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1. Introduction

In the discrete-time models without friction, it is well known that the self-
financing portfolio processes are modelled by their liquidation values. An
arbitrage opportunity is the terminal value VT at time T of such a portfolio
process, starting from a zero initial capital, and such that P (VT ≥ 0) = 1 and
VT 6= 0. The Dalang–Morton–Willinger (DMW) theorem [1] formulates an
equivalent characterisation of absence of such an arbitrage opportunity NAw.
Precisely, it states that NAw is equivalent to the existence of a martingale

1



/ 2

probability measure for the price process and, moreover, under NAw the set
of all terminal portfolio processes starting from the zero initial capital is
closed in probability.

The models with friction was first considered in the pioneering paper [5]
and, later, were extensively studied, e.g. in the papers [6], [4], [9], [3], [8].
With proportional transaction costs, it is classical to express the portfolio
processes as stochastic vectors of the invested physical units because, paying
transaction costs, the exchanges are allowed between the assets. Actually,
while the analog of the self-financing condition property is simple when the
portfolio processes are expresses in physical units (see [7, Chapter 3]), there
is no simple dynamics for their liquidation values. This is why, most of the
characterisations of absence of arbitrage opportunities are formulated by ex-
pressing the portfolio processes in physical units. In particular, the Grigoriev
theorem [2] provides such a characterization for the two dimensional conic
model that may be seen as a financial market model with a Bond and a
risky asset defined by its Bid and Ask prices. The condition NAw which is
considered is the same than in the frictionless models, i.e. there is no positive
terminal liquidation value when starting from the zero initial capital. Equiv-
alently, NAw holds if and only if there is no vector-valued portfolio processes
starting from zero and ending up with a terminal value in the first orthant
R2

+, see [7, Section 3.2.1]. It appears that the set of all vector-valued terminal
portfolio processes is not necessarily closed under NAw, see [7, Example 1,
Section 3.2.4 ] so that the Grigoriev theorem is not exactly the analog of the
DMW theorem.

In this paper, our main contribution is the version of the DMW theorem
we obtain for the three step Bid and Ask model by proving the closedness
of the set of all terminal liquidation values. Nevertheless, the proof is quite
complicated and does not seem to exhibit a recursive reasoning to extend it
to more steps. We conjecture that the theorem holds whatever the number
of steps and we leave it as a challenging open problem.

2. Model and basic properties

Notations.
e1 = (1, 0) ∈ R2.
For a subset G of R2, ∂G is the boundary of G and int G is its interior.
R2

+ is the set of all vectors in R2 having only non negative components.
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E designates the expectation of a random variable. When necessary, we de-
note it EQ when it is considered under Q ∼ P.
For a set-valued random mapping E, L0(E,F) is the metric space of all
E-valued random variables which are F -measurable.
Lp(E,F ,P), p ∈ [1,∞) (resp. p = ∞), is the normed space of all E-valued
random variables which are F -measurable and admitting a moment of order
p under the probability P (resp. bounded).
For any subset X of L0(R,F) containing −L0

+ and p ∈ [1,∞) ∪ {0}, we

denote by X p
, the closure of X p := X ∩ Lp(R,F ,P) with respect to the

Lp-topology (the topology of convergence in probability if p = 0). If Q ∼ P ,
we denote by X p

(Q) the closure under Q.

The Bid-Ask model. We consider a discrete-time complete stochastic
basis (Ω, IF := (Ft)t=0,··· ,T ,P) to construct a financial market model defined
by a Bond S0 = 1 and one risky asset characterised by Bid and Ask price
processes Sb and Sa adapted to the filtration IF.

Equivalently, the model may be defined by a sequence of IF-adapted closed
and conic sets (Gt)t=0,··· ,T of Rd, i.e. such that:

Graph Gt := {(ω, x) ∈ Ω×Rd : x ∈ Gt(ω)} ∈ Ft ⊗ B(Rd), t = 0, · · · , T.

where Gt, t = 0, · · · , T , is interpreted as the set of all financial positions it is
possible to liquidate without any debt. Precisely, let us define the liquidation
value process as

Lt(x) := x1 + (x2)+Sbt − (x2)−Sat , x = (x1, x2) ∈ R2,

where x is the vector of physical units of assets S0 and S respectively held
in the portfolio at time t. We recall the notation x+ = max(x, 0) and x− =
−min(x, 0). We may show that Lt(x) = sup{α ∈ R : x − αe1 ∈ Gt}, i.e.
Lt(x) is the maximal amount of cash the agent may obtain when liquidating
the financial position x, and Gt = {x ∈ R2 : Lt(x) ≥ 0}. This is a particular
case of the the Kabanov model with proportional transaction costs, see [7,
Chapter 3]. At any time t = 0, · · · , T , we easily observe that the following
properties hold:

Lemma 2.1.

