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1. Introduction

In the discrete-time models without friction, it is well known that the self-
financing portfolio processes are modelled by their liquidation values. An
arbitrage opportunity is the terminal value VT at time T of such a portfolio
process, starting from a zero initial capital, and such that P (VT ≥ 0) = 1 and
VT 6= 0. The Dalang–Morton–Willinger (DMW) theorem [2] formulates an
equivalent characterisation of absence of such an arbitrage opportunity NAw.
Precisely, it states that NAw is equivalent to the existence of a martingale
probability measure for the price process and, moreover, under NAw the set
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of all terminal portfolio processes starting from the zero initial capital is
closed in probability.

The models with friction was first considered in the pioneering paper [7]
and, later, were extensively studied, e.g. in the papers [9], [5], [12], [4], [11].
With proportional transaction costs, it is classical to express the portfolio
processes as stochastic vectors of the invested physical units because, paying
transaction costs, the exchanges are allowed between the assets. Actually,
while the analog of the self-financing condition property is simple when the
portfolio processes are expresses in physical units (see [10, Chapter 3]), there
is no simple dynamics for their liquidation values. This is why, most of the
characterisations of absence of arbitrage opportunities are formulated by ex-
pressing the portfolio processes in physical units. In particular, the Grigoriev
theorem [3] provides such a characterization for the two dimensional conic
model that may be seen as a financial market model with a Bond and a risky
asset defined by its Bid and Ask prices. We may see it as a generalization
of the famous result of [7], which is formulated under the No Free Lunch
condition and appears to be equivalent to the NAw by Grigoriev’s theorem.
The condition NAw is the same than in the frictionless models, i.e. there is no
positive terminal liquidation value when starting from the zero initial capi-
tal. Equivalently, NAw holds if and only if there is no vector-valued portfolio
processes starting from zero and ending up with a terminal value in the first
orthant R2

+, see [10, Section 3.2.1]. It appears that the set of all vector-valued
terminal portfolio processes is not necessarily closed under NAw, see [10, Ex-
ample 1, Section 3.2.4 ] so that the Grigoriev theorem is not exactly the
analog of the DMW theorem. Actually, with proportional transaction costs,
closedness is only obtained under a strong absence of arbitrage opportunities,
i.e. the robust no-arbitrage property (see [10, Lemma 3.2.8]) meaning that
the NAw condition still holds with strictly smaller transaction costs.

In this paper, our main contribution is a version of the DMW theorem we
obtain for the Bid and Ask model by proving the closedness of the set of all
terminal liquidation values.

2. Model and basic properties

Notations.
e1 = (1, 0) ∈ R2.
For a subset G of R2, ∂G is the boundary of G and int G is its interior.
R2

+ is the set of all vectors in R2 having only non negative components.
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E designates the expectation of a random variable. When necessary, we de-
note it EQ when it is considered under Q ∼ P.
For a set-valued random mapping E, L0(E,F) is the metric space of all
E-valued random variables which are F -measurable.
Lp(E,F ,P), p ∈ [1,∞) (resp. p = ∞), is the normed space of all E-valued
random variables which are F -measurable and admitting a moment of order
p under the probability P (resp. bounded).
For any subset X of L0(R,F) containing −L0

+ and p ∈ [1,∞) ∪ {0}, we

denote by X p
, the closure of X p := X ∩ Lp(R,F ,P) with respect to the

Lp-topology (the topology of convergence in probability if p = 0). If Q ∼ P ,
we denote by X p

(Q) the closure under Q.

The Bid-Ask model. We consider a discrete-time complete stochastic
basis (Ω, IF := (Ft)t=0,··· ,T ,P) to construct a financial market model defined
by a Bond S0 = 1 and one risky asset characterised by Bid and Ask price
processes Sb and Sa adapted to the filtration IF.

Equivalently, the model may be defined by a sequence of IF-adapted closed
and conic sets (Gt)t=0,··· ,T of Rd, i.e. such that:

Graph Gt := {(ω, x) ∈ Ω×Rd : x ∈ Gt(ω)} ∈ Ft ⊗ B(Rd), t = 0, · · · , T.

where Gt, t = 0, · · · , T , is interpreted as the set of all financial positions it is
possible to liquidate without any debt. Precisely, let us define the liquidation
value process as

Lt(x) := x1 + (x2)+Sbt − (x2)−Sat , x = (x1, x2) ∈ R2,

where x is the vector of physical units of assets S0 and S respectively held
in the portfolio at time t. We recall the notation x+ = max(x, 0) and x− =
−min(x, 0). We may show that Lt(x) = sup{α ∈ R : x − αe1 ∈ Gt}, i.e.
Lt(x) is the maximal amount of cash the agent may obtain when liquidating
the financial position x, and Gt = {x ∈ R2 : Lt(x) ≥ 0}. This is a particular
case of the the Kabanov model with proportional transaction costs, see [10,
Chapter 3]. At any time t = 0, · · · , T , we easily observe that the following
properties hold:

Lemma 2.1.

1. The mapping x 7→ Lt(x) is concave hence continuous.
2. Lt(x

0, z) = x0 + Lt((0, z)) for all x0 ∈ R and z ∈ Rd.
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3. x− Lt(x)e1 ∈ ∂Gt for all x ∈ R2.

Note that the boundary ∂Gt = {x ∈ R2 : Lt(x) = 0} is composed
of two half lines respectively generated by the random vectors (Sat ,−1). and
(−Sbt , 1). The positive dual of Gt is G∗t := {z ∈ R2 : zx ≥ 0 : for allx ∈ Gt}.
The latter is a random cone of R2

+ whose boundary is the union of the two half
lines generated by the vectors (1, Sbt ) and (1, Sat ). We have G∗t \{0} ⊆ intR2

+.

Definition 2.2. A self-financing portfolio process (Vt)t=0,··· ,T starting from
the initial endowment V0− is an IF-adapted process such that

∆Vt := Vt − Vt−1 ∈ −Gt, ∀t = 0, · · · , T a.s. (2.1)

The interpretation is simple; when changing the position Vt−1 into a new
one Vt at time t, we liquidate without any debt the remaining part, i.e.
−∆Vt ∈ Gt. In the Kabanov model, we also interpret (2.1) as the paiement
of proportional transaction costs to change Vt−1 into Vt. We introduce the
set of all terminal values at time t ≤ T of portfolio processes starting from
the zero initial endowment at time u ≤ t i.e.

Atu :=
t∑

s=u

L0(−Gs,Fs).

Associated to this set above, the terminal liquidation values are

Ltu := {Lt(V ) : V ∈ Atu}.

Remark 2.3. Notice that for any γ ∈ LT0 , γe1 =
∑T

t=0(−gt) ∈ AT0 for some

gt ∈ L0(Gt,Ft). Indeed, γ = LT (VT ) where VT =
∑T

t=0 ∆Vt with ∆Vt ∈
−L0(Gt,Ft) for all t and V0− = 0. Moreover, γe1 − VT = LT (VT )e1 − VT ∈
−GT . Thus, γe1 = VT − ĝT where ĝT ∈ L0(GT ,FT ) and finally γe1 ∈ AT0 .
Futhermore, we may assume that gt ∈ L0(∂Gt,Ft) for all 0 ≤ t ≤ T − 1.
Indeed, let us write γe1 = −(g0 − L0(g0)e1) − (g1 + L0(g0)e1) +

∑T
t=2(−gt)

where g0 − L0(g0)e1 ∈ ∂G0. As L0(g0) ≥ 0, i.e., L0(g0)e1 ∈ R+e1, then
g1 + L0(g0)e1 ∈ G1. So replace g0 and g1 respectively by g0 − L0(g0)e1 and
g1 +L0(g0)e1 and repeat the above procedure for t ≥ 1 to obtain that gt ∈ ∂Gt

for all 0 ≤ t ≤ T − 1.

