∈ R2.

Note that the boundary ∂Gt = {x ∈ R2 : Lt(x) = 0} is composed
of two half lines respectively supported by the random vectors (Sat ,−1). and
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(−Sbt , 1). The positive dual of Gt is G∗t := {z ∈ R2 : zx ≥ 0 : for allx ∈ Gt}.
The latter is a random cone of R2

+ whose boundary is the union of the
two half lines in R2

+ supported by the vectors (1, Sbt ) and (1, Sat ). We have
G∗t \ {0} ⊆ intR2

+.

Definition 2.2. A self-financing portfolio process (Vt)t=0,··· ,T starting from
the initial endowment V0− is an IF-adapted process such that

∆Vt := Vt − Vt−1 ∈ −Gt, ∀t = 0, · · · , T a.s. (2.1)

The interpretation is simple; when changing the position Vt−1 = Vt +
(−∆Vt) into a new one Vt at time t, we liquidate without any debt the
residual part, i.e. −∆Vt ∈ Gt. In the Kabanov model, we also interpret (2.1)
as the paiement of proportional transaction costs to change Vt−1 into Vt. We
introduce the set of all terminal values at time t ≤ T of portfolio processes
starting from the zero initial endowment at time u ≤ t i.e.

Atu :=
t∑

s=u

L0(−Gs,Fs).

Associated to this set above, the set of terminal liquidation values is:

Ltu := {Lt(V ) : V ∈ Atu}.

Remark 2.3. Notice that for any γ ∈ LT0 , γe1 =
∑T

t=0(−gt) ∈ AT0 for some

gt ∈ L0(Gt,Ft). Indeed, γ = LT (VT ) where VT =
∑T

t=0 ∆Vt with ∆Vt ∈
−L0(Gt,Ft) for all t and V0− = 0. Moreover, γe1 − VT = LT (VT )e1 − VT ∈
−GT . Thus, γe1 = VT − ĝT where ĝT ∈ L0(GT ,FT ) and finally γe1 ∈ AT0 .
Futhermore, we may assume that gt ∈ L0(∂Gt,Ft) for all 0 ≤ t ≤ T − 1.
Indeed, let us write γe1 = −(g0 − L0(g0)e1) − (g1 + L0(g0)e1) +

∑T
t=2(−gt)

where g0 − L0(g0)e1 ∈ ∂G0. As L0(g0) ≥ 0, i.e., L0(g0)e1 ∈ R+e1, then
g1 + L0(g0)e1 ∈ G1. So replace g0 and g1 respectively by g0 − L0(g0)e1 and
g1 + L0(g0)e1 and repeat the procedure for t ≥ 1 to obtain that gt ∈ ∂Gt for
all 0 ≤ t ≤ T − 1.

In the following, we present some model examples we may find in the
literature.

Example 1: This first example is a generalization of the model proposed in
[7]. Let us consider a positive stochastic process (St)t=0,··· ,T we interpret as



/ 6

the mid-prices and a process (εt)t=0,··· ,T with values in [0, 1) we interpret as
proportional transaction cost rates. The Bid and Ask prices are defined by

Sbt := St(1− εt), Sat := St(1 + εt).

Example 2: We consider a generalization of the Cox-Ross-Rubinstein model
with bid-ask spreads proposed in [10, Section 4]. The Bid and Ask prices are
given by

Sbt = (1 + ζbt )S
a
t−1, Sat = (1 + ζat )Sbt−1,

where the vector-valued process ζ = (ζb, ζa) is such that Sbt ≤ Sat a.s. for all
t ≤ T .

Example 3: Following [7], we suppose that the Bid and Ask prices are given
by

Sbt = St − εt, Sat = St + εt, t ≤ T,

where S and ε are two positive processes such Sb > 0.

Actually, consider any two dimensional conic model defined by a family
(Gt)t=0,··· ,T of random closed convex cones in R2 adapted to the filtration
(Ft)t=0,··· ,T . If Gt contains R2

+ and is smaller than a half-plane, it is such
that G∗t = cone ({1} × [Sbt , S

a
t ]) 1 for some Ft-measurable random variables

Sbt , S
a
t such that 0 ≤ Sbt ≤ Sat , i.e. such a model is a Bid-Ask model.

3. The DMW theorem for discrete-time Bid-Ask models

Definition 3.1. We say that the financial market model defined by G satis-
fies the weak no-arbitrage property (NAw) if LT0 ∩ L0(R+,FT ) = {0}.
Lemma 3.2. (NAw) holds if and only if AT0 ∩ L0(GT ,FT ) ⊆ L0(∂GT ,FT ).

Proof. Suppose that (NAw) holds and consider VT ∈ AT0 ∩ L0(GT ,FT ).
Then, L(VT ) ∈ LT0 ∩ L0(R+,FT ) hence L(VT ) = 0, i.e. VT ∈ ∂GT a.s. Re-
ciprocally, suppose that AT0 ∩ L0(GT ,FT ) ⊆ L0(∂GT ,FT ). Any γT ∈ LT0
is such that γT e1 ∈ AT0 since γT = L(VT ) for some VT ∈ AT0 such that
VT − L(VT )e1 ∈ GT . 2

The assumption of the following lemma is clearly satisfied by the Bid-Ask
model.

1The notation cone (A) designates the smallest cone containing A.
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Lemma 3.3. If GT strictly dominates Rd
+, i.e., Rd

+ \ {0} ⊂ int GT , then we
have

LT0 ∩ L0(R+,FT ) = {0} ⇐⇒ AT0 ∩ L0(Rd
+,FT ) = {0}.

Proof. (⇐) This part is trivial since LT0 e1 = AT0 ∩ L0(Re1,FT ) ⊆ AT0 .
(⇒) Let VT ∈ AT0 ∩ L0(Rd

+,FT ). Since Rd
+ ⊆ GT , then LT (VT ) ≥ 0.