1. The mapping x 7→ Lt(x) is concave hence continuous.
2. Lt(x

0, z) = x0 + Lt((0, z)) for all x0 ∈ R and z ∈ Rd.
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3. x− Lt(x)e1 ∈ ∂Gt for all x ∈ R2.

Note that the boundary ∂Gt = {x ∈ R2 : Lt(x) = 0} is composed
of two half lines respectively generated by the random vectors (Sat ,−1). and
(−Sbt , 1). The positive dual of Gt is G∗t := {z ∈ R2 : zx ≥ 0 : for allx ∈ Gt}.
The latter is a random cone of R2

+ whose boundary is the union of the two half
lines generated by the vectors (1, Sbt ) and (1, Sat ). We have G∗t \{0} ⊆ intR2

+.

Definition 2.2. A self-financing portfolio process (Vt)t=0,··· ,T starting from
the initial endowment V0− is an IF-adapted process such that

∆Vt := Vt − Vt−1 ∈ −Gt, ∀t = 0, · · · , T a.s. (2.1)

The interpretation is simple; when changing the position Vt−1 into a new
one Vt at time t, we liquidate without any debt the remaining part, i.e.
−∆Vt ∈ Gt. In the Kabanov model, we also interpret (2.1) as the paiement
of proportional transaction costs to change Vt−1 into Vt. We introduce the
set of all terminal values at time t ≤ T of portfolio processes starting from
the zero initial endowment at time u ≤ t i.e.

Atu :=
t∑

s=u

L0(−Gs,Fs).

Associated to this set above, the terminal liquidation values are

Ltu := {Lt(V ) : V ∈ Atu}.

Remark 2.3. Notice that for any γ ∈ LT0 , γe1 =
∑T

t=0(−gt) ∈ AT0 for some

gt ∈ L0(Gt,Ft). Indeed, γ = LT (VT ) where VT =
∑T

t=0 ∆Vt with ∆Vt ∈
−L0(Gt,Ft) for all t and V0− = 0. Moreover, γe1 − VT = LT (VT )e1 − VT ∈
−GT . Thus, γe1 = VT − ĝT where ĝT ∈ L0(GT ,FT ) and finally γe1 ∈ AT0 .
Futhermore, we may assume that gt ∈ L0(∂Gt,Ft) for all 0 ≤ t ≤ T − 1.
Indeed, let us write γe1 = −(g0 − L0(g0)e1) − (g1 + L0(g0)e1) +

∑T
t=2(−gt)

where g0 − L0(g0)e1 ∈ ∂G0. As L0(g0) ≥ 0, i.e., L0(g0)e1 ∈ R+e1, then
g1 + L0(g0)e1 ∈ G1. So replace g0 and g1 respectively by g0 − L0(g0)e1 and
g1 +L0(g0)e1 and repeat the above procedure for t ≥ 1 to obtain that gt ∈ ∂Gt

for all 0 ≤ t ≤ T − 1.

3. The DMW theorem for discrete-time Bid-Ask models

Definition 3.1. We say that the financial market model defined by G satis-
fies the weak no-arbitrage property (NAw) if LT0 ∩ L0(R+,FT ) = {0}.
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Lemma 3.2. (NAw) holds if and only if AT0 ∩ L0(GT ,FT ) ⊆ L0(∂GT ,FT ).

Proof. Suppose that (NAw) holds and consider VT ∈ AT0 ∩ L0(GT ,FT ).
Then, L(VT ) ∈ LT0 ∩ L0(R+,FT ) hence L(VT ) = 0, i.e. VT ∈ ∂GT a.s. Re-
ciprocally, suppose that AT0 ∩ L0(GT ,FT ) ⊆ L0(∂GT ,FT ). Any γT ∈ LT0
is such that γT e1 ∈ AT0 since γT = L(VT ) for some VT ∈ AT0 such that
VT − L(VT )e1 ∈ GT . 2

The assumption of the following lemma is clearly satisfied for the Bid-Ask
model.