In the following, we suppose a technical condition (E) when T ≥ 4 which is
satisfied by the classical examples of market models with Bid and Ask prices
of the literature:
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Condition (E): When T ≥ 4, for all t ≤ T − 3, we have

{Sat = Sbt+1 = E(Sbt+1|Ft)} ⊆
⋃

r≥t+1

{(Sat ,−1) ∈ Gr}, a.s.,

{Sbt = Sat+1 = E(Sat+1|Ft)} ⊆
⋃

r≥t+1

{(−Sbt , 1) ∈ Gr}, a.s..

Recall that (Sat ,−1) and (Sbt ,−1) are the two generator vectors of Gt.
Notice that Condition (E) trivially holds when the l.h.s. of the inclusion is
almost surely empty. This is the case when we naturally suppose that it is
not possible to know by advance at time t the value of Sbt+1 or Sat+1. Let us
present some examples where Condition (E) holds:

Example 1: This first example is a generalization of the model proposed
in [5]. Let us consider a positive stochastic process (St)t=0,··· ,T we interpret
as the mid-prices and a process (εt)t=0,··· ,T with values in [0, 1) we inter-
pret as proportional transaction cost rates. We suppose that (St)t=0,··· ,T and
(εt)t=0,··· ,T are two independent processes and for every t, either the random
variables St+1

St
or 1+εt

1−εt+1
do not admit any atom. This is the case when St+1

St
admits a density and the rate process ε is constant. The Bid and Ask prices
are given by

Sbt := St(1− εt), Sat := St(1 + εt).

Then,

P(Sat = Sbt+1) = E(E(1Sat =Sbt+1
|σ(εt : t ≤ T )) = E(E(1St+1

St
=

1+εt
1−εu
|σ(εt : t ≤ T ))

= E
(
f

(
1 + εt

1− εt+1

))
,

where, by the independence assumption, f(x) = P
(
St+1

St
= x

)
. Using the

hypothesis on S, we get that f = 0. A similar reasoning holds when 1+εt
1−εt+1

does not admit any atom so that Condition (E) trivially holds.

Example 2: We consider a generalization of the Cox-Ross-Rubinstein model
with bid-ask spreads proposed in [8, Section 4]. The Bid and Ask prices are
given by

Sbt = (1 + ζbt )S
a
t−1, Sat = (1 + ζat )Sbt−1,
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where the vector-valued process ζ = (ζb, ζa) is such that Sbt ≤ Sat a.s. for
all t ≤ T . Moreover, it is supposed in [8, Section 4] that ζb and ζa take two
distinct values. With Ft = σ(ζbr , ζ

a
r , Sr : r ≤ t}, this hypothesis trivially

implies that the equalities ζbt = E(ζbt+1|Ft) and ζat = E(ζat+1|Ft) do not hold
almost surely. Here, we only suppose that the equalities ζbt = E(ζbt+1|Ft) = 0
and ζat = E(ζat+1|Ft) = 0 do not hold almost surely so that we may verify
that Condition (E) holds. Indeed, if for example Sbt+1 = Sat = E(Sbt+1|Ft)
then ζbt+1 = 0 = E(Sbt+1|Ft). We may also verify that Condition (E) holds
if we only suppose that ζbt = 0 if and only if ζat = 0. Indeed, if for example
Sbt+1 = Sat , then Sat+1 = Sbt hence Sat+1 ≤ Sbt+1. Therefore, Sat = Sat+1 and
Sbt = Sbt+1, i.e. Gt = Gt+1.

Example 3: Following [5], we suppose that the Bid and Ask prices are given
by

Sbt = St − εt, Sat = St + εt, t ≤ T,

where S and ε are two positive processes such Sb > 0. Then, Condition
(E) trivially holds when S and ε are independent and one of them does not
admit any atom since, in this case, P (Sbt+1 = Sat ) = P (Sat+1 = Sbt ) = 0 for all
u ≥ t+ 1.

3. The DMW theorem for discrete-time Bid-Ask models

Definition 3.1. We say that the financial market model defined by G satis-
fies the weak no-arbitrage property (NAw) if LT0 ∩ L0(R+,FT ) = {0}.

Lemma 3.2. (NAw) holds if and only if AT0 ∩ L0(GT ,FT ) ⊆ L0(∂GT ,FT ).

Proof. Suppose that (NAw) holds and consider VT ∈ AT0 ∩ L0(GT ,FT ).
Then, L(VT ) ∈ LT0 ∩ L0(R+,FT ) hence L(VT ) = 0, i.e. VT ∈ ∂GT a.s. Re-
ciprocally, suppose that AT0 ∩ L0(GT ,FT ) ⊆ L0(∂GT ,FT ). Any γT ∈ LT0
is such that γT e1 ∈ AT0 since γT = L(VT ) for some VT ∈ AT0 such that
VT − L(VT )e1 ∈ GT . 2

The assumption of the following lemma is clearly satisfied for the Bid-Ask
model.

Lemma 3.3. If GT strictly dominates Rd
+, i.e., Rd

+ \ {0} ⊂ int GT , then we
have

LT0 ∩ L0(R+,FT ) = {0} ⇐⇒ AT0 ∩ L0(Rd
+,FT ) = {0}.
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Proof. (⇐) This part is trivial since LT0 e1 = AT0 ∩ L0(Re1,FT ) ⊆ AT0 .
(⇒) Let VT ∈ AT0 ∩ L0(Rd

+,FT ). Since Rd
+ ⊆ GT , then LT (VT ) ≥ 0.

So the condition LT0 ∩ L0(R+,FT ) = {0} implies LT (VT ) = 0, hence VT ∈
∂GT ∩Rd

+ = {0}. 2
The equivalent condition to (NAw), as expressed in the lemma above, is

studied by Grigoriev [3] and [10, Theorem 3.2.15]. The Grigoriev theorem
states that Condition (NAw) holds if and only if there exists Consistent Price
Systems (CPS) evolving in the positive duals of the solvency sets, precisely
martingales (Zt)t=0,··· ,T satisfying Zt ∈ G∗t \ {0} for all t = 0, · · · , T . This
result is a weaker form of the Dalang-Morton-Willinger theorem, see [2].
Without friction, the set of all terminal claims obtained from the zero initial
endowment appears to be closed. With proportional transaction costs, this is
no more the case if the terminal claims are expressed in physical units, see [10,
Example 1, Section 3.2.4]. In this paper, we show a Dalang-Morton-Willinger
version of the Grigoriev theorem, i.e. we show that under Condition (NAw),
the set of all terminal liquidation values we get from portfolio processes
starting from zero is closed. To do so, we use the technical condition (E)
when T ≥ 4. This is an open problem whether our result still holds without
(E) for T ≥ 4.