So the condition LT0 ∩ L0(R+,FT ) = {0} implies LT (VT ) = 0, hence VT ∈
∂GT ∩Rd

+ = {0}. 2
The equivalent condition to (NAw), as expressed in the lemma above, is

studied by Grigoriev [5] and [12, Theorem 3.2.15]. The Grigoriev theorem
states that Condition (NAw) holds if and only if there exists Consistent Price
Systems (CPS) evolving in the positive duals of the solvency sets, precisely
martingales (Zt)t=0,··· ,T satisfying Zt ∈ G∗t \ {0} for all t = 0, · · · , T . Let us
recall precisely the Grigoriev theorem as we shall use it in the sequel:

Theorem 3.4 (Grigoriev theorem). For the two-dimensional conic model,
the following conditions are equivalent:

(A) (NAw): AT0 ∩ L0(Rd
+,FT ) = {0};

(B) AT0 ∩ L0(Rd
+,FT ) = {0} 2;

(C) For any P̃ ∼ P, there exists a bounced CPS under P̃ .

This result is a weaker form of the Dalang-Morton-Willinger theorem, see
[4]. Without friction, the set of all terminal claims obtained from the zero
initial endowment appears to be closed:

Theorem 3.5 (DMW theorem). Let AT0 be the set of all real-valued terminal
(liquidation) portfolio values starting from zero. The following conditions are
equivalent:

(A) (NAw): AT0 ∩ L0(R+,FT ) = {0};
(B) AT0 is closed in L0 and AT0 ∩ L0(R+,FT ) = {0};
(C) There is a bounded and strictly positive P−martingale ρ such that ρS
is a P−martingale 3.

With proportional transaction costs, AT0 is not necessarily closed if the
terminal claims are expressed in physical units, see [12, Example 1, Section
3.2.4]. The Grigoriev theorem just claims that (NAw) is equivalent to the No
Free Lunch condition (B). In this paper, we show a Dalang-Morton-Willinger

2The closure is taken in L0.
3This means that the probability measure Q defined by dQ/dP = ρT is a martingale

probability measure. This still holds under any P̃ ∼ P.
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version of the Grigoriev theorem, precisely we show that under Condition
(NAw), the set of all terminal liquidation values we get from the portfolio
processes starting from zero is closed. The proof is given in the next section.
The contribution of this paper is to show the implication (1)⇒ (2).

Theorem 3.6. The following conditions are equivalent:

1 (NAw)
2 LT0 is closed in probability and LT0 ∩ L0(R+,FT ) = {0}.
3 There exists Q ∼ P with dQ/dP ∈ L∞ such that EQLT (V ) ≤ 0 for all

LT (V ) ∈ LT0 ∩ L1(P).
4 There exists Q ∼ P with dQ/dP ∈ L∞ such that for all t ≤ T − 1,
EQ(Sat+1|Ft) ≤ Sbt and EQ(Sbt+1|Ft) ≤ Sat .

5 There exists Q ∼ P with dQ/dP ∈ L∞ and a Q-martingale S̃ such that
S̃ ∈ [Sb, Sa].

In the following, we denote by M∞(P ) the set of all Q ∼ P such that
dQ/dP ∈ L∞ and EQLT (V ) ≤ 0 for all LT (V ) ∈ LT0 . For any contingent
claim ξ ∈ L1(R,FT ,P), we define Γξ as the set of all initial endowments we
need to start a portfolio process whose terminal liquidation value coincides
with ξ, i.e.

Γξ := {x ∈ R : ∃V ∈ AT0 : LT (xe1 + VT ) = ξ}.

Corollary 3.7. Let us consider a payoff ξ ∈ L0(R,FT ) satisfying EP|ξ| <∞.
Then, under Condition (NAw), Γξ = [supQ∈M∞(P ) EQξ,∞).

Notice that it is possible, if necessary, to change the probability measure P
into an equivalent one so that ξ becomes integrable and the result above be
applied.

4. Proofs of the main results

4.1. Proof of Theorem 3.6.

Note that the implication (2) ⇒ (3) is immediate by [12, Theorem 2.1.4].
The implications (3) ⇒ (1) and (2) ⇒ (1) are also trivial. Notice that the
implication (3)⇒ (4) is easily obtained by considering the liquidation values
at time t+ 1 of the positions (Sbt ,−1)1Ft and (−Sat , 1)1Ft for all Ft ∈ Ft. The
implication (4) ⇒ (5) is deduced from [2, Theorem 4.5]. At last, if (5) holds,
take ρt = E(dQ/dP ) and define Z = (ρ, ρS̃). We may verify that Z is a CPS
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hence (NAw) holds. It is also important for the remaining part of the proof
to observe that the implication (1) ⇒ (4) holds. Indeed, if (NAw) holds, we

deduce by the Grigoriev theorem that LT0 ∩ L0(R+,FT ) = {0} where LT0
designates here the closure in L1. We then deduce (3) by [12, Theorem 2.1.4]
hence (4) also holds.

It remains to show that (1) ⇒ (2). Suppose that (NAw) and let us prove
that LT0 is closed in probability. Recall that, by the Grigoriev theorem, there
exists a CPS Z, i.e. a martingale Z such that Zu ∈ G∗u \ {0} for all u ≤ T .
For the one step model there is nothing to prove since LTT = −L0(R+,FT ).
Indeed, if LT (−gT ) ≥ 0 for some gT ∈ L0(GT ,FT ), then gT ∈ (−GT )∩GT ⊆
∂GT hence LT (−gT ) = 0. Let us consider the two step model.

Assume that the sequence γnT ∈ LTT−1 converges to γ∞T . From Remark 2.3,
we may suppose that γnT e1 = −gnT−1−gnT where gnT−1 ∈ L0(∂GT−1,FT−1) and
gnT ∈ L0(GT ,FT ).

On the set ΛT−1 := {lim inf |gnT−1| = ∞} ∈ FT−1, we normalize the se-

quences by setting γ̃nT :=
γnT
|gnT−1|

, g̃nT−1 :=
gnT−1

|gnT−1|
and g̃nT :=

gnT
|gnT−1|

. Then,

γ̃nT e1 = −g̃nT−1 − g̃nT .