Lemma 3.3. If GT strictly dominates Rd
+, i.e., Rd

+ \ {0} ⊂ int GT , then we
have

LT0 ∩ L0(R+,FT ) = {0} ⇐⇒ AT0 ∩ L0(Rd
+,FT ) = {0}.

Proof. (⇐) This part is trivial since LT0 e1 = AT0 ∩ L0(Re1,FT ) ⊆ AT0 .
(⇒) Let VT ∈ AT0 ∩ L0(Rd

+,FT ). Since Rd
+ ⊆ GT , then LT (VT ) ≥ 0.

So the condition LT0 ∩ L0(R+,FT ) = {0} implies LT (VT ) = 0, hence VT ∈
∂GT ∩Rd

+ = {0}. 2
The equivalent condition to (NAw), as expressed in the lemma above, is

studied by Grigoriev [2] and [7, Theorem 3.2.15]. The Grigoriev theorem
states that Condition (NAw) holds if and only if there exists Consistent
Price Systems (CPS) evolving in the positive duals of the solvency sets, pre-
cisely martingales (Zt)t=0,··· ,T satisfying Zt ∈ G∗t \ {0} for all t = 0, · · · , T .
This result is a weaker form of the Dalang-Morton-Willinger theorem, see [1].
Without friction, the set of all terminal claims obtained from the zero initial
endowment appears to be closed. With proportional transaction costs, this
is no more the case if the terminal claims are expressed in physical units,
see [7, Example 1, Section 3.2.4]. In this paper, we show the Dalang-Morton-
Willinger version of the Grigoriev theorem, i.e. we show that under Condition
(NAw), the set of all terminal liquidation values we get from portfolio pro-
cesses starting from zero is closed.

Theorem 3.4. Suppose that T = 1, 2 or T = 3. The following conditions
are equivalent:

1 (NAw)
2 LT0 is closed in probability and LT0 ∩ L0(R+,FT ) = {0}.
3 There exists Q ∼ P such that EQLT (V ) ≤ 0 for all LT (V ) ∈ LT0 .

Proof. Note that the implication (2) ⇒ (3) is immediate by [7, Theorem
2.1.4]. The implications (3) ⇒ (1) and (2) ⇒ (1) are also trivial. It remains
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to show that (1) ⇒ (2). Suppose that (NAw) and let us prove that LT0 is
closed in probability. Recall that, by the Grigoriev theorem, there exists a
CPS Z, i.e. a martingale Z such that Zu ∈ G∗u \ {0} for all u ≤ T . For the
one step model there is nothing to prove since LTT = −L0(R+,FT ). Indeed,
if LT (−gT ) ≥ 0 for some gT ∈ L0(GT ,FT ), then gT ∈ (−GT ) ∩GT ⊆ ∂GT

hence LT (−gT ) = 0. Let us consider the two step model.
Assume that the sequence γnT ∈ LTT−1 converges to γ∞T . From Remark 2.3,

we may suppose that γnT e1 = −gnT−1−gnT where gnT−1 ∈ L0(∂GT−1,FT−1) and
gnT ∈ L0(GT ,FT ).

On the set ΛT−1 := {lim inf |gnT−1| = ∞} ∈ FT−1, we normalize the se-

quences by setting γ̃nT :=
γnT
|gnT−1|

, g̃nT−1 :=
gnT−1

|gnT−1|
and g̃nT :=

gnT
|gnT−1|

. Then,

γ̃nT e1 = −g̃nT−1 − g̃nT .