Theorem 3.4. Suppose that Condition (E) holds for T ≥ 4. The following
conditions are equivalent:

1 (NAw)
2 LT0 is closed in probability and LT0 ∩ L0(R+,FT ) = {0}.
3 There exists Q ∼ P with dQ/dP ∈ L∞ such that EQLT (V ) ≤ 0 for all

LT (V ) ∈ LT0 ∩ L1(P).
4 There exists Q ∼ P with dQ/dP ∈ L∞ such that for all t ≤ T − 1,
EQ(Sat+1|Ft) ≤ Sbt and EQ(Sbt+1|Ft) ≤ Sat .

5 There exists Q ∼ P with dQ/dP ∈ L∞ and a Q-martingale S̃ such that
S̃ ∈ [Sb, Sa].

In the following, we denote by M(P ) the set of all Q ∼ P such that
EQLT (V ) ≤ 0 for all LT (V ) ∈ LT0 . For any contingent claim ξ ∈ L0(R,FT ),
we define Γξ as the set of all initial endowments we need to start a portfolio
process whose terminal liquidation value coincides with ξ, i.e.

Γξ := {x ∈ R : ∃V ∈ AT0 : LT (xe1 + V ) = ξ}.
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Corollary 3.5. Suppose that Condition (E) holds for T ≥ 4. Let us con-
sider a payoff ξ ∈ L0(R,FT ) satisfying supQ∈M(P ) EQ|ξ| < ∞. Then, under
Condition (NAw), Γξ = [supQ∈M(P ) EQξ,∞).

4. Proofs of the main results

4.1. Proof of Theorem 3.4.

Note that the implication (2) ⇒ (3) is immediate by [10, Theorem 2.1.4].
The implications (3)⇒ (1) and (2)⇒ (1) are also trivial. It remains to show
that (1) ⇒ (2). Suppose that (NAw) and let us prove that LT0 is closed in
probability. Recall that, by the Grigoriev theorem, there exists a CPS Z,
i.e. a martingale Z such that Zu ∈ G∗u \ {0} for all u ≤ T . For the one
step model there is nothing to prove since LTT = −L0(R+,FT ). Indeed, if
LT (−gT ) ≥ 0 for some gT ∈ L0(GT ,FT ), then gT ∈ (−GT ) ∩ GT ⊆ ∂GT

hence LT (−gT ) = 0. Let us consider the two step model.

Assume that the sequence γnT ∈ LTT−1 converges to γ∞T . From Remark 2.3,
we may suppose that γnT e1 = −gnT−1−gnT where gnT−1 ∈ L0(∂GT−1,FT−1) and
gnT ∈ L0(GT ,FT ).

On the set ΛT−1 := {lim inf |gnT−1| = ∞} ∈ FT−1, we normalize the se-

quences by setting γ̃nT :=
γnT
|gnT−1|

, g̃nT−1 :=
gnT−1

|gnT−1|
and g̃nT :=

gnT
|gnT−1|

. Then,

γ̃nT e1 = −g̃nT−1 − g̃nT .

As |g̃nT−1| = 1, by passing to some FT−1-measurable random sequence we
may assume that g̃nT−1 converges to g̃∞T−1 ∈ GT−1, see [10, Lemma 2.1.2]. As
γ̃nT e1 converges to zero, we deduce that g̃nT converges to g̃∞T ∈ GT . Finally,
we get the following equality:

g̃∞T−1 + g̃∞T = 0

where g̃∞T−1 ∈ ∂GT−1 and g̃∞T ∈ GT . Note that, we may define g̃∞T−1 =
g̃∞T = 0 on Ω \ ΛT−1 ∈ FT−1. Let us consider a CPS Z. From, ZT (g̃∞T−1 +
g̃∞T ) = 0 we deduce that ZT−1g̃

∞
T−1 + E(ZT g̃

∞
T |FT−1) = 0. As the two terms

in the right side of this equality are non negative by duality, we deduce
that ZT−1g̃

∞
T−1 = ZT g̃

∞
T = 0. Moreover, g̃T = −g̃T−1 is FT−1 implies that

0 = E(ZT g̃
∞
T |FT−1) = ZT−1g̃

∞
T . Then, ZT−1g̃

∞
T = ZT g̃

∞
T implies that ZT−1

and ZT belongs to the same half-line of R2
+. In particular, since ZT ∈ G∗T , we
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also have ZT−1 ∈ G∗T . We deduce that ZT−1γ
n
T e1 = −ZT−1g

n
T−1 − ZTgnT ≤ 0

as gnT−1 ∈ GT−1 and gnT ∈ GT . Since ZT−1e1 > 0, we deduce that γnT ≤ 0.
Therefore, we may replace gnT−1 by ḡnT−1 = 0 ∈ GT−1 and gnT by ḡnT =
−γnT e1 ∈ GT so that we still have γnT = −ḡnT−1− ḡnT . Finally, we may write on
Ω, γnT = −ĝnT−1− ĝnT , where ĝnT−1 = gnT−11Ω\ΛT−1

∈ L0(GT−1,FT−1) and ĝnT =
gnT1Ω\ΛT−1

+ ḡnT1ΛT−1
L0(GT ,FT ). By construction, lim infn |ĝnT−1| <∞ hence

we may suppose that ĝnT−1 → ĝ∞T−1 ∈ L0(GT−1,FT−1) by [10, Lemma 2.1.2].
We deduce that ĝnT → ĝ∞T ∈ L0(GT ,FT ) hence γ∞T = −ĝ∞T−1 − ĝ∞T ∈ LTT−1.

Let us consider the three step model. Suppose that the sequence γnT ∈ LTT−2

converges to γ∞T . By Remark 2.3, we may suppose that γnT e1 = −gnT−2−gnT−1−
gnT where gnt ∈ ∂Gt for t = T − 2, T − 1 and gnT ∈ GT .

Let us first consider the subset ΓT−2 := {lim inf |gnT−2| < ∞} ∈ FT−2.
By [10, Lemma 2.1.2], we may assume that gnT−2 is convergent to g∞T−2 ∈
L0(GT−2,FT−2). Next we consider the following two sub-cases:

(a) On the set where lim inf |gnT−1| < ∞, we may suppose that the se-
quences gnT−1 and gnT are both pointwise convergent by [10, Theorem 5.2.3].

(b) On the set ΛT−1 := {lim infn |gnT−1| = ∞} ∈ FT−1, we normalize the
sequences by dividing the term |gnT−1| and we get

γ̃nT e1 = −g̃nT−2 − g̃nT−1 − g̃nT
where γ̃nT :=

γnT
|gnT−1|

, g̃nt :=
gnt
|gnT−1|

for all t = T−2, T−1, T . As |g̃nT−1| = 1, up to

some FT−1-measurable random sequence, we may assume that g̃nT−1 converges
to g̃∞T−1 ∈ ∂GT−1. As γ̃nT and g̃nT−2 both converge to zero, necessarily g̃nT is
convergent to some limit g̃∞T ∈ GT and

g̃∞T−1 + g̃∞T = 0.

Since we only consider FT−1-measurable sets, we may claim that LT (g̃∞T ) =
LT (−g̃∞T−1) ∈ LTT−2 ∩ L0(R+,FT ) = {0} hence g̃∞T ∈ ∂GT by NAw.

