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1. Introduction

In the discrete-time models without friction, it is well known that the self-
financing portfolio processes are modelled by their liquidation values. An
arbitrage opportunity is the terminal value Vi at time T of such a portfolio
process, starting from a zero initial capital, and such that P(Vy > 0) = 1 and
Vr # 0. The Dalang-Morton-Willinger (DMW) theorem [2] formulates an
equivalent characterisation of absence of such an arbitrage opportunity NA™.
Precisely, it states that NA" is equivalent to the existence of a martingale
probability measure for the price process and, moreover, under NA" the set
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of all terminal portfolio processes starting from the zero initial capital is
closed in probability.

The models with friction was first considered in the pioneering paper [7]
and, later, were extensively studied, e.g. in the papers [9], [5], [12], [4], [11].
With proportional transaction costs, it is classical to express the portfolio
processes as stochastic vectors of the invested physical units because, paying
transaction costs, the exchanges are allowed between the assets. Actually,
while the analog of the self-financing condition property is simple when the
portfolio processes are expresses in physical units (see [10, Chapter 3]), there
is no simple dynamics for their liquidation values. This is why, most of the
characterisations of absence of arbitrage opportunities are formulated by ex-
pressing the portfolio processes in physical units. In particular, the Grigoriev
theorem [3] provides such a characterization for the two dimensional conic
model that may be seen as a financial market model with a Bond and a risky
asset defined by its Bid and Ask prices. We may see it as a generalization
of the famous result of [7], which is formulated under the No Free Lunch
condition and appears to be equivalent to the NA" by Grigoriev’s theorem.
The condition NA" is the same than in the frictionless models, i.e. there is no
positive terminal liquidation value when starting from the zero initial capi-
tal. Equivalently, NA™ holds if and only if there is no vector-valued portfolio
processes starting from zero and ending up with a terminal value in the first
orthant Ri, see [10, Section 3.2.1]. It appears that the set of all vector-valued
terminal portfolio processes is not necessarily closed under NAY| see [10, Ex-
ample 1, Section 3.2.4 | so that the Grigoriev theorem is not exactly the
analog of the DMW theorem. Actually, with proportional transaction costs,
closedness is only obtained under a strong absence of arbitrage opportunities,
i.e. the robust no-arbitrage property (see [10, Lemma 3.2.8]) meaning that
the NA" condition still holds with strictly smaller transaction costs.

In this paper, our main contribution is a version of the DMW theorem we
obtain for the Bid and Ask model by proving the closedness of the set of all
terminal liquidation values.

2. Model and basic properties

Notations.

€1 = (1,0) S RQ.

For a subset G of R2?, G is the boundary of G and int G is its interior.
R? is the set of all vectors in R* having only non negative components.
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E designates the expectation of a random variable. When necessary, we de-
note it Eg when it is considered under @) ~ P.

For a set-valued random mapping E, L°(E,F) is the metric space of all
FE-valued random variables which are F-measurable.

LP(E,F,P), p € [1,00) (resp. p = o), is the normed space of all E-valued
random variables which are F-measurable and admitting a moment of order
p under the probability P (resp. bounded).

For any subset X of L°(R,F) containing —L% and p € [1,00) U {0}, we
denote by X”, the closure of X? := X N LP(R, F,P) with respect to the
LP-topology (the topology of convergence in probability if p = 0). If Q ~ P,
we denote by X7(Q) the closure under Q.

The Bid-Ask model. We consider a discrete-time complete stochastic
basis (2, IF := (F;)i=o... 7, P) to construct a financial market model defined
by a Bond S° = 1 and one risky asset characterised by Bid and Ask price
processes S® and S® adapted to the filtration IF.

Equivalently, the model may be defined by a sequence of IF-adapted closed
and conic sets (Gy)i=o... 7 of RY, i.e. such that:

Graph G, := {(w,2) € A xR?: 2 € Gy(w)} € F,® BRY, t=0,---,T.

where G4, t = 0,--- , T, is interpreted as the set of all financial positions it is
possible to liquidate without any debt. Precisely, let us define the liquidation
value process as

Li(7) == 2" + (%) TSP — (2?)~ 8¢, =z = (2%, 2%) € R?,

where x is the vector of physical units of assets S° and S respectively held
in the portfolio at time ¢. We recall the notation 2% = max(z,0) and 2~ =
—min(z,0). We may show that L;(z) = sup{a € R: x — ae; € G}, ie.
L;(x) is the maximal amount of cash the agent may obtain when liquidating
the financial position z, and G, = {x € R*: L;(z) > 0}. This is a particular
case of the the Kabanov model with proportional transaction costs, see [10,
Chapter 3]. At any time ¢t = 0,--- ,T, we easily observe that the following
properties hold:

Lemma 2.1.

1. The mapping x — Ly(x) is concave hence continuous.
2. Ly(2°, 2) = 2° + Ly((0, 2)) for all 2° € R and z € R?.
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3. x — Ly(z)e; € 0Gy for all v € RA.

Note that the boundary 0G; = {r € R* : L(z) = 0} is composed
of two half lines respectively generated by the random vectors (S§, —1). and
(—S?,1). The positive dual of G; is G} := {2 € R?*: 2z > 0: forallz € G;}.
The latter is a random cone of R2 whose boundary is the union of the two half
lines generated by the vectors (1, .57) and (1, Sf). We have G; \ {0} C intR2.

Definition 2.2. A self-financing portfolio process (Vi)i=o... 7 starting from
the initial endowment Vy_ is an IF-adapted process such that

AV, =V, -V, € -Gy, Vt=0,---,T a.s. (2.1)

The interpretation is simple; when changing the position V;_; into a new
one V; at time ¢, we liquidate without any debt the remaining part, i.e.
—AV; € G;. In the Kabanov model, we also interpret (2.1) as the paiement
of proportional transaction costs to change V;_; into V;. We introduce the
set of all terminal values at time ¢ < T" of portfolio processes starting from
the zero initial endowment at time v < ¢ i.e.

t
Al = Z L°(—Gy, F,).