As |g̃nT−1| = 1, by passing to some FT−1-measurable random sequence we
may assume that g̃nT−1 converges to g̃∞T−1 ∈ GT−1, see [7, Lemma 2.1.2]. As
γ̃nT e1 converges to zero, we deduce that g̃nT converges to g̃∞T ∈ GT . Finally,
we get the following equality:

g̃∞T−1 + g̃∞T = 0

where g̃∞T−1 ∈ ∂GT−1 and g̃∞T ∈ GT . Note that, we may define g̃∞T−1 =
g̃∞T = 0 on Ω \ ΛT−1 ∈ FT−1. Let us consider a CPS Z. From, ZT (g̃∞T−1 +
g̃∞T ) = 0 we deduce that ZT−1g̃

∞
T−1 + E(ZT g̃

∞
T |FT−1) = 0. As the two terms

in the right side of this equality are non negative by duality, we deduce
that ZT−1g̃

∞
T−1 = ZT g̃

∞
T = 0. Moreover, g̃T = −g̃T−1 is FT−1 implies that

0 = E(ZT g̃
∞
T |FT−1) = ZT−1g̃

∞
T . Then, ZT−1g̃

∞
T = ZT g̃

∞
T implies that ZT−1

and ZT belongs to the same half-line of R2
+. In particular, since ZT ∈ G∗T , we

also have ZT−1 ∈ G∗T . We deduce that ZT−1γ
n
T e1 = −ZT−1g

n
T−1 − ZTgnT ≤ 0

as gnT−1 ∈ GT−1 and gnT ∈ GT . Since ZT−1e1 > 0, we deduce that γnT ≤ 0.
Therefore, we may replace gnT−1 by ḡnT−1 = 0 ∈ GT−1 and gnT by ḡnT =
−γnT e1 ∈ GT so that we still have γnT = −ḡnT−1− ḡnT . Finally, we may write on
Ω, γnT = −ĝnT−1− ĝnT , where ĝnT−1 = gnT−11Ω\ΛT−1

∈ L0(GT−1,FT−1) and ĝnT =
gnT1Ω\ΛT−1

+ ḡnT1ΛT−1
L0(GT ,FT ). By construction, lim infn |ĝnT−1| <∞ hence

we may suppose that ĝnT−1 → ĝ∞T−1 ∈ L0(GT−1,FT−1) by [7, Lemma 2.1.2].
We deduce that ĝnT → ĝ∞T ∈ L0(GT ,FT ) hence γ∞T = −ĝ∞T−1 − ĝ∞T ∈ LTT−1.

Let us consider the three step model. Suppose that the sequence γnT ∈ LTT−2

converges to γ∞T . By Remark 2.3, we may suppose that γnT e1 = −gnT−2−gnT−1−
gnT where gnt ∈ ∂Gt for t = T − 2, T − 1 and gnT ∈ GT .
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Let us first consider the subset ΓT−2 := {lim inf |gnT−2| < ∞} ∈ FT−2.
By [7, Lemma 2.1.2], we may assume that gnT−2 is convergent to g∞T−2 ∈
L0(GT−2,FT−2). Next we consider the following two sub-cases:

(a) On the set where lim inf |gnT−1| < ∞, we may suppose that the se-
quences gnT−1 and gnT are both pointwise convergent by [7, Theorem 5.2.3].

(b) On the set ΛT−1 := {lim infn |gnT−1| = ∞} ∈ FT−1, we normalize the
sequences by dividing the term |gnT−1| and we get

γ̃nT e1 = −g̃nT−2 − g̃nT−1 − g̃nT

where γ̃nT :=
γnT
|gnT−1|

, g̃nt :=
gnt
|gnT−1|

for all t = T−2, T−1, T . As |g̃nT−1| = 1, up to

some FT−1-measurable random sequence, we may assume that g̃nT−1 converges
to g̃∞T−1 ∈ ∂GT−1. As γ̃nT and g̃nT−2 both converge to zero, necessarily g̃nT is
convergent to some limit g̃∞T ∈ GT and

g̃∞T−1 + g̃∞T = 0.

Since we only consider FT−1-measurable sets, we may claim that LT (g̃∞T ) =
LT (−g̃∞T−1) ∈ LTT−2 ∩ L0(R+,FT ) = {0} hence g̃∞T ∈ ∂GT by NAw.

Assume g̃
∞(1)
T−1 > 0 and g̃

∞(2)
T−1 < 0, the second case where g̃

∞(1)
T−1 < 0 and

g̃
∞(2)
T−1 > 0 being similar. The equality g̃∞T−1 + g̃∞T = 0 implies that g̃

∞(1)
T < 0

and g̃
∞(2)
T > 0. This implies that we may replace gnT−1 by gnT−11

g
n(2)
T−1<0

+

g̃∞T−11
g
n(2)
T−1≥0

and gnT by gnT1
g
n(2)
T >0

+ g̃∞T 1
g
n(2)
T ≤0

. So, we may assume that

g
n(2)
T−1 < 0 and g

n(2)
T > 0. Let us define the FT−1-measurable positive real-

valued random variable

βn :=
g
n(2)
T−2 + g

n(2)
T−1

g̃
∞(2)
T−1

.