Assume g̃
∞(1)
T−1 > 0 and g̃

∞(2)
T−1 < 0, the second case where g̃

∞(1)
T−1 < 0 and

g̃
∞(2)
T−1 > 0 being similar. The equality g̃∞T−1 + g̃∞T = 0 implies that g̃

∞(1)
T < 0

and g̃
∞(2)
T > 0. This implies that we may replace gnT−1 by gnT−11

g
n(2)
T−1<0

+

g̃∞T−11
g
n(2)
T−1≥0

and gnT by gnT1
g
n(2)
T >0

+ g̃∞T 1
g
n(2)
T ≤0

. So, we may assume that

g
n(2)
T−1 < 0 and g

n(2)
T > 0. Let us define the FT−1-measurable positive real-

valued random variable

βn :=
g
n(2)
T−2 + g

n(2)
T−1

g̃
∞(2)
T−1

.
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As g̃∞T−1 + g̃∞T = 0, we rewrite γnT e1 as γnT e1 = −gnT−2−(gnT−1−βng̃∞T−1)−(gnT−
βng̃∞T ). By definition of βn, the second component of the term gnT−1−βng̃∞T−1

is
(gnT−1 − βng̃∞T−1)(2) = −gn(2)

T−2.

Notice that g̃∞T−1 ∈ ∂GT−1 and g̃∞T ∈ ∂GT , i.e., LT−1(g̃∞T−1) = g̃
∞(1)
T−1 +

g̃
∞(2)
T−1 S

a
T−1 = 0 and LT (g̃∞T ) = g̃

∞(1)
T + g̃

∞(2)
T SbT = 0 with g̃

∞(2)
T = −g̃∞(2)

T−1 > 0.

So we have
g̃
∞(1)
T−1

g̃
∞(2)
T−1

= −SaT−1 and
g̃
∞(1)
T

g̃
∞(2)
T

= −SbT . As g̃∞T−1 = −g̃∞T , we have

SaT−1 = SbT . The first component of the term gnT−1 − βng̃∞T−1 is

(gnT−1 − βng̃∞T−1)(1) = g
n(1)
T−1 − β

ng̃
∞(1)
T−1

= g
n(1)
T−1 −

g
n(2)
T−2 + g

n(2)
T−1

g̃
∞(2)
T−1

g̃
∞(1)
T−1

= g
n(1)
T−1 + (g

n(2)
T−2 + g

n(2)
T−1)SaT−1

= g
n(1)
T−1 + g

n(2)
T−1S

a
T−1 + g

n(2)
T−2S

a
T−1

= g
n(2)
T−2S

a
T−1

since g
n(1)
T−1 + g

n(2)
T−1S

a
T−1 = LT−1(gnT−1) = 0.

Then, gnT−1−βng̃∞T−1 = (g
n(2)
T−2S

a
T−1,−g

n(2)
T−2). Notice that it satisfies the con-

dition lim inf |gnT−1−βng̃∞T−1| <∞ since SaT−1 ∈ L∞(R,FT−1) and lim inf |gnT−2| <
∞. Liquidate this position at time T − 1 to get

LT−1(gnT−1 − βng̃∞T−1) = g
n(2)
T−2S

a
T−1 − g

n(2)
T−2S

a
T−1I

g
n(2)
T−2≥0

− gn(2)
T−2S

b
T−1I

g
n(2)
T−2<0

.

This implies that LT−1((gnT−1 − βng̃∞T−1)I
g
n(2)
T−2≥0

) = 0, i.e.,

(gnT−1 − βng̃∞T−1)I
g
n(2)
T−2≥0

∈ ∂GT−1.

Otherwise, if we liquidate the position at time T , we obtain that

LT (gnT−1 − βng̃∞T−1) = g
n(2)
T−2S

b
T − g

n(2)
T−2S

a
T I
g
n(2)
T−2≥0

− gn(2)
T−2S

b
T I
g
n(2)
T−2<0

.

This implies that LT ((gnT−1 − βng̃∞T−1)I
g
n(2)
T−2<0

) = 0, i.e.,

(gnT−1 − βng̃∞T−1)I
g
n(2)
T−2<0

∈ ∂GT .
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About the term gnT − βng̃∞T , it is easy to see that the second component is

zero since βn =
g
n(2)
T

g̃
∞(2)
T

. The first component is

(gnT − βng̃∞T )(1) = g
n(1)
T − βng̃∞(1)

T

= g
n(1)
T − g

n(2)
T

g̃
∞(2)
T

g̃
∞(1)
T

= g
n(2)
T (

g
n(1)
T

g
n(2)
T

− g̃
∞(1)
T

g̃
∞(2)
T

)

As gnT ∈ GT , LT (gnT ) = g
n(1)
T + g

n(2)
T SbT ≥ 0. So we have

g
n(1)
T

g
n(2)
T

≥ −SbT =
g̃
∞(1)
T

g̃
∞(2)
T

.

Thus, (gnT − βng̃∞T )(1) ≥ 0, i.e.,

gnT − βng̃∞T ∈ R+e1.

On the set ΓT−2, we finally obtain that γnT e1 = −gnT−2 − ĝnT−1 − ĝnT , where

ĝnT−1 := gnT−11Ω\ΛT−1
+ (gnT−1 − βng̃∞T−1)I

g
n(2)
T−2≥0

1ΛT−1
∈ L0(GT−1,FT−1),

ĝnT := gnT1Ω\ΛT−1
+ (gnT−1 − βng̃∞T−1)I

g
n(2)
T−2<0

1ΛT−1

+(gnT − βng̃∞T )1ΛT−1
∈ L0(GT ,FT ).

By construction, notice that lim infn |ĝnT−1| <∞ on ΓT−2. By [10, Lemma
2.1.2], we may assume that ĝnT−1 is convergent to ĝ∞T−1 ∈ L0(GT−1,FT−1) at
least for some FT−1-measurable subsequence nk(ω), ω ∈ Ω. As we already
know that gnT−2 → g∞T−2 ∈ L0(GT−2,FT−2), we still have gnkT−2 → g∞T−2 ∈
L0(GT−2,FT−2) even if gnkT−2 is no more FT−2-measurable. We deduce that
gnkT → g∞T ∈ L0(GT ,FT ) and, finally, γ∞T 1ΓT−2

= −g∞T−2− ĝ∞T−1− ĝ∞T ∈ LTT−2.

On the set ΛT−2 := {lim inf |gnT−2| =∞}, we use the normalization proce-
dure to get

γ̄nT e1 = −ḡnT−2 − ḡnT−1 − ḡnT ,

where γ̄nT :=
γnT
|gnT−2|

, ḡnt :=
gnt
|gnT−2|

for t ≥ T − 2. As lim inf |ḡnT−2| = 1, we may

argue as we did on the complementary set ΓT−2 and assume that ḡnt → ḡ∞t ∈
L0(Gt,Ft) for t ≥ T − 2 such that

ḡ∞T−2 + ḡ∞T−1 + ḡ∞T = 0
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with ḡ∞t ∈ ∂Gt if t = T−2, T−1 and |ḡ∞T−2| = 1. Since LT (ḡ∞T ) = LT (−ḡ∞T−2−
ḡ∞T−1) ∈ LTT−2 ∩ L0(R+,FT ) = {0}, we also get that ḡ∞T ∈ ∂GT .

For any CPS Z, taking the conditional expectation knowing FT−2 in the
equality ZT (ḡ∞T−2 + ḡ∞T−1 + ḡ∞T ) = 0, we deduce that

ZT−2ḡ
∞
T−2 + E(ZT−1ḡ

∞
T−1|FT−2) + E(ZT ḡ

∞
T |FT−2) = 0.