Associated to this set above, the terminal liquidation values are
Ll={L,(V): VeA}.

Remark 2.3. Notice that for any v € LL, ve, = ZtT:o(_gt) e Al for some
g € LGy, F). Indeed, v = Lp(Vp) where Vp = S, AV, with AV, €
—L%(Gy, F) for all t and Vo = 0. Moreover, ye; — Vp = Lp(Vp)ey — Vp €
—Gr. Thus, ve; = Vi — gr where gr € L°(Gr, Fr) and finally ve, € A¥.
Futhermore, we may assume that g; € L°(0Gy, Fy) for all 0 <t < T — 1.
Indeed, let us write ve; = —(go — Lo(go)er) — (g1 + Lo(go)er) + o0 y(~a1)
where go — Lo(go)er € 0Go. As Lo(go) > 0, i.e., Lo(go)er € Ryeq, then
g1 + Lo(go)er € Gy. So replace gy and gy respectively by go — Lo(go)er and
g1+ Lo(go)er and repeat the above procedure fort > 1 to obtain that g, € 0Gy
forall0 <t <T—1.

In the following, we suppose a technical condition (E) when 7" > 4 which is
satisfied by the classical examples of market models with Bid and Ask prices
of the literature:
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Condition (E): When 7' > 4, for all t < T — 3, we have

{st = +1 = E(S +1|~7:t }C U {(S¢,-1) € G,}, as.,
r>t+1

{S) =S¢y = ESiqlF)Y S (J{(=57.1) € G}, as.

r>t+1

Recall that (S? —1) and (S?,—1) are the two generator vectors of Gy.
Notice that Condition (E) trivially holds when the L.h.s. of the inclusion is
almost surely empty. This is the case when we naturally suppose that it is
not possible to know by advance at time ¢ the value of S? ; or S¢ . Let us
present some examples where Condition (E) holds:

Example 1: This first example is a generalization of the model proposed
in [5]. Let us consider a positive stochastic process (S¢)i—o,.. 7 wWe interpret
as the mid-prices and a process (€ )i—o,... r with values in [0,1) we inter-
pret as proportional transaction cost rates. We suppose that (S;);—.... r and
(€¢)t—o.... 7 are two independent processes and for every t, either the random
variables % or 11;3 do not admit any atom. This is the case when St
admits a density and the rate process € is constant. The Bid and Ask prices
are given by

SPi=S(1—¢), S:=S(1+¢).
Then,

P(5) = St+1) = E(E(lsg:S§+1|U(€t t < T)) =EE(Lsy_14q

St T l—ey
< ( 1_ . ))7
I =€

where, by the independence assumption, f(z) = P (M = x) Using the

St
hypothesis on S, we get that f = 0. A similar reasoning holds when 11_1“31

ole,: t<T))

does not admit any atom so that Condition (E) trivially holds.

Example 2: We consider a generalization of the Cox-Ross-Rubinstein model
with bid-ask spreads proposed in [8, Section 4]. The Bid and Ask prices are
given by

Sf = (1 + Cf)sgflv Sf = (1 + Cta)Sz?flv
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where the vector-valued process ¢ = (¢%, (%) is such that S? < S a.s. for
all t < T. Moreover, it is supposed in [8, Section 4] that ¢* and (? take two
distinet values. With F; = 0(¢% (%, S, : r < t}, this hypothesis trivially
implies that the equalities ¢/ = E({},,|F:) and ¢ = E(¢f,,]F:) do not hold
almost surely. Here, we only suppose that the equalities ¢f = E(¢}, ) =0
and ¢ = E(¢,|F:) = 0 do not hold almost surely so that we may verify
that Condition (E) holds. Indeed, if for example SP,, = S = E(S},,|F)
then ¢/, = 0 = E(S?,;|F). We may also verify that Condition (E) holds
if we only suppose that ¢? = 0 if and only if ¢ = 0. Indeed, if for example
Sty =S¢, then Sf,., = SP hence S¢, < SP.,. Therefore, Sf = S¢, and
St =S, 1e. Gy = Gy

Example 3: Following [5], we suppose that the Bid and Ask prices are given
by
Sf:St—Et, Sg:St‘i‘Et, tST,

where S and € are two positive processes such S® > 0. Then, Condition
(E) trivially holds when S and e are independent and one of them does not
admit any atom since, in this case, P(Sf,, = Sf) = P(Sf, = S7) = 0 for all
u>t4+ 1.

3. The DMW theorem for discrete-time Bid-Ask models

Definition 3.1. We say that the financial market model defined by G satis-
fies the weak no-arbitrage property (NAY) if LI N L°(R.y, Fr) = {0}.

Lemma 3.2. (NAY) holds if and only if AY N LY(Gr, Fr) C L°(0Gr, Fr).

Proof. Suppose that (NA®) holds and consider Vy € ALY N LY(Gr, Fr).
Then, L(Vr) € LI N L°(R,, Fr) hence L(Vy) = 0, i.e. Vp € OGr a.s. Re-
ciprocally, suppose that AL N LY%(Gr, Fr) € LY°(0Gr, Fr). Any 7 € LT
is such that yre; € Al since vy = L(Vry) for some Vy € Al such that
Vo — L(VT)61 c Gp. O

The assumption of the following lemma is clearly satisfied for the Bid-Ask
model.