As |g̃nT−1| = 1, by passing to some FT−1-measurable random sequence we
may assume that g̃nT−1 converges to g̃∞T−1 ∈ GT−1, see [12, Lemma 2.1.2]. As
γ̃nT e1 converges to zero, we deduce that g̃nT converges to g̃∞T ∈ GT . Finally,
we get the following equality:

g̃∞T−1 + g̃∞T = 0

where g̃∞T−1 ∈ ∂GT−1 and g̃∞T ∈ GT . Note that, we may define g̃∞T−1 =
g̃∞T = 0 on Ω \ ΛT−1 ∈ FT−1. Let us consider a CPS Z. From, ZT (g̃∞T−1 +
g̃∞T ) = 0 we deduce that ZT−1g̃

∞
T−1 + E(ZT g̃

∞
T |FT−1) = 0. As the two terms

in the right side of this equality are non negative by duality, we deduce
that ZT−1g̃

∞
T−1 = ZT g̃

∞
T = 0. Moreover, g̃T = −g̃T−1 is FT−1 implies that

0 = E(ZT g̃
∞
T |FT−1) = ZT−1g̃

∞
T . Then, ZT−1g̃

∞
T = ZT g̃

∞
T implies that ZT−1

and ZT belongs to the same half-line of R2
+. In particular, since ZT ∈ G∗T , we

also have ZT−1 ∈ G∗T . We deduce that ZT−1γ
n
T e1 = −ZT−1g

n
T−1 − ZTgnT ≤ 0

as gnT−1 ∈ GT−1 and gnT ∈ GT . Since ZT−1e1 > 0, we deduce that γnT ≤ 0.
Therefore, we may replace gnT−1 by ḡnT−1 = 0 ∈ GT−1 and gnT by ḡnT =
−γnT e1 ∈ GT so that we still have γnT = −ḡnT−1− ḡnT . Finally, we may write on
Ω, γnT = −ĝnT−1− ĝnT , where ĝnT−1 = gnT−11Ω\ΛT−1

∈ L0(GT−1,FT−1) and ĝnT =
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gnT1Ω\ΛT−1
+ ḡnT1ΛT−1

L0(GT ,FT ). By construction, lim infn |ĝnT−1| <∞ hence
we may suppose that ĝnT−1 → ĝ∞T−1 ∈ L0(GT−1,FT−1) by [12, Lemma 2.1.2].
We deduce that ĝnT → ĝ∞T ∈ L0(GT ,FT ) hence γ∞T = −ĝ∞T−1 − ĝ∞T ∈ LTT−1.

Let us consider the three step model just for pedagogical purpose. Suppose
that the sequence γnT ∈ LTT−2 converges to γ∞T . By Remark 2.3, we may
suppose that γnT e1 = −gnT−2− gnT−1− gnT where gnt ∈ ∂Gt for t = T − 2, T − 1
and gnT ∈ GT .

Let us first consider the subset ΓT−2 := {lim inf |gnT−2| < ∞} ∈ FT−2.
By [12, Lemma 2.1.2], we may assume that gnT−2 is convergent to g∞T−2 ∈
L0(GT−2,FT−2). Next we consider the following two sub-cases:

(a) On the set where lim inf |gnT−1| < ∞, we may suppose that the se-
quences gnT−1 and gnT are both pointwise convergent by [12, Theorem 5.2.3].

(b) On the set ΛT−1 := {lim infn |gnT−1| = ∞} ∈ FT−1, we normalize the
sequences by dividing the term |gnT−1| and we get

γ̃nT e1 = −g̃nT−2 − g̃nT−1 − g̃nT

where γ̃nT :=
γnT
|gnT−1|

, g̃nt :=
gnt
|gnT−1|

for all t = T−2, T−1, T . As |g̃nT−1| = 1, up to

some FT−1-measurable random sequence, we may assume that g̃nT−1 converges
to g̃∞T−1 ∈ ∂GT−1. As γ̃nT and g̃nT−2 both converge to zero, necessarily g̃nT is
convergent to some limit g̃∞T ∈ GT and

g̃∞T−1 + g̃∞T = 0.

Since we only consider FT−1-measurable sets, we may claim that LT (g̃∞T ) =
LT (−g̃∞T−1) ∈ LTT−2 ∩ L0(R+,FT ) = {0} hence g̃∞T ∈ ∂GT by NAw.

Assume g̃
∞(1)
T−1 > 0 and g̃

∞(2)
T−1 < 0, the second case where g̃

∞(1)
T−1 < 0

and g̃
∞(2)
T−1 > 0 being similar. The equality g̃∞T−1 + g̃∞T = 0 implies that

g̃
∞(1)
T < 0 and g̃

∞(2)
T > 0. As g̃∞T = −g̃∞T−1 ∈ −∂GT , we also deduce that

SaT−1 = SbT = E(SbT |FT−1) where the later equality is obtained by condition-

ing the first equality on ΛT−1. On the set ΩT−1 := {g̃∞(1)
T−1 > 0} ∈ FT−1, we

have SaT−1 = SbT = E(SbT |FT−1). Using Condition (4) of the lemma (which
holds under (NAw) as noticed in the beginning of the proof), we deduce
from SbT1ΩT−1

≤ SaT1ΩT−1
that EQ(SbT |FT−1)1ΩT−1

≤ EQ(SaT |FT−1)1ΩT−1
≤

SbT−11ΩT−1
by (4). Since SaT−1 = E(SbT |FT−1) on ΩT−1, we deduce that

SaT−11ΩT−1
≤ SbT−11ΩT−1

. We deduce that SaT−11ΩT−1
= SbT−11ΩT−1

. It follows
that EQ(SaT |FT−1)1ΩT−1

≤ EQ(SbT |FT−1)1ΩT−1
hence EQ(SaT |FT−1)1ΩT−1

=
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EQ(SbT |FT−1)1ΩT−1
. Since SbT ≤ SaT , we finally deduce that SaT1ΩT = SbT1ΩT−1

.
This implies that GT−1 = GT . We get the same result on the complementary
set of ΩT−1. Therefore, it is possible to replace gnT−1 by 0 and gnT by the sum
gnT−1 + gnT which satisfies lim infn |gnT−1 + gnT | <∞ a.s. on ΛT−2.

On the set ΓT−2, we finally obtain that γnT e1 = −gnT−2 − ĝnT−1 − ĝnT , where

ĝnT−1 := gnT−11Ω\ΛT−1
∈ L0(GT−1,FT−1),

ĝnT := gnT1Ω\ΛT−1
+ (gnT−1 + gnT )1ΛT−1

∈ L0(GT ,FT ).

By construction, notice that lim infn |ĝnT−1| <∞ on ΓT−2. By [12, Lemma
2.1.2], we may assume that ĝnT−1 is convergent to ĝ∞T−1 ∈ L0(GT−1,FT−1) at
least for some FT−1-measurable subsequence nk(ω), ω ∈ Ω. As we already
know that gnT−2 → g∞T−2 ∈ L0(GT−2,FT−2), we still have gnkT−2 → g∞T−2 ∈
L0(GT−2,FT−2) even if gnkT−2 is no more FT−2-measurable. We deduce that
gnkT → g∞T ∈ L0(GT ,FT ) and, finally, γ∞T 1ΓT−2

= −g∞T−2− ĝ∞T−1− ĝ∞T ∈ LTT−2.