All the terms of the l.h.s. being non negative, we finally obtain that Ztḡ
∞
t = 0

for all t ≥ T − 2. As ḡ∞T = −ḡ∞T−2 − ḡ∞T−1 is FT−1-measurable, taking the
conditional expectation knowing FT−1 in the equality ZT ḡ

∞
T = 0, we deduce

that ZT−1ḡ
∞
T = 0. But ZT−1(ḡ∞T−2 + ḡ∞T−1 + ḡ∞T ) = 0 hence ZT−1ḡ

∞
T−2 = 0.

Since |ḡ∞T−2| = 1, the two equalities ZT−2ḡ
∞
T−2 = ZT−1ḡ

∞
T−2 = 0 implies that

ZT−1 and ZT−2 belong to a same half line of G∗T−1 ∩G∗T−2.

Assume ḡ
∞(1)
T−2 > 0 and ḡ

∞(2)
T−2 < 0, the other case where ḡ

∞(1)
T−2 < 0 and

ḡ
∞(2)
T−2 > 0 is similar. Up to some FT−2-measurable random sequence (ñk)k we

may assume that g
n(1)
T−2 > 0 and g

n(2)
T−2 < 0. We then consider the following two

sub cases:
(c) When ḡ∞T 6= 0. In the case where ḡ∞T−1 6= 0, the two equalities ZT−1ḡ

∞
T−1 =

ZT−1ḡ
∞
T = 0 implies that ḡ∞T−1 and ḡ∞T are collinear. As ZT (ḡ∞T−2 + ḡ∞T−1 +

ḡ∞T ) = 0, we have ZT (ḡ∞T−2 + ḡ∞T−1) = 0 where ZT ḡ
∞
T−1 = ZT ḡ

∞
T = 0 since

ḡ∞T−1 ∈ R+ḡ
∞
T . It follows that ZT ḡ

∞
T−2 = 0. In the case where ḡ∞T−1 = 0, the

equality ZT (ḡ∞T−2 + ḡ∞T−1) = 0 implies that ZT ḡ
∞
T−2 = 0. Finally, ZT−2ḡ

∞
T−2 =

ZT−1ḡ
∞
T−2 = ZT ḡ

∞
T−2 = 0 implies that ZT−2, ZT−1 and ZT are both collinear

with some positive coefficients of collinearity when both ḡ∞T−2 and ḡ∞T are
different from zero. This implies that ZT ∈ G∗t for all t ≥ T −2. Since γnT e1 =
−gnT−2 − gnT−1 − gnT , we deduce that ZTγ

n
T e1 = −(ZTg

n
T−2 + ZTg

n
T−1 + ZTg

n
T )

ZTγ
n
T e1 ≤ 0 hence γnT ≤ 0 on the set ΛT−2 ∩ {ḡ∞T 6= 0}.

(d) When ḡ∞T = 0, ḡ∞T−2 + ḡ∞T−1 = 0. Let us define the FT−2-measurable
positive real-valued random variable as

β̄n :=
g
n(2)
T−2

ḡ
∞(2)
T−2

.

Since ḡ∞T−1 = −ḡ∞T−2, ḡ
∞(1)
T−1 < 0 and ḡ

∞(2)
T−1 > 0, we may replace gnT−1 by

gnT−11{gn(1)T−1<0; g
n(2)
T−1>0} + ḡ∞T−11

Ω\{gn(1)T−1<0; g
n(2)
T−1>0} and assume that g

n(1)
T−1 < 0 and

g
n(2)
T−1 > 0 . As ḡ∞T−2 + ḡ∞T−1 = 0, we rewrite γnT e1 as γnT e1 = −(gnT−2 −
β̄nḡ∞T−2) − (gnT−1 − β̄nḡ∞T−1) − gnT where gnT−2 − β̄nḡ∞T−2 = 0 by construction.
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As ḡ∞T−2 ∈ ∂GT−2 and ḡ∞T−1 ∈ ∂GT−1, LT−2(ḡ∞T−2) = ḡ
∞(1)
T−2 + ḡ

∞(2)
T−2 S

a
T−2 = 0

and LT−1(ḡ∞T−1) = ḡ
∞(1)
T−1 + ḡ

∞(2)
T−1 S

b
T−1 = 0. So we have

ḡ
∞(1)
T−2

ḡ
∞(2)
T−2

= −SaT−2 and

ḡ
∞(1)
T−1

ḡ
∞(2)
T−1

= −SbT−1. As ḡ∞T−1 = −ḡ∞T−2, SaT−2 = SbT−1.

The second component of gnT−1 − β̄nḡ∞T−1 is (gnT−1 − β̄nḡ∞T−1)(2) = −gn(2)
T .

Thus, β̄n =
g
n(2)
T−1+g

n(2)
T

ḡ
∞(2)
T−1

, which is FT−1-measurable. Notice that gnT−1− β̄nḡ∞T−1

is also FT−1-measurable. Its first component is

(gnT−1 − β̄nḡ∞T−1)(1) = g
n(1)
T−1 − β̄

nḡ
∞(1)
T−1

= g
n(1)
T−1 −

g
n(2)
T−1 + g

n(2)
T

ḡ
∞(2)
T−1

ḡ
∞(1)
T−1

= g
n(1)
T−1 + (g

n(2)
T−1 + g

n(2)
T )SbT−1

= g
n(1)
T−1 + g

n(2)
T−1S

b
T−1 + g

n(2)
T SbT−1

= g
n(2)
T SbT−1

since g
n(1)
T−1 + g

n(2)
T−1S

b
T−1 = LT−1(gnT−1) = 0. Then

gnT−1 − β̄nḡ∞T−1 = (g
n(2)
T SbT−1,−g

n(2)
T )

so that
γnT = −gn(2)

T SbT−1 − g
n(1)
T .

Liquidate the position gnT−1 − β̄nḡ∞T−1 at time T − 1 to get

LT−1(gnT−1 − β̄nḡ∞T−1) = g
n(2)
T SbT−1 − g

n(2)
T SaT−1I

g
n(2)
T >0

− gn(2)
T SbT−1I

g
n(2)
T ≤0

.

This implies that LT−1((gnT−1 − β̄nḡ∞T−1)I
g
n(2)
T ≤0

) = 0, i.e.,

(gnT−1 − β̄nḡT−1)I
g
n(2)
T ≤0

∈ ∂GT−1.

Similarly we deduce by liquidating it at time T − 2 that

(gnT−1 − β̄nḡT−1)I
g
n(2)
T >0

∈ ∂GT−2.

If we set hnT−1 := gnT−2 + gnT−1, then

hnT−1 = gnT−1 − β̄nḡ∞T−1 = (g
n(2)
T SbT−1,−g

n(2)
T )
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belongs to the boundary of GT−2 or GT−1.

In the case where g
n(2)
T ≤ 0, it is possible to change gnT−1 into gnT−1− β̄nḡ∞T−1

which still belongs to the boundary of GT−1.