Lemma 3.3. If Gy strictly dominates R%, i.e., RE\ {0} C int G, then we
have
LENL(Ry, Fr) ={0} < AN LR, Fr) = {0}.
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Proof. (<) This part is trivial since £Je; = AT N L°(Rey, Fr) C A%

(=) Let Vo € AY N L°(RL, Fr). Since RY C G, then Ly (Vy) > 0.
So the condition £I' N LY(R., Fr) = {0} implies Lz (Vr) = 0, hence Vr €
0GrNRL ={0}. O

The equivalent condition to (NA"), as expressed in the lemma above, is
studied by Grigoriev [3] and [10, Theorem 3.2.15]. The Grigoriev theorem
states that Condition (NA™) holds if and only if there exists Consistent Price
Systems (CPS) evolving in the positive duals of the solvency sets, precisely
martingales (Z;);—o... v satisfying Z; € Gj \ {0} for all ¢ = 0,---, 7. This
result is a weaker form of the Dalang-Morton-Willinger theorem, see [2].
Without friction, the set of all terminal claims obtained from the zero initial
endowment appears to be closed. With proportional transaction costs, this is
no more the case if the terminal claims are expressed in physical units, see [10,
Example 1, Section 3.2.4]. In this paper, we show a Dalang-Morton-Willinger
version of the Grigoriev theorem, i.e. we show that under Condition (NA"),
the set of all terminal liquidation values we get from portfolio processes
starting from zero is closed. To do so, we use the technical condition (E)
when T" > 4. This is an open problem whether our result still holds without
(E) for T > 4.

Theorem 3.4. Suppose that Condition (E) holds for T > 4. The following
conditions are equivalent:

1 (NAv)

2 LI is closed in probability and L N L°(R., Fr) = {0}.

3 There ezists Q ~ P with dQ/dP € L*® such that EqLr(V) < 0 for all
Lr(V) e LI nLY(P).

4 There exists QQ ~ P with dQ/dP € L*> such that for all t < T — 1,
Eq(StilFe) < Sy and EQ(S£)+1|E) < 5¢.

5 There exists Q ~ P with dQ/dP € L>® and a Q-martingale S such that
S € [S°, S9.

In the following, we denote by M(P) the set of all Q ~ P such that
EqLr(V) <0 for all Ly(V) € LL. For any contingent claim £ € L°(R, Fr),
we define I'¢ as the set of all initial endowments we need to start a portfolio
process whose terminal liquidation value coincides with &, i.e.

lei={zeR: IVeEA : Ly(ves+V)=¢}
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Corollary 3.5. Suppose that Condition (E) holds for T > 4. Let us con-
sider a payoff £ € L°(R, Fr) satisfying supgep) Eqlé| < co. Then, under
Condition (NA¥), T'e = [supge m(p) EQ€, o0).

4. Proofs of the main results
4.1. Proof of Theorem 3./.

Note that the implication (2) = (3) is immediate by [10, Theorem 2.1.4].
The implications (3) = (1) and (2) = (1) are also trivial. It remains to show
that (1) = (2). Suppose that (NA*) and let us prove that LI is closed in
probability. Recall that, by the Grigoriev theorem, there exists a CPS Z,
i.e. a martingale Z such that Z, € G} \ {0} for all u < T. For the one
step model there is nothing to prove since £LL = —L°(R,, Fr). Indeed, if
LT<_gT> Z 0 for some gr € LO(GT,FT), then gr € (—GT) N GT Q 8GT
hence Ly (—gr) = 0. Let us consider the two step model.

Assume that the sequence Y& € LL | converges to v2°. From Remark 2.3,
we may suppose that Ye; = —gh | — g% where g%, € L°(0Gr_1, Fr_1) and
g% € LO(GT,JT"T).

On the set Ar_; := {liminf |¢g}_,| = oo} € Fr_1, we normalize the se-
quences by setting ¥ := %, gp_q 1= Iﬁ—jl and g7 1= %. Then,
Yrer = =971 — 91
As |gh_| = 1, by passing to some Fr_j-measurable random sequence we

may assume that ¢, converges to g7 ; € Gp_1, see [10, Lemma 2.1.2]. As
vre1 converges to zero, we deduce that g} converges to g7 € Gp . Finally,
we get the following equality:

57%071 +§%o =0

where g7, € 0Gp_; and g € Gyp. Note that, we may define ¢g3°, =
G =0on Q\ Apr_y € Fr_y. Let us consider a CPS Z. From, Z7(§5° , +
G%°) = 0 we deduce that Zy_197° | + E(Z7§|Fr—1) = 0. As the two terms
in the right side of this equality are non negative by duality, we deduce
that Zpr_19%° , = Z7gy¥ = 0. Moreover, gr = —gr—1 is Fp_, implies that
0 = E(Z7g¥|Fr-1) = Zp-1G%. Then, Zy_1g% = Zrgy implies that Zp_;
and Zr belongs to the same half-line of Ri. In particular, since Zy € G7,, we
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also have Zp_; € G}.. We deduce that Zy_1vje1 = —Zr_197_ 1 — Zrg} <0
as g}, € Gp_; and ¢} € Gyp. Since Zp_1e; > 0, we deduce that 7 < 0.
Therefore, we may replace g7, by g7 4 = 0 € Gpr_; and g} by g} =
—vre1 € Gr so that we still have v} = —g}_; — g7. Finally, we may write on
Q, 9 = =Gy — G, where g7y = g7 _1lo\a,, € LY(Gr-1, Fr-1) and §f =
It lovar s + Gplags , LY(Gr, Fr). By construction, liminf, |¢}_,| < oo hence
we may suppose that g% ; — §5°, € L°(Gr_y, Fr_1) by [10, Lemma 2.1.2].
We deduce that g — ¢ € LY(Grp, Fr) hence 43¢ = —g% | — g5° € LT,

Let us consider the three step model. Suppose that the sequence % € L1,
converges to v°. By Remark 2.3, we may suppose that vje; = —gp_o—gp_1—
g7 where g € 0G, for t =T —2,T — 1 and g} € Gr.