On the set ΛT−2 := {lim inf |gnT−2| =∞}, we use the normalization proce-
dure to get

γ̄nT e1 = −ḡnT−2 − ḡnT−1 − ḡnT ,

where γ̄nT :=
γnT
|gnT−2|

, ḡnt :=
gnt
|gnT−2|

for t ≥ T − 2. As lim inf |ḡnT−2| = 1, we may

argue as we did on the complementary set ΓT−2 and assume that ḡnt → ḡ∞t ∈
L0(Gt,Ft) for t ≥ T − 2 such that

ḡ∞T−2 + ḡ∞T−1 + ḡ∞T = 0

with ḡ∞t ∈ ∂Gt if t = T−2, T−1 and |ḡ∞T−2| = 1. Since LT (ḡ∞T ) = LT (−ḡ∞T−2−
ḡ∞T−1) ∈ LTT−2 ∩ L0(R+,FT ) = {0}, we also get that ḡ∞T ∈ ∂GT .

For any CPS Z, taking the conditional expectation knowing FT−2 in the
equality ZT (ḡ∞T−2 + ḡ∞T−1 + ḡ∞T ) = 0, we deduce that

ZT−2ḡ
∞
T−2 + E(ZT−1ḡ

∞
T−1|FT−2) + E(ZT ḡ

∞
T |FT−2) = 0.

All the terms of the l.h.s. being non negative, we finally obtain that Ztḡ
∞
t = 0

for all t ≥ T − 2. As ḡ∞T = −ḡ∞T−2 − ḡ∞T−1 is FT−1-measurable, taking the
conditional expectation knowing FT−1 in the equality ZT ḡ

∞
T = 0, we deduce

that ZT−1ḡ
∞
T = 0. But ZT−1(ḡ∞T−2 + ḡ∞T−1 + ḡ∞T ) = 0 hence ZT−1ḡ

∞
T−2 = 0.

Since |ḡ∞T−2| = 1, the two equalities ZT−2ḡ
∞
T−2 = ZT−1ḡ

∞
T−2 = 0 implies that

ZT−1 and ZT−2 belong to a same half line of G∗T−1 ∩G∗T−2.
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Assume ḡ
∞(1)
T−2 > 0 and ḡ

∞(2)
T−2 < 0, the other case where ḡ

∞(1)
T−2 < 0 and

ḡ
∞(2)
T−2 > 0 is similar. Up to some FT−2-measurable random sequence (ñk)k we

may assume that g
n(1)
T−2 > 0 and g

n(2)
T−2 < 0. We then consider the following two

sub cases:
(c) When ḡ∞T 6= 0. In the case where ḡ∞T−1 6= 0, the two equalities ZT−1ḡ

∞
T−1 =

ZT−1ḡ
∞
T = 0 implies that ḡ∞T−1 and ḡ∞T are collinear. As ZT (ḡ∞T−2 + ḡ∞T−1 +

ḡ∞T ) = 0, we have ZT (ḡ∞T−2 + ḡ∞T−1) = 0 where ZT ḡ
∞
T−1 = ZT ḡ

∞
T = 0 since

ḡ∞T−1 ∈ R+ḡ
∞
T . It follows that ZT ḡ

∞
T−2 = 0. In the case where ḡ∞T−1 = 0, the

equality ZT (ḡ∞T−2 + ḡ∞T−1) = 0 implies that ZT ḡ
∞
T−2 = 0. Finally, ZT−2ḡ

∞
T−2 =

ZT−1ḡ
∞
T−2 = ZT ḡ

∞
T−2 = 0 implies that ZT−2, ZT−1 and ZT are both collinear

with some positive coefficients of collinearity when both ḡ∞T−2 and ḡ∞T are
different from zero. This implies that ZT ∈ G∗t for all t ≥ T −2. Since γnT e1 =
−gnT−2 − gnT−1 − gnT , we deduce that ZTγ

n
T e1 = −(ZTg

n
T−2 + ZTg

n
T−1 + ZTg

n
T )

ZTγ
n
T e1 ≤ 0 hence γnT ≤ 0 on the set ΛT−2 ∩ {ḡ∞T 6= 0}.

(d) When ḡ∞T = 0, ḡ∞T−2 + ḡ∞T−1 = 0. Notice that it is not possible here
to claim that GT−2 = GT−1 by the same reasoning as above because the
set {ḡ∞T = 0} does not belong to FT−2. Let us define the FT−2-measurable
positive real-valued random variable as

β̄n :=
g
n(2)
T−2

ḡ
∞(2)
T−2

.

Since ḡ∞T−1 = −ḡ∞T−2, ḡ
∞(1)
T−1 < 0 and ḡ

∞(2)
T−1 > 0, we may replace gnT−1 by

gnT−11{gn(1)T−1<0; g
n(2)
T−1>0} + ḡ∞T−11

Ω\{gn(1)T−1<0; g
n(2)
T−1>0} and assume that g

n(1)
T−1 < 0 and

g
n(2)
T−1 > 0 . As ḡ∞T−2 + ḡ∞T−1 = 0, we rewrite γnT e1 as γnT e1 = −(gnT−2 −
β̄nḡ∞T−2) − (gnT−1 − β̄nḡ∞T−1) − gnT where gnT−2 − β̄nḡ∞T−2 = 0 by construction.

As ḡ∞T−2 ∈ ∂GT−2 and ḡ∞T−1 ∈ ∂GT−1, LT−2(ḡ∞T−2) = ḡ
∞(1)
T−2 + ḡ

∞(2)
T−2 S

a
T−2 = 0

and LT−1(ḡ∞T−1) = ḡ
∞(1)
T−1 + ḡ

∞(2)
T−1 S

b
T−1 = 0. So we have

ḡ
∞(1)
T−2

ḡ
∞(2)
T−2

= −SaT−2 and

ḡ
∞(1)
T−1

ḡ
∞(2)
T−1

= −SbT−1. As ḡ∞T−1 = −ḡ∞T−2, SaT−2 = SbT−1.