On the set {gn(2)
T > 0} ∈ FT−1, we consider two sub cases. On the set

{supn g
n(2)
T < ∞} ∈ FT−1, up to a convex combination (see [10, Theorem

A.2.3]), we assume that g
n(2)
T is convergent. As γnT = −gn(2)

T SbT−1 − g
n(1)
T ,

g
n(1)
T is also convergent, i.e. gnT converges to gT ∈ L0(GT ,FT ). Then γ∞T e1 =

limn(−gnT−2 − gnT−1 − gnT ) = limn(−gnT−2 − gnT−1 − gT ), i.e. we may replace
gnT by gT . By the initial normalization on ΛT−2, we then get that γnT =

−g(2)
T SbT−1 − g

(1)
T instead of γnT = −gn(2)

T SbT−1 − g
n(1)
T , i.e. γnT does not depend

on n any more: we may write γnT e1 = −g1
T−2−g1

T−1−g1
T where g1

t is a constant
substitution of gnt for each t ≥ T − 2.

On the FT−1-measurable set {supn g
n(2)
T =∞}, first recall that for any CPS

Z, ZT−2 and ZT−1 are colinear vectors of R2
+ orthogonal to the line generated

by ḡ∞T−2. Through the normalizing procedure which consists in dividing by

g
n(2)
T on both sides of the equality γnT e1 = −hnT−1 − gnT , we get that

h̃T−1 + g̃T = 0

where h̃T−1 ∈ L0(Rḡ∞T−2,FT−1) and g̃T ∈ L0(GT ,FT ). Taking conditional

expectation knowing FT−1 in the equality ZT (h̃T−1 + g̃T ) = 0, we deduce
that ZT−1h̃T−1 + E(ZT g̃T |FT−1) = 0. As ZT−1h̃T−1 = 0 and ZT g̃T ≥ 0, we
then deduce that ZT g̃T = 0 hence ZT h̃T−1 = 0. The equality ZT−1h̃T−1 =
ZT h̃T−1 = 0 with h̃T−1 6= 0 implies that ZT and ZT−1 also belongs to the
same half line. Finally ZT ∈ G∗t for all t ≥ T − 2 and, by a similar argument
as above, we deduce that γnT ≤ 0.

Gathering with the case (c) where ḡ∞T 6= 0, we can conclude that on the
FT−2-measurable set ΛT−2, we have γnT e1 = −g1

T−2 − ĝnT−1 − ĝnT where

ĝnt :=
4∑
i=1

ĝnit ∈ L0(Gt,Ft), t ≥ T − 1,

with

ĝn1
T−1 := (‖g1

T−2‖ḡ∞T−1)Iḡ∞T 6=0,

ĝn2
T−1 := (−g1

T−2 + gnT−1 − β̄nḡ∞T−1)Iḡ∞T =0I
g
n(2)
T ≤0

,

ĝn2
T−1 := g1

T−1Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T <∞,

ĝn2
T−1 := (−g1

T−2)Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T =∞
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and

ĝn1
T := (‖g1

T−2‖ḡ∞T − γnT e1)Iḡ∞T 6=0,

ĝn2
T := gnT Iḡ∞T =0I

g
n(2)
T ≤0

,

ĝn3
T := g1

T Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T <∞,

ĝn4
T := (−γnT e1)Iḡ∞T =0I

g
n(2)
T >0

I
supng

n(2)
T =∞.

We can easily see that ĝniT−1 ∈ ∂GT−1 when i = 2, 3, 4 and ĝniT ∈ GT for
all i = 1, 2, 3, 4. The expressions of ĝn1

t , t = T − 1, T are obtained from the
following equality: gnT−2 = ‖gnT−2‖ḡnT−2 = ‖gnT−2‖ḡ∞T−2 = −‖gnT−2‖(ḡ∞T−1 + ḡ∞T )
with n = 1 and γ1

T e1 = −g1
T−2 − (−g1

T−2)− (−γ1
T e1).

Since the sequence (gnT−2)n≥1 is replaced by the constant g1
T−2, we may

follow the reasoning we did on the complementary ΓT−2 so that we finally
obtain γ∞T e1 = −g∞T−2− g∞T−1− g∞T where g∞t ∈ Gt for all t = T − 2, T − 1, T
and γ∞T = LT (γ∞T e1) ∈ LTT−2.

We now consider the general case. Let us suppose by induction that the
statement above holds for the model with dates between t + 1 and T with
t+1 ≥ T−2 and let us prove it from t to T . To do so, consider a sequence δnT =
−gnt − gnt+1− · · · − gnT , where we may suppose w.l.o.g. that gnu ∈ L0(∂Gu,Fu)
for all u = t, · · · , T−1 and gnT ∈ L0(GT ,FT ), converges to δT ∈ L0(Re1,FT ).
We claim that δnT = −ĝnt − ĝnt+1 − · · · − ĝnT + εnT , where ĝnu ∈ L0(Gu,Fu) for
all u = t, · · · , T − 1 and ĝnT ∈ L0(GT ,FT ) are such that lim infn |gnu | < ∞
a.s. for all u = t, · · · , T and limn ε

n
T = 0 a.s. Moreover we claim that, on

the set {lim infn |gnt | = +∞}, ĝnt is either 0 or a constant element of the
sequence (gnu)n≥0 and ĝnt = gnt on the set {lim infn |gnt | < ∞}. Notice that
these properties are verified for t = T − 1 and t = T − 2 as shown above.

Let us denote by u the smallest instant such that P (lim infn |gnu | = +∞) >
0. As lim infn |gnu | < ∞ a.s. for every r = t, · · · , u − 1, we may successively
suppose that gnr is a.s. convergent to some gr ∈ L0(∂Gr,Fr) when r ≤ u− 1
by [10, Lemma 2.1.2]. It is then possible to make the substitution gni = gi for
every i ≤ u − 1, letting aside a residual error ε̃nT which tends a.s. to zero as
in the claim. We suppose that u ≤ T , otherwise there is nothing to prove.

We first work on the set Λt := {lim infn |gnt | < ∞} so that u ≥ t + 1.
We split Λt into Λu := {lim infn |gnu | < ∞} ∈ Fu and its complimentary
Γu := {lim infn |gnu | = ∞}. On the latter set, dividing by |gnu |, we get the
normalisation

δ̃nT = −g̃nt − g̃nt+1 − · · · − g̃nT
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where δ̃nT =
δnT
|gnu |

and g̃nr := gnr
|gnu |

for r = t, · · · , T . As δ̃nT and g̃nr with r =
t, · · · , u − 1 all converge to 0, we may use the induction hypothesis and
suppose that lim infn |g̃nr | <∞ on Γu if r ≥ u. By [10, Lemma 2.1.2], we may
suppose that g̃nr → g̃r ∈ L0(Gr,Fr) if r ≥ u and, finally,

g̃∞u + g̃∞u+1 + · · ·+ g̃∞T = 0. (4.2)

We deduce that g̃∞T ∈ L0(∂GT ,FT ) under (NAw). Let us consider the stop-
ping time τ , being the first instant τ ≥ u+1 such that g̃∞u +g̃∞u+1+· · ·+ g̃∞τ = 0.
By Lemma 4.1 and Lemma 4.2, for all r ≥ u, there exists kr ∈ L0(R,Fr)
such that g̃r1r≤τ = krg̃u1r≤τ . Let us introduce the first instant σ ∈ {t+ 1, τ}
such that kσ < 0, which is possible by (4.2) since ku = 1. We consider the

case where g̃
∞(1)
u > 0 and g̃

∞(2)
u < 0, then g̃

∞(1)
σ < 0 and g̃

∞(2)
σ > 0. The

symmetric case may be solved similarly.

Since Lu(g̃
∞
u ) = Lσ(g̃∞σ ) = 0, g̃

∞(1)
u

g̃
∞(2)
u

= g̃
∞(1)
σ

g̃
∞(2)
σ

= −Sau = −Sbσ by Lemma 4.2.