Let us first consider the subset I'r_o := {liminf|¢}_,| < oo} € Fr_o.
By [10, Lemma 2.1.2], we may assume that g} _, is convergent to g, €
L°(Gr_o, Fr_s). Next we consider the following two sub-cases:

(a) On the set where liminf |¢g}_,| < oo, we may suppose that the se-
quences ¢}, and ¢}t are both pointwise convergent by [10, Theorem 5.2.3].

(b) On the set Ar_; := {liminf, |¢}_,| = oo} € Fr_1, we normalize the
sequences by dividing the term [g7_;| and we get

Yrer = —gro — 971 — Ir
where % := #, g = |9§gL~—i1| forallt =T—-2,T—1,T. As |g%_,| = 1, up to

some Jp_j-measurable random sequence, we may assume that g7_, converges
to g2, € 0Gyp_1. As 47 and g}_, both converge to zero, necessarily g7 is
convergent to some limit g7* € Gp and

gr 1+ 97 =0.

Since we only consider Fr_j-measurable sets, we may claim that Lr(g%) =
Lr(—g3,) € LY o, N L°(Ry, Fr) = {0} hence §5* € 0Gr by NA™.

Assume Q;O_(P > 0 and g‘;’_(? < 0, the second case where g;’?_(? < 0 and
3772 > 0 being similar. The equality §3° , + §3° = 0 implies that go*'" < 0

and g @~ 0. This implies that we may replace 9r-1 by 9%_1lg;<_2;<0 +

OO n n e o}
gT—llg;‘fizo and g7 by ngg;(2)>o + g7 19;(2)S0. So, we may assume that

gg(fi < 0 and 92(2) > (. Let us define the Fr_;-measurable positive real-
valued random variable
n(2) 4 n@)
g = 9r—2 T 971
: —oo(2)

971
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As 9771 +97° = 0, we rewrite yyey as yper = —g7_o— (971 — B"971) — (97—
£"g3°). By definition of 5", the second component of the term ¢% | — "g5°
1s

(951 = B"371) = —g7).

Notice that §°, € 0Gr_; and ¥ € O0Gr, ie., Lr_1(95°,) = Q;O(i) +

g?)—(? $_1=0and Ly (3%°) = g7 o +9g (2)Sb =0 Wlth gOO(Q) g;’f’(? = 0.

~oo(1) oo 1
g

So we have gzo@l) = —S% , and 2 W = —Sh. As ¢, = —3F, we have
T-1 T

9 | = Sb. The first component of the term g |, — f"g3° | is

n n ~00 n 1 n~oo (1
(9T—1 - gT—l)(l) = ( - f("g )
n(2
) QT( % + 97 ( ) oo(1)
= 9r1— —5o(2) gT 1

9171

= QT(1+(9T(%+QT( i) T
() a

= QT(i‘FQT(i T— 1+9T 2PT—1

n(2
= QT(—% T—1

1 n(2) ca n
since gT( i gT(_%ST_l =Lr_1(97_1) = 0.

Then, g7, — "7, = (92(35%71, g;@%) Notice that it satisfies the con-

dition liminf |¢7_,—B"g% 4| < cosince S¢_; € L*(R, Fr_1) and liminf |g}_,| <
oo. Liquidate this position at time T — 1 to get

Ly 1(97—1 — B"97-1) = gT( % T-1 9;(2% 711 >0 T gg“(fgsg—llg;@;@'
This implies that Ly, ((g}_; — ﬁ"g%o_l)lgggzo) =0, i.e.,
(971 = B 97741 g0 € OGr-1.
Otherwise, if we liquidate the position at time 7', we obtain that
Lr(gr_ — B8"971) = 9;(22517 N(—Q%S%Ig?ﬂgzo - g;ﬁ(_Q%S%Ig;g@

This implies that Ly ((¢7_; — 5"371)L w2 _,) =0, i.e.,
9 5<0

(97-1 — 5”@%0—1)19;(3@ € 0Gr.
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About the term g} — "7, it is easy to see that the second component is

n(2)
zero since " = goTo@) The first component is
g

T

n T~ 00 n 1 n~00
(gT_ﬁgT)(l) = () /BQT
_ ) gT( ) ~0o(1)
- I oo(2) IT
T
n(1 ~o0o(1
_ n(Q)(gT() _gT())
T n(2) ~00(2)
T 9r
As g € Gr, Lr(gh) = g7 + 7?4 > 0. So we have 2 S 2 =S =
97 T
ThU.S, (g?1 - Bng%o)(l) > 07 i'e'a
—06"g7 € Ryes.
On the set I'r_o, we finally obtain that y}e; = —g}_5 — §7_; — G}, where
gr— = girﬁ—llﬁ\ATfl + (ggll“—l - ﬁng%o—l)lg;ffgzolATq € LO(GbeFT*l)?

ﬁ% = g?’lQ\ATfl + (9%71 - ﬁng%oflﬂ "<2) lATfl
+(97 — B 37 s, € L(Gr, Fr).

By construction, notice that liminf, [§7_,| < oo on I'r—5. By [10, Lemma
2.1.2], we may assume that g4_, is convergent to §5° ; € L°(Gr_y, Fr_1) at
least for some JFr_j-measurable subsequence ng(w), w € Q. As we already
know that gt , — ¢, € LY(Gr_o, Fr_o), we still have gf*, — ¢, €
LY(Gr_q, Fr_o) even if gy*, is no more Fr_o-measurable. We deduce that
gt — g € LGy, Fr) and, finally, 1i¥1r, , = —g3, — 47, — 5 € LF_,

On the set Ap_y := {liminf |g}_,| = oo}, we use the normalization proce-
dure to get
%1“61 = —0r-2— 9r-1 — 97>

where A% := |g T 9= for t > T — 2. As liminf |g}_,| = 1, we may

| 97— 2|
argue as we did on the complementary set I'y_s and assume that g;' — g;°

L°(Gy, Fy) for t > T — 2 such that

57%072 + 57%071 + g%o =0



/ 12

with g° € 0G;ift = T—2,T—1 and |g 5| = 1. Since Ly (g3°) = Ly (=g 5—
g¥ ) € LY ,N LR, Fr) = {0}, we also get that g € IGr.