The second component of gnT−1 − β̄nḡ∞T−1 is (gnT−1 − β̄nḡ∞T−1)(2) = −gn(2)
T .

Thus, β̄n =
g
n(2)
T−1+g

n(2)
T

ḡ
∞(2)
T−1

, which is FT−1-measurable. Notice that gnT−1− β̄nḡ∞T−1
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is also FT−1-measurable. Its first component is

(gnT−1 − β̄nḡ∞T−1)(1) = g
n(1)
T−1 − β̄

nḡ
∞(1)
T−1

= g
n(1)
T−1 −

g
n(2)
T−1 + g

n(2)
T

ḡ
∞(2)
T−1

ḡ
∞(1)
T−1

= g
n(1)
T−1 + (g

n(2)
T−1 + g

n(2)
T )SbT−1

= g
n(1)
T−1 + g

n(2)
T−1S

b
T−1 + g

n(2)
T SbT−1

= g
n(2)
T SbT−1

since g
n(1)
T−1 + g

n(2)
T−1S

b
T−1 = LT−1(gnT−1) = 0. Then

gnT−1 − β̄nḡ∞T−1 = (g
n(2)
T SbT−1,−g

n(2)
T )

so that
γnT = −gn(2)

T SbT−1 − g
n(1)
T .

Liquidate the position gnT−1 − β̄nḡ∞T−1 at time T − 1 to get

LT−1(gnT−1 − β̄nḡ∞T−1) = g
n(2)
T SbT−1 − g

n(2)
T SaT−1I

g
n(2)
T >0

− gn(2)
T SbT−1I

g
n(2)
T ≤0

.

This implies that LT−1((gnT−1 − β̄nḡ∞T−1)I
g
n(2)
T ≤0

) = 0, i.e.,

(gnT−1 − β̄nḡT−1)I
g
n(2)
T ≤0

∈ ∂GT−1.

Similarly we deduce by liquidating it at time T − 2 that

(gnT−1 − β̄nḡT−1)I
g
n(2)
T >0

∈ ∂GT−2.

If we set hnT−1 := gnT−2 + gnT−1, then

hnT−1 = gnT−1 − β̄nḡ∞T−1 = (g
n(2)
T SbT−1,−g

n(2)
T )

belongs to the boundary of GT−2 or GT−1.

In the case where g
n(2)
T ≤ 0, it is possible to change gnT−1 into gnT−1− β̄nḡ∞T−1

which still belongs to the boundary of GT−1.

On the set {gn(2)
T > 0} ∈ FT−1, we consider two sub cases. On the set

{supn g
n(2)
T < ∞} ∈ FT−1, up to a convex combination (see [12, Theorem
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A.2.3]), we assume that g
n(2)
T is convergent. As γnT = −gn(2)

T SbT−1 − g
n(1)
T ,

g
n(1)
T is also convergent, i.e. gnT converges to gT ∈ L0(GT ,FT ). Then γ∞T e1 =

limn(−gnT−2 − gnT−1 − gnT ) = limn(−gnT−2 − gnT−1 − gT ), i.e. we may replace
gnT by gT . By the initial normalization on ΛT−2, we then get that γnT =

−g(2)
T SbT−1 − g

(1)
T instead of γnT = −gn(2)

T SbT−1 − g
n(1)
T , i.e. γnT does not depend

on n any more: we may write γnT e1 = −g1
T−2−g1

T−1−g1
T where g1

t is a constant
substitution of gnt for each t ≥ T − 2.

On the FT−1-measurable set {supn g
n(2)
T =∞}, first recall that for any CPS

Z, ZT−2 and ZT−1 are colinear vectors of R2
+ orthogonal to the line generated

by ḡ∞T−2. Through the normalizing procedure which consists in dividing by

g
n(2)
T on both sides of the equality γnT e1 = −hnT−1 − gnT , we get that

h̃T−1 + g̃T = 0

where h̃T−1 ∈ L0(Rḡ∞T−2,FT−1) and g̃T ∈ L0(GT ,FT ). Taking conditional

expectation knowing FT−1 in the equality ZT (h̃T−1 + g̃T ) = 0, we deduce
that ZT−1h̃T−1 + E(ZT g̃T |FT−1) = 0. As ZT−1h̃T−1 = 0 and ZT g̃T ≥ 0, we
then deduce that ZT g̃T = 0 hence ZT h̃T−1 = 0. The equality ZT−1h̃T−1 =
ZT h̃T−1 = 0 with h̃T−1 6= 0 implies that ZT and ZT−1 also belongs to the
same half line. Finally ZT ∈ G∗t for all t ≥ T − 2 and, by a similar argument
as above, we deduce that γnT ≤ 0.

Gathering with the case (c) where ḡ∞T 6= 0, we can conclude that on the
FT−2-measurable set ΛT−2, we have γnT e1 = −g1

T−2 − ĝnT−1 − ĝnT where

ĝnt :=
4∑
i=1

ĝnit ∈ L0(Gt,Ft), t ≥ T − 1,

with

ĝn1
T−1 := (‖g1

T−2‖ḡ∞T−1)Iḡ∞T 6=0,

ĝn2
T−1 := (−g1

T−2 + gnT−1 − β̄nḡ∞T−1)Iḡ∞T =0I
g
n(2)
T ≤0

,

ĝn2
T−1 := g1

T−1Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T <∞,

ĝn2
T−1 := (−g1

T−2)Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T =∞
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and

ĝn1
T := (‖g1

T−2‖ḡ∞T − γnT e1)Iḡ∞T 6=0,

ĝn2
T := gnT Iḡ∞T =0I

g
n(2)
T ≤0

,

ĝn3
T := g1

T Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T <∞,

ĝn4
T := (−γnT e1)Iḡ∞T =0I

g
n(2)
T >0

I
supng

n(2)
T =∞.

We can easily see that ĝniT−1 ∈ ∂GT−1 when i = 2, 3, 4 and ĝniT ∈ GT for
all i = 1, 2, 3, 4. The expressions of ĝn1

t , t = T − 1, T are obtained from the
following equality: gnT−2 = ‖gnT−2‖ḡnT−2 = ‖gnT−2‖ḡ∞T−2 = −‖gnT−2‖(ḡ∞T−1 + ḡ∞T )
with n = 1 and γ1

T e1 = −g1
T−2 − (−g1

T−2)− (−γ1
T e1).