As (g̃nt + · · ·+ g̃nu)(2) = −(g̃nu+1 + ...+g̃
n
T )(2) − δn(2)

T converges to g̃
∞(2)
u < 0, up

to some Fu-measurable random sequences we may assume that g̃
n(2)
u < 0 and

(g̃nt + ...+g̃
n
u)(2) < 0. Let

βn :=
(gnt + · · ·+ gnu)(2)

g̃
∞(2)
u

which is positive and Fu-measurable. Now we rewrite δnT as

δnT = −gt − · · · − gu−1 − (gnu − βng̃∞u )− βng̃∞u − gnu+1 − · · · − gnT .

The second component of the term gnu − βng̃∞u is

(gnu − βng̃∞u )(2) = −(gt + · · ·+ gu−1)(2).

And the first component of this term is

(gnu − βng̃∞u )(1) = gn(1)
u − βng̃∞(1)

u

= gn(1)
u − (gnt + · · ·+ gnu)(2) g̃

∞(1)
u

g̃
∞(2)
u

= gn(1)
u + (gnt + · · ·+ gnu)(2)Sau

= gn(1)
u + gn(2)

u Sau + (gnt + ...+ gnu−1)(2)Sau

= (gt + · · ·+ gu−1)(2)Sau
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Thus,

gnu − βng̃∞u = ((gt + · · ·+ gu−1)(2)Sau,−(gt + · · ·+ gu−1)(2))

which is constant, and so satisfies lim infn |gnu − βng̃∞u | < +∞.
On the set Λ1

u−1 := {(gt + · · · + gu−1)(2) ≥ 0}, it has Lu(g
n
u − βng̃∞u ) =

(gt + · · ·+ gu−1)(2)Sau − (gt + · · ·+ gu−1)(2)Sau = 0. This implies that

(gnu − βng̃∞u )1Λ1
u−1
∈ ∂Gu.

On the set Λ2
u−1 := {(gt + · · · + gu−1)(2) < 0}, it has Lσ(gnu − βng̃∞u ) =

(gt + · · ·+ gu−1)(2)Sau − (gt + · · ·+ gu−1)(2)Sbσ = 0. This implies that

(gnu − βng̃∞u )1Λ2
u−1
∈ ∂Gσ.

As σ ∈ {u+ 1, · · · , T}, then (gnu −βng̃∞u )1Λ2
u−1

=
T∑

k=u+1

1σ=k1Λ2
u−1

(gnu −βng̃∞u )

where ḡk := 1σ=k1Λ2
u−1

(gnu − βng̃∞u ) ∈ L0(∂Gk,Fk). On the other hand, the

second component of the term (−βng̃∞u − gnu+1 − ... − gnT )(2) = δ
n(2)
T → 0

so that we may use the induction argument as u ≥ t + 1 to deduce that

−βng̃∞u −gnu+1− ...−gnT = −
T∑
k=u

ǧnk + ε̃nT where every ǧnk ∈ L0(Gk,Fk) admits

a finite limit infimum and ε̃nT → 0 a.s. as n→∞. Finally, we may write

δnT1Λt1Λu = −
u−1∑
r=t

gr1Λu − (gnu − βng̃∞u )1Λu − βng̃∞u 1Λu −
T∑

r=u+1

gnr 1Λu

= −
u−1∑
r=t

gr1Λu − (gnu − βng̃∞u )1Λ1
u−1
− (gnu − βng̃∞u )1Λ2

u−1
−

T∑
k=u

ǧnk1Λu + ε̃nT

= −
u−1∑
r=t

gr1Λu − (gnu − βng̃∞u )1Λ1
u−1
−

T∑
k=u+1

ḡk1Λu −
T∑
k=u

ǧnk1Λu + ε̃nT

= −gt1Λu − · · · − gu−11Λu −
T∑
k=u

ĝnk1Λu + ε̃nT

where ĝnu = (gnu − βng̃∞u )1Λ1
u−1

+ ǧnu ∈ L0(Gu,Fu) and ĝnk = ḡk + ǧnk ∈
L0(Gk,Fk) for k ≥ u + 1. Note that, for every k, lim infn |ĝnk | < ∞ a.s.
On the complimentary set Γu of Λu, we may suppose that gnu → gu ∈
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L0(Gu,Fu) by [10, Lemma 2.1.2] and finally assume without loss of gen-
erality that δnT1Γu = −gt1Γu − gt+11Γu − · · · − gu1Γu − gnu+11Γu − · · · − gnT .
We then deduce from above that δnT1Λt = δnT1Λt1Λu + δnT1Λt1Γu is of the form
δnT1Λt = −gt1Λt − · · · − gu−1 − gnu − · · · − gnT where lim inf |gnu | <∞ a.s. This
implies that we may repeat the procedure above with some date u1 ≥ u+ 1
instead of u. As the number of dates is finite, we finally conclude on Λt.

Next we consider the case where lim infn |gnt | = +∞. Using the classical
normalization procedure, we get

δ̄nT = −ḡnt − ḡnt+1 − · · · − ḡnT

where γ̄nT :=
γnT
|gnt |

and ḡni :=
gni
|gnt |

for all i = t, · · · , T . Since |ḡnt | = 1, up to

the first case where lim infn |gnt | < +∞ we deduce an equality of the type
ḡ∞t + ḡ∞t+1 + · · · + ḡ∞T = 0. As ḡ∞t 6= 0, let us consider the stopping time
τ̄ ≥ t + 1 as the first instant such that ḡ∞t + ḡ∞t+1 + · · · + ḡ∞τ = 0. Then, for
any CPS (Zr)r=t,··· ,T , Zt, · · · , Zτ are collinear by Lemma 4.1. It follows that
Zt+1 ∈ G∗t ∩G∗t+1 and (Zr)r=t+1,··· ,T is a CPS for the market model from t+1

to T defined by the solvency sets G̃t = Gt + Gt+1 = Gt ∪Gt+1 ⊆ (Zt)
∗ and

G̃u = Gu for u ≥ t+2. This means that Condition (NAw) holds for the model
(G̃r)r=t+1,··· ,T . Since gnt + gnt+1 ∈ L0(G̃t,Ft+1), we may apply the induction
hypothesis and deduce that−δnT = ĝnt+1+ĝnt+2+· · ·+ĝnT where ĝnu ∈ L0(Gu,Fu)
satisfies lim infn |ĝnu | <∞ a.s. for u ≥ t+2 and ĝnt+1 is either gnt +gnt+1 when the
latter is convergent or 0 or some constant element gkt + gkt+1. In any case, we
may assume that −δnT = gnt +gnt+1+gt+2+· · ·+gT where gnu ∈ L0(Gu,Fu), u ≤
t+1, gu ∈ L0(Gu,Fu), u ≥ t+2, and (gnt + ĝnt+1)n≥1 is a convergent sequence.
Only the case where lim infn |gnt | = +∞ is of interest. By the normalisation
procedure, we deduce the equality g̃t + g̃t+1 = 0 where g̃t ∈ L0(Gt,Ft) is
positively collinear to gnt and |g̃t| = 1 and g̃t+1 ∈ L0(Gt+1,Ft+1). We deduce

that Sat = Sbt+1 when ḡ
∞(1)
t > 0 and ḡ

∞(2)
t < 0 and Sbt = Sat+1 otherwise. It

follows that Sat = Sbt+1 = E(Sbt+1|Ft) or Sbt = Sat+1 = E(Sat+1|Ft). On the set

{ḡ∞(1)
t > 0}, let us consider the first instant τ̂ ≥ t+1 such that (Sat ,−1) ∈ Gτ̂ .