For any CPS Z, taking the conditional expectation knowing Fr_» in the
equality Zr (9% + 721 + 97°) = 0, we deduce that

Zr 297 o + E(Zr_197 1| Fr—2) + E(Zrg7 | Fr—2) = 0.

All the terms of the Lh.s. being non negative, we finally obtain that Z,g;° = 0
for all ¢t > T — 2. As §° = —g7°5 — §p1 is Fr_i-measurable, taking the
conditional expectation knowing Fr_; in the equality Z;g7> = 0, we deduce
that ZT_lg%o = 0. But ZT_l(gr%o_Q + g%o_l + g%o) = 0 hence ZT_lg%O_Q = 0.
Since |g° 5| = 1, the two equalities Zr_29% 5 = Zr_197° 5 = 0 implies that
Zp_y and Zp_o belong to a same half line of G}._; N G}_,.

Assume g*'t) > 0 and g*®?
g;i(? > 0 is similar. Up to some Fr_s-measurable random sequence (7 ) we
may assume that g7") > 0 and g7’} < 0. We then consider the following two
sub cases:

(c) When g$° # 0. In the case where g ;| # 0, the two equalities Zp_1g% | =
Zr_1g% = 0 implies that g ; and g are collinear. As Zr(g5° o + g7, +
g°) = 0, we have Zr(g%° 5 + §2°,) = 0 where Zrg® |, = Zrgy® = 0 since
g7 € Rigy. It follows that Zrg7 , = 0. In the case where g7 ; = 0, the
equality Zr (g%, + g7°,) = 0 implies that Z7g , = 0. Finally, Zr_ 297 , =
Zr_1G79 = Z7g7_o = 0 implies that Zp_y, Zp_; and Zp are both collinear
with some positive coeflicients of collinearity when both g7, and g are
different from zero. This implies that Z; € Gj for all t > T'— 2. Since yfe; =
—97—s — 91_1 — 91, we deduce that Zryper = —(Zrgp_o + Zrgr_y + Z1rg7)
Zpyiker <0 hence 4% < 0 on the set Ar_o N {gy # 0}.

(d) When g =0, g* 5 + 721 = 0. Let us define the Fr_s-measurable
positive real-valued random variable as

< 0, the other case where g;’?_g) < 0 and

n(2)
A= 9r—2
=
912
Since g% |, = —g¥ ,, g?_(? < 0 and g;"_(? > 0, we may replace g% , by
n —~00 n(1)
gT—ll{g;(_li<0; ) 50) + gT_llg\{g;(_li<0;g;(_2%>o} and assume that g, ; < 0 and
g% > 0. As g, + g, = 0, we rewrite yher as vper = —(gh_y —

B 37 5) — (gF_1 — B"g7>1) — g where git_, — "G, = 0 by construction.
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As G775 € 0Gr_2 and g7y € 0Gr_1, Lr_2(972,) = ?];o—%) + g;o(g)s% 2 =
_oo(1)

and L7_1(97% ;) = g7 (? gg’?(? Sh . = 0. So we have 22 = —S%_, and
972

_oo(1)

g —~00 —~00 a

§§°<%) = _S%—l' As g | = =079, St o = Sg’—l-

The second component of gi_;, — f"g% , is (g4, — B g ,)? = _9;(2)'

_ n(2) | n(2)
Thus, " = % which is Fr_;-measurable. Notice that git | — 3"g5° ,
ar

is also Fr_i-measurable. Its first component is

an-oo (1) __ n(1) an ~0o(1)
)

(9:7;—1_ 971 = 9r1— P 97
n(2) n(2)
_ a9t I o)
= Ira T T @ I9ra
97—

n(1l n(2 n(2
= gT(i—i_(gT(i—i_gT( ))S% 1

= gT(i—i_gT S 1+9T S -1

= gT ST—l

n(1 ) ”(Q)é;b L n — 0. Th

since gT 1 971571 =Lra(g9f_,) = 0. €Il
n =00 n(2
ﬁ 9r—1 = (gT S:bﬁla _gT( ))
so that
YT = _QT( )S%—l - QT( )-
Liquidate the position gi_, — 3"g3°, at time T — 1 to get
n n =00 n(2 n(2) ca n(2
Ly 1(97-4 -3 97-1) = QT( )5%71 - QT( )STAIg;@Bo - QT( )S%fllg;@)go'

This implies that Ly_1((g%_; — Bng%o_l)lg;@)go) =0, ie.,
(971 — Bn?]T—l)Ig;(a)go € 0Gr_;.

Similarly we deduce by liquidating it at time 7" — 2 that
(g?“—l - BngT—l)Ig;(2)>0 S 8GT_2.

If we set hl}_; =g} _o+ g7_4, then

n n n =00 n(2 n(2
hy =97 —B"971 = (gT( )S:bffp _gT( ))



/ 14

belongs to the boundary of Gy_5 or Gp_;.

In the case where g;(g) < 0, it is possible to change g4, into g3 , —3"g5 ,
which still belongs to the boundary of Gr_;.

On the set {g;@) > 0} € Fr_q, we consider two sub cases. On the set

{sup,, g;@) < oo} € Fr_q, up to a convex combination (see [10 Theorem

n(2) n(1)

A.2.3]), we assume that g, is convergent. As v = —gT ST L= g

g;(l) is also convergent, i.e. g converges to gr € L°(Gr, Fr). Then y5%e; =

lim,(—g¢%_5 — g% — g%) = lim,(—g}_5 — g%, — gr), i.e. we may replace
g7 by gr. By the initial normalization on Ap_5, we then get that 7} =

—gg)S%_l - g(Tl) instead of Y} = —g;(z)S%_l - ggﬁ(l), i.e. 74 does not depend
on n any more: we may write ype; = —gi_,—gh_ | — g where g} is a constant

substitution of g; for each t > T" — 2.