Since the sequence (gnT−2)n≥1 is replaced by the constant g1
T−2, we may

follow the reasoning we did on the complementary ΓT−2 so that we finally
obtain γ∞T e1 = −g∞T−2− g∞T−1− g∞T where g∞t ∈ Gt for all t = T − 2, T − 1, T
and γ∞T = LT (γ∞T e1) ∈ LTT−2.

We now consider the general case. Let us suppose by induction that the
statement above holds for the model with dates between t + 1 and T with
t+1 ≥ T−2 and let us prove it from t to T . To do so, consider a sequence δnT =
−gnt − gnt+1− · · · − gnT , where we may suppose w.l.o.g. that gnu ∈ L0(∂Gu,Fu)
for all u = t, · · · , T−1 and gnT ∈ L0(GT ,FT ), converges to δT ∈ L0(Re1,FT ).
We claim that δnT = −ĝnt − ĝnt+1 − · · · − ĝnT + εnT , where ĝnu ∈ L0(Gu,Fu) for
all u = t, · · · , T − 1 and ĝnT ∈ L0(GT ,FT ) are such that lim infn |gnu | < ∞
a.s. for all u = t, · · · , T and limn ε

n
T = 0 a.s. Moreover we claim that, on

the set {lim infn |gnt | = +∞}, ĝnt is either 0 or a constant element of the
sequence (gnu)n≥0 and ĝnt = gnt on the set {lim infn |gnt | < ∞}. Notice that
these properties are verified for t = T − 1 and t = T − 2 as shown above.

Let us denote by u the smallest instant such that P (lim infn |gnu | = +∞) >
0. As lim infn |gnu | < ∞ a.s. for every r = t, · · · , u − 1, we may successively
suppose that gnr is a.s. convergent to some gr ∈ L0(∂Gr,Fr) when r ≤ u− 1
by [12, Lemma 2.1.2]. It is then possible to make the substitution gni = gi for
every i ≤ u − 1, letting aside a residual error ε̃nT which tends a.s. to zero as
in the claim. We suppose that u ≤ T , otherwise there is nothing to prove.

We first work on the set Λt := {lim infn |gnt | <∞} ∈ Ft so that u ≥ t+ 1.
We split Λt into Λu := {lim infn |gnu | < ∞} ∈ Fu and its complimentary
Γu := {lim infn |gnu | = ∞}. On the latter set, dividing by |gnu |, we get the
normalisation

δ̃nT = −g̃nt − g̃nt+1 − · · · − g̃nT
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where δ̃nT =
δnT
|gnu |

and g̃nr := gnr
|gnu |

for r = t, · · · , T . As δ̃nT and g̃nr with r =
t, · · · , u − 1 all converge to 0, we may use the induction hypothesis and
suppose that lim infn |g̃nr | <∞ on Γu if r ≥ u. By [12, Lemma 2.1.2], we may
suppose that g̃nr → g̃r ∈ L0(Gr,Fr) if r ≥ u and, finally,

g̃∞u + g̃∞u+1 + · · ·+ g̃∞T = 0. (4.2)

We deduce that g̃∞T ∈ L0(∂GT ,FT ) under (NAw). Let us consider the stop-
ping time τ , being the first instant τ ≥ u+1 such that g̃∞u +g̃∞u+1+· · ·+ g̃∞τ = 0.
By Lemma 4.1 and Lemma 4.2, for all r ≥ u, there exists kr ∈ L0(R,Fr)
such that g̃r1r≤τ = krg̃u1r≤τ . Let us introduce the first instant σ ∈ {t+ 1, τ}
such that kσ < 0, which is possible by (4.2) since ku = 1. We consider the

case where g̃
∞(1)
u > 0 and g̃

∞(2)
u < 0, then g̃

∞(1)
σ < 0 and g̃

∞(2)
σ > 0. The

symmetric case may be solved similarly.

Since Lu(g̃
∞
u ) = Lσ(g̃∞σ ) = 0, g̃

∞(1)
u

g̃
∞(2)
u

= g̃
∞(1)
σ

g̃
∞(2)
σ

= −Sau = −Sbσ by Lemma 4.2.

As (g̃nt + · · ·+ g̃nu)(2) = −(g̃nu+1 + ...+g̃
n
T )(2) − δn(2)

T converges to g̃
∞(2)
u < 0, up

to some Fu-measurable random sequences we may assume that g̃
n(2)
u < 0 and

(g̃nt + ...+g̃
n
u)(2) < 0. Let

βn :=
(gnt + · · ·+ gnu)(2)

g̃
∞(2)
u

which is positive and Fu-measurable. Now we rewrite δnT as

δnT = −gt − · · · − gu−1 − (gnu − βng̃∞u )− βng̃∞u − gnu+1 − · · · − gnT .

The second component of the term gnu − βng̃∞u is

(gnu − βng̃∞u )(2) = −(gt + · · ·+ gu−1)(2).

And the first component of this term is

(gnu − βng̃∞u )(1) = gn(1)
u − βng̃∞(1)

u

= gn(1)
u − (gnt + · · ·+ gnu)(2) g̃

∞(1)
u

g̃
∞(2)
u

= gn(1)
u + (gnt + · · ·+ gnu)(2)Sau

= gn(1)
u + gn(2)

u Sau + (gnt + ...+ gnu−1)(2)Sau

= (gt + · · ·+ gu−1)(2)Sau
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Thus,

gnu − βng̃∞u = ((gt + · · ·+ gu−1)(2)Sau,−(gt + · · ·+ gu−1)(2))

which is constant, and so satisfies lim infn |gnu − βng̃∞u | < +∞.
On the set Λ1

u−1 := {(gt + · · · + gu−1)(2) ≥ 0}, it has Lu(g
n
u − βng̃∞u ) =

(gt + · · ·+ gu−1)(2)Sau − (gt + · · ·+ gu−1)(2)Sau = 0. This implies that

(gnu − βng̃∞u )1Λ1
u−1
∈ ∂Gu.

On the set Λ2
u−1 := {(gt + · · · + gu−1)(2) < 0}, it has Lσ(gnu − βng̃∞u ) =

(gt + · · ·+ gu−1)(2)Sau − (gt + · · ·+ gu−1)(2)Sbσ = 0. This implies that

(gnu − βng̃∞u )1Λ2
u−1
∈ ∂Gσ.