By Condition (E), the stopping time τ̂ satisfies τ̂ ≤ T . Hence, it is possible
to rewrite gnt =

∑T
r=t+1 g

t
n1t̂au=r where, for all r ≥ t+ 1, gtn1t̂au ∈ L0(Gr,Fr).

Similarly, we may rewrite gnt on the set {ḡ∞(1)
t < 0} so that we may apply

the induction hypothesis and conclude about the statement from t to T . The
conclusion follows.



/ 19

Notice that the implication (3)⇒ (4) is easily obtained by considering the
liquidation values at time t + 1 of the positions (Sbt ,−1)1Ft and (−Sat , 1)1Ft
for all Ft ∈ Ft. The implication (4) ⇒ (5) is deduced from [1, Theorem 4.5].
At last, if (5) holds, take ρt = E(dQ/dP ) and define Z = (ρ, ρS̃). We may
verify that Z is a CPS hence (NAw) holds. 2

4.2. Proof of Theorem 3.5.

The inclusion Γξ ⊆ [supQ∈M(P ) EQξ,∞) is trivial. Let us now consider x ≥
supQ∈M(P ) EQξ,∞) and suppose by contradiction that x /∈ Γξ, i.e. ξ−x /∈ LT0 .

As LT0 is closed in L1 under (NAw), we deduce by the Hahn-Banach separation
theorem the existence of η ∈ L∞ and c ∈ R such that E(ηX) < c < E(η(ξ −
x)) for all X ∈ LT0 ∩ L1(P). Since LT0 is a cone, we deduce that E(ηX) ≤ 0
for all X ∈ LT0 ∩ L1(P). Moreover, as LT0 contains −L0(R+,FT ) we deduce
that η ≥ 0 and, after normalization, we have E(η) = 1. Moreover, if we
take η′ = dQ/dP such that Q ∈ M(P ) 6= ∅, then we may choose α ∈ (0, 1)
sufficiently close to 1 so that η̂ := αη + (1 − α)η′ satisfies E(η̂(ξ − x)) > 0
since c > 0. Moreover, E(η̂X) ≤ 0 for all X ∈ LT0 ∩L1(P) and η̂ > 0 satisfies
Eη̂ = 1. Therefore, if we define Q̂ such that dQ̂/dP = η̂, then Q̂ ∈ M(P ) in
contradiction with E(η̂(ξ − x)) > 0, i.e. x < EQ̂ξ. 2

4.3. Auxiliary results

We denote by Tt,T the set of all stopping times τ with values in {t, · · · , T}.
By definition, if τ ∈ Tt,T , then {τ = u} ∈ Fu whatever u = t, · · · , T hence
{τ ≥ u} ∈ Fu.
Lemma 4.1. Suppose that for some stopping time τ ∈ Tt,T , we have gt +
· · ·+gτ = 0 a.s. where gu ∈  L1(Gu,Fu) are integrable selections of Gu for all
u = t, · · · , T . Moreover, assume that with probability one, gt + · · · + gr 6= 0
for all r < τ . Then, for all bounded CPS Z, Zt, · · · , Zτ are a.s. collinear.

Proof. By assumption, we have
∑T

u=t ZTgu1u≤τ = 0. Taking the condi-
tional expectation knowing Ft, we deduce that by the tower property that

0 =
T∑
u=t

E(ZTgu1u≤τ |Ft) =
T∑
u=t

E(Zugu1u≤τ |Ft).

By duality, Zugu ≥ 0 hence Zugu1u≤τ = 0 a.s. for all u = t, · · · , T . No-
tice that {T ≤ τ} = {T = τ} = Ω \ {τ ≤ T − 1} ∈ FT−1 and gT1T≤τ =
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gτ1T≤τ = −(gt + · · · + gT−1)1τ=T ∈ L0(Rd,FT−1). Therefore, ZTgT1T≤τ = 0
implies that ZT−1gT1T≤τ = 0 by taking the conditional expectation knowing
FT−1. It follows that ZT−1 (gT−11T−1≤τ + gT1T≤τ ) = 0. Suppose by induc-
tion that Zu (gu1u≤τ + · · ·+ gT1T≤τ ) = 0 for some u ∈ {t + 1, · · · , T}. As
gu1u≤τ + · · · + gT1T≤τ = −(gt + · · · + gu−1)1u≤τ ∈ L0(Rd,Fu−1), we deduce
from Zu (gu1u≤τ + · · ·+ gT1T≤τ ) = 0 by taking the conditional expectation
knowing Fu−1 that Zu−1 (gu1u≤τ + · · ·+ gT1T≤τ ) = 0. As Zu−1gu−11u−1≤τ = 0
a.s., we finally get that Zu−1 (gu−11u−1≤τ + · · ·+ gT1T≤τ ) = 0.

As Zu (gu1u≤τ + · · ·+ gT1T≤τ ) = 0 and Zu−1 (gu1u≤τ + · · ·+ gT1T≤τ ) = 0
where gu1u≤τ + · · ·+gT1T≤τ = −(gt+ · · ·+gu−1)1u≤τ 6= 0 if u ≤ τ , we deduce
that Zu and Zu−1 are colinear if u ≤ τ . The conclusion follows. 2

Lemma 4.2. Let τ be the first passage time such that gt+gt+1+...+gu = 0 a.s.
where gu ∈  L1(Gu,Fu) are integrable selections of Gu for all u = t, · · · , T .
If gt 6= 0, then (NAw) implies that there exist some stopping times σ ∈
{t + 1, ..., τ} such that gt and gσ are collinear with negative coefficient of
collinearity.

Proof. The first passage time τ is obviously a stopping time which can be
expressed as

τ := min{u : t+ 1 ≤ u ≤ T such that gt + gt+1 + ...+ gu = 0 a.s.}.

This stopping time τ satisfies the assumptions of Lemma 4.1 so that the
condition (NAw) implies that, for every bounded CPS Z, Zt is collinear with
Zu a.s. if u ≤ τ . By taking the conditional expectation knowing Ft, from
the equality

∑T
u=t ZTgu1u≤τ = 0, we deduce by the tower property and by

duality that Zugu1u≤τ = 0 a.s. for all u = t, · · · , T . Thus, Ztgu1u≤τ = 0.
By the definition of τ , Ztgt1t≤τ = Ztgt = 0 as τ ≥ t + 1. Now the equality
Ztgu1u≤τ = 0 and Ztgt = 0 implies that gu1u≤τ and gt are collinear, i.e.,
gu1u≤τ = kugt where ku ∈ L0(R,Fu) satisfies ku = ku1u≤τ . As

∑T
u=t gu1u≤τ =

gt +
∑T

u=t+1 kugt = (1 +
∑T

u=t+1 ku)gt = 0 and gt 6= 0, there exist a.s. a first
instant u such that ku < 0. Define the stopping time

σ := min{u : t+ 1 ≤ u ≤ τ such that ku < 0}.

As 1σ≤τ = 1 and kσ < 0, then we can deduce from gσ1σ≤τ = kσgt that gt and
gσ are collinear with negative coefficient of collinearity. 2
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