On the Fr_-measurable set {sup,, g;( ) = oo}, first recall that for any CPS
Z, Zr_o and Zp_q are colinear vectors of Ri orthogonal to the line generated
by g7 5. Through the normalizing procedure which consists in dividing by

92(2) on both sides of the equality vje; = —h%._; — g7, we get that
hr—1+Gr =0

where hp_; € L°(Rg¥ o, Fr—1) and gr € L°(Gr, Fr). Taking conditional
expectation knowing Fr_; in the equality Zr(hr—1 + gr) = 0, we deduce
that ZT 1hT 1 +]E(ZT§T].7:T 1) = 0. As ZT 1hT 1 = 0 and ZT.&T > 0 we
then deduce that Zrgr =0 hence ZThT 1 = 0. The equality Zy_ 1hT 1 =
ZThT 1 = 0 with hT 1 # 0 implies that Z7 and Zp_; also belongs to the
same half line. Finally Zp € Gy for all ¢t > T — 2 and, by a similar argument
as above, we deduce that v < 0.

Gathering with the case (c) where g # 0, we can conclude that on the
Fr_o-measurable set Ar_o, we have Ye; = —gh_ o, — G| — ¢ where

4
= ZQSiGLO(Gt,ft), tZT—]_,

=1

with
gry = (lgr_allg7i)
9r—1 = 9r—21197—-1)1g%#0,
~n2 o 1 n N =00
9121 = (=92 +97_1—B QT—1)I§%°:OIQ;<2)SO,
~n2 .
9r—1 = gT 1I ool "(2)>015upng;(2><oo’

An2 —
9121 = (—9r_2)lgp=ol D50 upngn® Zoo
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and
g7 = (lor—2ll37 —~rer)]
9gr = 9r—21197 — T1€1)lgges0,
~n2 _ n
gT = ngg%OZOIg;(Q)SO’
~n3 .__ 11
gr = grlge =oIg;<2> ~olsupy D co0r
~nd . __ _An o
gr = ( ’)/Tel)IgT :OIg;<2)>OIsupng;(2):oo'

We can easily see that ¢, € dGr_; when i = 2,3,4 and g% € Gy for
all i = 1,2,3,4. The expressions of g*!, t = T — 1,T are obtained from the
following equality: g7_y = [|97_/l57_» = ll97_2l97"2 = —ll97_2[1(9721 + 37°)
with 7 = 1 and 7he; = —gh_y — (—gh_y) — (—ber).

Since the sequence (g4 _,),>1 is replaced by the constant gr ., we may
follow the reasoning we did on the complementary I'r_5 so that we finally
obtain Y¥e; = —g7° 5 — g7, — g7 where ¢;° € Gy forall t =T -2, T —-1,T
and 75 = Lr(7%%e1) € LT_,.

We now consider the general case. Let us suppose by induction that the

statement above holds for the model with dates between ¢t + 1 and T" with
t+1 > T—2 and let us prove it from ¢ to T". To do so, consider a sequence 67 =

-9 — gy — -+ - — g, where we may suppose w.lo.g. that g/ € LY(9G,, F,,)
forallu =t,---,T—1and g% € L°(Gr, Fr), converges to o7 € L°(Rey, Fr).
We claim that 0% = —g;" — g4y — -+ — G + €4, where g € LY(G,, F,) for
all u =t,---, T — 1 and g% € L°(Gr, Fr) are such that liminf, |g"| < oo
a.s. for all w = ¢,--- 7T and lim, €} = 0 a.s. Moreover we claim that, on
the set {liminf, |g}'| = +oo}, g/ is either 0 or a constant element of the

sequence (g7)n>o and g; = g on the set {liminf, |¢g}'| < oo}. Notice that
these properties are verified for t =T — 1 and t = T — 2 as shown above.

Let us denote by u the smallest instant such that P(liminf,, |¢"| = +00) >
0. As liminf, |¢"| < oo a.s. for every r = ¢,--- ;u — 1, we may successively
suppose that g” is a.s. convergent to some g, € L°(0G,, F,) when r < u — 1
by [10, Lemma 2.1.2]. It is then possible to make the substitution g = g; for
every ¢ < u — 1, letting aside a residual error €} which tends a.s. to zero as
in the claim. We suppose that v < T, otherwise there is nothing to prove.

We first work on the set A; := {liminf, |¢}| < oo} so that u > ¢ + 1.
We split A; into A, := {liminf, |¢g]'| < oo} € F, and its complimentary
I, := {liminf, |¢g]'| = oo}. On the latter set, dividing by |g!'|, we get the
normalisation 3

Op = —0i = Giya — - — 9
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where % = Ig_% and g = ¢/ n| ., T. As 6% and " with r =
t,ooo,u—1 aﬁ converge to 0, we may use the induction hypothesis and

suppose that liminf,, |§"| < oo on I'y, if 7 > wu. By [10, Lemma 2.1.2], we may
suppose that " — g, € L°(G,, F,) if r > u and, finally,

Ju +Gurr v gr =0 (4.2)

We deduce that g% € L°(0Gr, Fr) under (NAY). Let us consider the stop-
ping time 7, being the first instant 7 > u+1 such that g°+gg5  +-- -+ §2° = 0.
By Lemma 4.1 and Lemma 4.2, for all r > u, there exists k. € L°(R,F,)
such that §,1,<; = k.gul.<,. Let us introduce the first instant o € {t + 1,7}
such that k, < 0, which is possible by (4.2) since k, = 1. We consider the
case where Gy, =M > 0 and fhio(?) < 0, then §§°(1) < 0 and §3°(2) > 0. The

symmetric case may be solved similarly.
co(1)  zoo(1)