As σ ∈ {u+ 1, · · · , T}, then (gnu −βng̃∞u )1Λ2
u−1

=
T∑

k=u+1

1σ=k1Λ2
u−1

(gnu −βng̃∞u )

where ḡk := 1σ=k1Λ2
u−1

(gnu − βng̃∞u ) ∈ L0(∂Gk,Fk). On the other hand, the

second component of the term (−βng̃∞u − gnu+1 − ... − gnT )(2) = δ
n(2)
T → 0

so that we may use the induction argument as u ≥ t + 1 to deduce that

−βng̃∞u −gnu+1− ...−gnT = −
T∑
k=u

ǧnk + ε̃nT where every ǧnk ∈ L0(Gk,Fk) admits

a finite limit infimum and ε̃nT → 0 a.s. as n→∞. Finally, we may write

δnT1Λt1Λu = −
u−1∑
r=t

gr1Λu − (gnu − βng̃∞u )1Λu − βng̃∞u 1Λu −
T∑

r=u+1

gnr 1Λu

= −
u−1∑
r=t

gr1Λu − (gnu − βng̃∞u )1Λ1
u−1
− (gnu − βng̃∞u )1Λ2

u−1
−

T∑
k=u

ǧnk1Λu + ε̃nT

= −
u−1∑
r=t

gr1Λu − (gnu − βng̃∞u )1Λ1
u−1
−

T∑
k=u+1

ḡk1Λu −
T∑
k=u

ǧnk1Λu + ε̃nT

= −gt1Λu − · · · − gu−11Λu −
T∑
k=u

ĝnk1Λu + ε̃nT

where ĝnu = (gnu − βng̃∞u )1Λ1
u−1

+ ǧnu ∈ L0(Gu,Fu) and ĝnk = ḡk + ǧnk ∈
L0(Gk,Fk) for k ≥ u + 1. Note that, for every k, lim infn |ĝnk | < ∞ a.s.
On the complimentary set Γu of Λu, we may suppose that gnu → gu ∈
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L0(Gu,Fu) by [12, Lemma 2.1.2] and finally assume without loss of gen-
erality that δnT1Γu = −gt1Γu − gt+11Γu − · · · − gu1Γu − gnu+11Γu − · · · − gnT .
We then deduce from above that δnT1Λt = δnT1Λt1Λu + δnT1Λt1Γu is of the form
δnT1Λt = −gt1Λt − · · · − gu−1 − gnu − · · · − gnT where lim inf |gnu | <∞ a.s. This
implies that we may repeat the procedure above with some date u1 ≥ u+ 1
instead of u. As the number of dates is finite, we finally conclude on Λt.

Next we consider the case where lim infn |gnt | = +∞. Using the classical
normalization procedure, we get

δ̄nT = −ḡnt − ḡnt+1 − · · · − ḡnT

where γ̄nT :=
γnT
|gnt |

and ḡni :=
gni
|gnt |

for all i = t, · · · , T . Since |ḡnt | = 1, up to

the first case where lim infn |gnt | < +∞ we deduce an equality of the type
ḡ∞t + ḡ∞t+1 + · · · + ḡ∞T = 0. As ḡ∞t 6= 0, let us consider the stopping time
τ̄ ≥ t + 1 as the first instant such that ḡ∞t + ḡ∞t+1 + · · · + ḡ∞τ = 0. Then, for
any CPS (Zr)r=t,··· ,T , Zt, · · · , Zτ are collinear by Lemma 4.1. It follows that
Zt+1 ∈ G∗t ∩ G∗t+1 and (Zr)r=t+1,··· ,T is a CPS for the market model from

t+ 1 to T defined by the solvency sets G̃t = Gt + Gt+1 = Gt ∪Gt+1 ⊆ (Zt)
∗

and G̃u = Gu for u ≥ t + 2. This means that Condition (NAw) holds for
the model (G̃r)r=t+1,··· ,T . Since gnt + gnt+1 ∈ L0(G̃t,Ft+1), we may apply the
induction hypothesis and deduce that −δnT = ĝnt+1 + ĝnt+2 + · · · + ĝnT where
ĝnu ∈ L0(Gu,Fu) satisfies lim infn |ĝnu | <∞ a.s. for u ≥ t+2 and ĝnt+1 is either
gnt +gnt+1 when the latter is convergent or 0 or some constant element gkt +gkt+1.
In any case, we may assume that −δnT = gnt + gnt+1 + gt+2 + · · · + gT where
gnu ∈ L0(Gu,Fu), u ≤ t+ 1, gu ∈ L0(Gu,Fu), u ≥ t+ 2, and (gnt + gnt+1)n≥1 is
a convergent sequence. Only the case where lim infn |gnt | = +∞ is of interest
as it is possible to conclude otherwise. By the normalisation procedure, we
deduce the equality g̃t+ g̃t+1 = 0 where g̃t ∈ L0(Gt,Ft) is positively collinear
to gnt and |g̃t| = 1 and g̃t+1 ∈ L0(Gt+1,Ft+1). We deduce that Sat = Sbt+1

when ḡ
∞(1)
t > 0 and ḡ

∞(2)
t < 0 and Sbt = Sat+1 otherwise. It follows that Sat =

Sbt+1 = E(Sbt+1|Ft) or Sbt = Sat+1 = E(Sat+1|Ft). On the set Ωt := {ḡ∞(1)
t >

0} ∈ Ft, we have Sat = Sbt+1 = E(Sbt+1|Ft). Using Condition (4) of the
lemma (which holds under (NAw) as noticed in the beginning of the proof),
we deduce from Sbt+11Ωt ≤ Sat+11Ωt that EQ(Sbt+1|Ft)1Ωt ≤ EQ(Sat+1|Ft)1Ωt ≤
Sbt 1Ωt by (4). Since Sat = E(Sbt+1|Ft) on Ωt, we deduce that Sat 1Ωt ≤ Sbt 1Ωt . We
deduce that Sat 1Ωt = Sbt 1Ωt . It follows that EQ(Sat+1|Ft)1Ωt ≤ EQ(Sbt+1|Ft)1Ωt

hence EQ(Sat+1|Ft)1Ωt = EQ(Sbt+1|Ft)1Ωt . Since Sbt+1 ≤ Sat+1, we finally deduce
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that Sat+11Ωt = Sbt+11Ωt . This implies that Gt = Gt+1. We obtain the same
result on the complementary of Ωt. This implies that gnt + gnt+1 ∈ Gt+1 on
{lim infn |gnt | = +∞} ∈ Ft hence it is possible to replace gnt by zero and
gnt+1 by gnt + gnt+1 so that we use the induction hypothesis to conclude. The
conclusion follows. 2