Since L, () = Ly () = 0, ?go@,) = % = —S5% = —S% by Lemma 4.2.
As (@R 44+ gn)P = —(g0y, + ...+gT)(2) - 6;( converges to §o°® < 0, up
to some F, measurable random sequences we may assume that gu( ) < 0and
(G + +92)® < 0. Let

’ T
which is positive and F,-measurable. Now we rewrite 07 as
=9 — = Gu1— (9 —B8"92) =BG — Guy1 — — 97

The second component of the term ¢! — 8"g:° is

(9, — /anlso)@) =—(ge+--+ gu—1)(2)-

And the first component of this term is

( Bn oo)(l _ Bn oo(1)
gso(l)

= 93(1) - (g? T+t 93)(2) —o0(2)

g+ (g + -+ gD s;
= g+ g @Si+ (g + .+ gi)?SE
= (g4 +gu1)?S;
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Thus,

— B = ((ge+ + Gue1)PSE, —(ge 4+ + gu1)?)

which is constant, and so satisfies liminf,, |g] — 8"g2°| < +o0.
On the set AL | == {(g: + -+ + gu_1)® > 0}, it has L,(¢g" — B"§>°) =
(ge+ -+ Gu1)PS* — (g + -+ + gu_1)?PS? = 0. This implies that

(g7 — B"5%) a1 € OG,.

On the set A2 | = {(g; + - + gu1)?® < 0}, it has L,(¢g" — 8"3) =
(g + -+ Gu1) DS — (g + - + gu1)@ St = 0. This implies that

(g0 — B"5)1a , € OG,.

T
Aso € {u+ L. >T}v then (93 _ﬁnggo)ll\i_l = Z 1U=k1Aﬁ_l(gg —B”?}S")
k=u+1

where gy, := lo=xly2 (g1 — 8"9%°) € L°(0Gy, Fi). On the other hand, the

second component of the term (—8"§° — giy; — ... — gi)® = 5;(2) — 0

so that we may use the induction argument as u 2 t + 1 to deduce that
T

=BG =g — .. —gp = — Y g+ where every g € L°(Gy, F,) admits

k=u
a finite limit infimum and €7 — 0 a.s. as n — oo. Finally, we may write

u—1 T
Opladn, = = gda, — (g =BG A, =BG 1a, — Y, Gila,
r=t

r=u+1

u—1
= _Zgrll\ (Gu = B"3 ) Iar_ = (gy — B30 ) 1Az, Z Jila, T €7
r=t

u—1
= =S gl — (g0 = B Z Gila, Z Gila, +ép
r=t k=u

k=u+1
T

= —gla, — = Guila, = Y A,
k=u
where g = (g — 8"g;0) 1 + g € L%(Gy, Fu) and gf = Gp + G¢ €
LY(Gy, Fy) for k > u + 1. Note that, for every k, liminf, [§}| < oo a.s.
On the complimentary set I', of A,, we may suppose that g — ¢, €
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L°(G,, F,) by [10, Lemma 2.1.2] and finally assume without loss of gen-

erality that 5%11—‘71 = _gtll"u — gt+111"u — s — gulpu — gz+11r‘u — e — gg«
We then deduce from above that 071, = 071,14, + 071,11, is of the form
Oy, = —gla, — = Gu—1 — gif — - -+ — g% where liminf |g]'| < oo a.s. This

implies that we may repeat the procedure above with some date u! > u + 1
instead of u. As the number of dates is finite, we finally conclude on A;.

Next we consider the case where liminf, |gf'| = +oo. Using the classical
normalization procedure, we get

5n_ gt+1 =gy

% and g := g n| for all ¢ = ¢,---,T. Since |g}'| = 1, up to
the first case where liminf, |g'| < 400 we deduce an equality of the type
G+ g%, + -+ g7 = 0. As g # 0, let us consider the stopping time
T > t+ 1 as the first instant such that g° + g%, +--- + g° = 0. Then, for
any CPS (Z,),=t... 7, Zt,- -+ , Z; are collinear by Lemma 4.1. It follows that
Zi1 € GiN Grt+1 and (Z,),—=t+1...  is a CPS for the market model from ¢+ 1
to T defined by the solvency sets G; = G, + Gi1 =G UG C (Z)" and
G, = G, for u > t+2. This means that Condition (NA®) holds for the model
(Gr)r:t—l—l,m,T' Since g7 + g, € L°(Gy, Fry1), we may apply the induction
hypothesis and deduce that =% = g7, , +37, o+ - -+37 where g € LO(Gy, Fu)
satisfies lim inf, |g;;| < oo a.s. for u > t+2 and g7, | is either g;'+g; , when the
latter is convergent or 0 or some constant element gf + gfﬂ. In any case, we
may assume that —6% = g/'+g7" +gri2+- - -+gr where g € LY(G,, F,,), u
t+1, g, € LY(Gy, Fu), u > t+2, and (g;"+ §"1)n>1 IS a convergent sequence
Only the case where liminf, |g}'| = 400 is of interest. By the normalisation
procedure, we deduce the equality g; + g1 = 0 where §; € LY(Gy, F;) is
positively collinear to ¢ and |g¢| = 1 and gs1 € L°(Gyi1, Fir1). We deduce
that S¢ = S?,, when 7;°" > 0 and g;°® < 0 and S? = S%, otherwise. It
follows that S¢ = Sy, = E(S}, | F) or S? =S¢, = E(S,|F;). On the set
{g,° ) > 0}, let us consider the first instant 7 > ¢+1 such that (S, —1) € G».
By Condition (E), the stopping time 7 satisfies 7 < T'. Hence, it is possible
to rewrite gy = Zfztﬂ gt 10—, where, for all ¥ > t+1, ¢'1;,, € L°(G,, F,).
Similarly, we may rewrite g on the set {g,” W < 0} so that we may apply
the induction hypothesis and conclude about the statement from ¢ to T'. The
conclusion follows.