4.2. Proof of Theorem 3.7.

The inclusion Γξ ⊆ [supQ∈M∞(P ) EQξ,∞) is trivial. Let us now consider x ≥
supQ∈M∞(P ) EQξ,∞) and suppose by contradiction that x /∈ Γξ, i.e. ξ − x /∈
LT0 . As LT0 is closed in L1 under (NAw), we deduce by the Hahn-Banach
separation theorem the existence of η ∈ L∞ and c ∈ R such that E(ηX) <
c < E(η(ξ − x)) for all X ∈ LT0 ∩ L1(P). Since LT0 is a cone, we deduce that
E(ηX) ≤ 0 for all X ∈ LT0 ∩L1(P). Moreover, as LT0 contains−L0(R+,FT ) we
deduce that η ≥ 0 and, after normalization, we have E(η) = 1. Moreover, if we
take η′ = dQ/dP such that Q ∈M∞(P ) 6= ∅, then we may choose α ∈ (0, 1)
sufficiently close to 1 so that η̂ := αη + (1 − α)η′ satisfies E(η̂(ξ − x)) > 0
since c > 0. Moreover, E(η̂X) ≤ 0 for all X ∈ LT0 ∩L1(P) and η̂ > 0 satisfies
Eη̂ = 1. Therefore, if we define Q̂ such that dQ̂/dP = η̂, then Q̂ ∈ M∞(P )
in contradiction with E(η̂(ξ − x)) > 0, i.e. x < EQ̂ξ. 2

4.3. Auxiliary results

We denote by Tt,T the set of all stopping times τ with values in {t, · · · , T}.
By definition, if τ ∈ Tt,T , then {τ = u} ∈ Fu whatever u = t, · · · , T hence
{τ ≥ u} ∈ Fu.
Lemma 4.1. Suppose that for some stopping time τ ∈ Tt,T , we have gt +
· · ·+gτ = 0 a.s. where gu ∈  L1(Gu,Fu) are integrable selections of Gu for all
u = t, · · · , T . Moreover, assume that with probability one, gt + · · · + gr 6= 0
for all r < τ . Then, for all bounded CPS Z, Zt, · · · , Zτ are a.s. collinear.

Proof. By assumption, we have
∑T

u=t ZTgu1u≤τ = 0. Taking the condi-
tional expectation knowing Ft, we deduce that

0 =
T∑
u=t

E(ZTgu1u≤τ |Ft) =
T∑
u=t

E(Zugu1u≤τ |Ft).

By duality, Zugu ≥ 0 hence Zugu1u≤τ = 0 a.s. for all u = t, · · · , T . Notice
that {T ≤ τ} = {T = τ} = Ω \ {τ ≤ T − 1} ∈ FT−1 and gT1T≤τ = gτ1T≤τ =
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−(gt + · · · + gT−1)1τ=T ∈ L0(Rd,FT−1). Therefore, ZTgT1T≤τ = 0 implies
that ZT−1gT1T≤τ = 0 by taking the conditional expectation knowing FT−1.
It follows that ZT−1 (gT−11T−1≤τ + gT1T≤τ ) = 0. Suppose by induction that
Zu (gu1u≤τ + · · ·+ gT1T≤τ ) = 0 for some u ∈ {t + 1, · · · , T}. As gu1u≤τ +
· · · + gT1T≤τ = −(gt + · · · + gu−1)1u≤τ ∈ L0(Rd,Fu−1), we deduce from
Zu (gu1u≤τ + · · ·+ gT1T≤τ ) = 0 that Zu−1 (gu1u≤τ + · · ·+ gT1T≤τ ) = 0 by
taking the conditional expectation knowing Fu−1. As Zu−1gu−11u−1≤τ = 0
a.s., we finally get that Zu−1 (gu−11u−1≤τ + · · ·+ gT1T≤τ ) = 0.

As Zu (gu1u≤τ + · · ·+ gT1T≤τ ) = 0 and Zu−1 (gu1u≤τ + · · ·+ gT1T≤τ ) = 0
where gu1u≤τ + · · ·+gT1T≤τ = −(gt+ · · ·+gu−1)1u≤τ 6= 0 if u ≤ τ , we deduce
that Zu and Zu−1 are colinear if u ≤ τ . The conclusion follows. 2

Lemma 4.2. Let τ be the first passage time such that gt+gt+1+...+gu = 0 a.s.
where gu ∈  L1(Gu,Fu) are integrable selections of Gu for all u = t, · · · , T .
If gt 6= 0, then (NAw) implies that there exist some stopping times σ ∈
{t + 1, ..., τ} such that gt and gσ are collinear with negative coefficient of
collinearity.

Proof. The first passage time τ is obviously a stopping time which can be
expressed as

τ := min{u : t+ 1 ≤ u ≤ T such that gt + gt+1 + ...+ gu = 0 a.s.}.

This stopping time τ satisfies the assumptions of Lemma 4.1 so that the
condition (NAw) implies that, for every bounded CPS Z, Zt is collinear with
Zu a.s. if u ≤ τ . By taking the conditional expectation knowing Ft, from
the equality

∑T
u=t ZTgu1u≤τ = 0, we deduce by the tower property and by

duality that Zugu1u≤τ = 0 a.s. for all u = t, · · · , T . Thus, Ztgu1u≤τ = 0.
By the definition of τ , Ztgt1t≤τ = Ztgt = 0 as τ ≥ t + 1. Now the equality
Ztgu1u≤τ = 0 and Ztgt = 0 implies that gu1u≤τ and gt are collinear, i.e.,
gu1u≤τ = kugt where ku ∈ L0(R,Fu) satisfies ku = ku1u≤τ . As

∑T
u=t gu1u≤τ =

gt +
∑T

u=t+1 kugt = (1 +
∑T

u=t+1 ku)gt = 0 and gt 6= 0, there exist a.s. a first
instant u such that ku < 0. Define the stopping time

σ := min{u : t+ 1 ≤ u ≤ τ such that ku < 0}.

As 1σ≤τ = 1 and kσ < 0, then we can deduce from gσ1σ≤τ = kσgt that gt and
gσ are collinear with negative coefficient of collinearity. 2
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