where 7. :
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Notice that the implication (3) = (4) is easily obtained by considering the
liquidation values at time ¢ + 1 of the positions (S?, —1)1p, and (—S%,1)1p,
for all F; € F;. The implication (4) = (5) is deduced from [1, Theorem 4.5].
At last, if (5) holds, take p; = E(dQ/dP) and define Z = (p, pS). We may
verify that Z is a CPS hence (NA") holds. O

4.2. Proof of Theorem 3.5.

The inclusion I'e C [supgepq(p) E@E, 00) is trivial. Let us now consider z >
SUPgem(p) E@€, 00) and suppose by contradiction that z ¢ I'¢, i.e. {—x ¢ Ll
As Llis closed in L' under (NA"), we deduce by the Hahn-Banach separation
theorem the existence of n € L and ¢ € R such that E(nX) < ¢ < E(n(¢ —
z)) for all X € £I' N L'(P). Since £} is a cone, we deduce that E(nX) < 0
for all X € LI N L'(P). Moreover, as LI contains —L°(R, Fr) we deduce
that 7 > 0 and, after normalization, we have E(n) = 1. Moreover, if we
take n’ = d@/dP such that @) € M(P) # (), then we may choose « € (0,1)
sufficiently close to 1 so that 7 := an + (1 — )/ satisfies E((§ — x)) > 0
since ¢ > 0. Moreover, E(7X) < 0 for all X € £I' N LY(P) and 7 > 0 satisfies
Ef) = 1. Therefore, if we define Q such that dQ/dP = 1), then Q € M(P) in
contradiction with E(7(§ —x)) > 0, i.e. 2 <Epé. O

4.3. Auxiliary results

We denote by T;r the set of all stopping times 7 with values in {t,--- ,T}.
By definition, if 7 € Ty, then {7 = u} € F, whatever u = ¢,--- ,T hence
{r >u} € F..

Lemma 4.1. Suppose that for some stopping time T € T,p, we have g; +
49, =0 a.s. where g, € L'(G,, F,) are integrable selections of G, for all

u=t,---,T. Moreover, assume that with probability one, g, + -+ g, # 0

for all r < 7. Then, for all bounded CPS Z, Z;,--- , Z, are a.s. collinear.

Proof. By assumption, we have Zfzt Zrguly<; = 0. Taking the condi-
tional expectation knowing JF;, we deduce that by the tower property that

T T
0= E(Zrgulus:|F) = Y E(Zugulus:|F).

u=t u=t

By duality, Z,g9, > 0 hence Z,g9,1,<; = 0 a.s. for all w = ¢,--- ,T. No-
tice that {T' < 7} = {T =7} =Q\{r < T -1} € Fr_q and grlr<, =
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glrer = — (g + -+ gr_1)le—p € L°(R?, Fr_y). Therefore, Zrgrlr<, =0
implies that Zr_;g9rlr<; = 0 by taking the conditional expectation knowing
Fr—i. It follows that Zr_y (gr7-11r—1<- + grlr<;) = 0. Suppose by induc-
tion that Z, (gulu<r + -+ + grlr<,) = 0 for some v € {t +1,--- ,T}. As
gulug'r +o ngTST = _(gt +o gu—l)lugr € LO(RdwFu—l)) we deduce
from Z, (gulu<s + -+ + grlr<;) = 0 by taking the conditional expectation
kHOWng ]:ufl that Zu,1 (gu1u§~r + e+ ngTS"r) =0.As Zuflgufl 1u71§7 =0
a.s., we ﬁnally get that Zu—l (gu—l ]-u—1§7— + 4 gT]-TST) = 0.

As Zu (gulugT +oeet ngTST) = 0 and Zu—l (gulugfr + e+ ngTST) =0
where g, ly<; +- -+ 9rlr<; = —(g1+ -+ gu—1)lucr # 0if u < 7, we deduce
that Z, and Z,_; are colinear if u < 7. The conclusion follows. O

Lemma 4.2. Let 7 be the first passage time such that gi+gii1+...4+9, = 0 a.s.
where g, € L'(Gy, F,) are integrable selections of Gy, for all u =t,--- ,T.
If g¢ # 0, then (NA™) implies that there exist some stopping times o €
{t +1,...,7} such that g; and g, are collinear with negative coefficient of
collinearity.

Proof. The first passage time 7 is obviously a stopping time which can be
expressed as

7:=min{u:t+ 1 <wu < T such that g, + g1+1 + ... + g = 0 a.s.}.

This stopping time 7 satisfies the assumptions of Lemma 4.1 so that the
condition (NA™) implies that, for every bounded CPS Z, Z, is collinear with
Z, as. if u < 7. By taking the conditional expectation knowing F;, from
the equality Zfzt Zrgulu<r = 0, we deduce by the tower property and by
duality that Z,¢,1,<, = 0 a.s. for all w = ¢,---,T. Thus, Z;g,1u,<, = 0.
By the definition of 7, Z;g;11<; = Zyg: = 0 as 7 > t + 1. Now the equality
Z1guly<r = 0 and Z;g; = 0 implies that g,l,<; and g, are collinear, i.e.,
Gulu<r = kyg; where k, € L°(R, F,) satisfies k, = k,1,<,. As Zfzt Gulu<r =
g+ Efztﬂ kuge = (1+ Efztﬂ k.)g: = 0 and g; # 0, there exist a.s. a first
instant u such that k, < 0. Define the stopping time

o:=min{u:t+ 1 <wu < 7 such that k, < 0}.

As 1,<, =1 and k, < 0, then we can deduce from g,1,<, = k,g; that g, and
g, are collinear with negative coefficient of collinearity. O
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