As g̃∞T−1 + g̃∞T = 0, we rewrite γnT e1 as γnT e1 = −gnT−2−(gnT−1−βng̃∞T−1)−(gnT−
βng̃∞T ). By definition of βn, the second component of the term gnT−1−βng̃∞T−1

is
(gnT−1 − βng̃∞T−1)(2) = −gn(2)

T−2.

Notice that g̃∞T−1 ∈ ∂GT−1 and g̃∞T ∈ ∂GT , i.e., LT−1(g̃∞T−1) = g̃
∞(1)
T−1 +

g̃
∞(2)
T−1 S

a
T−1 = 0 and LT (g̃∞T ) = g̃

∞(1)
T + g̃

∞(2)
T SbT = 0 with g̃

∞(2)
T = −g̃∞(2)

T−1 > 0.

So we have
g̃
∞(1)
T−1

g̃
∞(2)
T−1

= −SaT−1 and
g̃
∞(1)
T

g̃
∞(2)
T

= −SbT . As g̃∞T−1 = −g̃∞T , we have
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SaT−1 = SbT . The first component of the term gnT−1 − βng̃∞T−1 is

(gnT−1 − βng̃∞T−1)(1) = g
n(1)
T−1 − β

ng̃
∞(1)
T−1

= g
n(1)
T−1 −

g
n(2)
T−2 + g

n(2)
T−1

g̃
∞(2)
T−1

g̃
∞(1)
T−1

= g
n(1)
T−1 + (g

n(2)
T−2 + g

n(2)
T−1)SaT−1

= g
n(1)
T−1 + g

n(2)
T−1S

a
T−1 + g

n(2)
T−2S

a
T−1

= g
n(2)
T−2S

a
T−1

since g
n(1)
T−1 + g

n(2)
T−1S

a
T−1 = LT−1(gnT−1) = 0.

Then, gnT−1−βng̃∞T−1 = (g
n(2)
T−2S

a
T−1,−g

n(2)
T−2). Notice that it satisfies the con-

dition lim inf |gnT−1−βng̃∞T−1| <∞ since SaT−1 ∈ L∞(R,FT−1) and lim inf |gnT−2| <
∞. Liquidate this position at time T − 1 to get

LT−1(gnT−1 − βng̃∞T−1) = g
n(2)
T−2S

a
T−1 − g

n(2)
T−2S

a
T−1I

g
n(2)
T−2≥0

− gn(2)
T−2S

b
T−1I

g
n(2)
T−2<0

.

This implies that LT−1((gnT−1 − βng̃∞T−1)I
g
n(2)
T−2≥0

) = 0, i.e.,

(gnT−1 − βng̃∞T−1)I
g
n(2)
T−2≥0

∈ ∂GT−1.

Otherwise, if we liquidate the position at time T , we obtain that

LT (gnT−1 − βng̃∞T−1) = g
n(2)
T−2S

b
T − g

n(2)
T−2S

a
T I
g
n(2)
T−2≥0

− gn(2)
T−2S

b
T I
g
n(2)
T−2<0

.

This implies that LT ((gnT−1 − βng̃∞T−1)I
g
n(2)
T−2<0

) = 0, i.e.,

(gnT−1 − βng̃∞T−1)I
g
n(2)
T−2<0

∈ ∂GT .

About the term gnT − βng̃∞T , it is easy to see that the second component is

zero since βn =
g
n(2)
T

g̃
∞(2)
T

. The first component is

(gnT − βng̃∞T )(1) = g
n(1)
T − βng̃∞(1)

T

= g
n(1)
T − g

n(2)
T

g̃
∞(2)
T

g̃
∞(1)
T

= g
n(2)
T (

g
n(1)
T

g
n(2)
T

− g̃
∞(1)
T

g̃
∞(2)
T

)
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As gnT ∈ GT , LT (gnT ) = g
n(1)
T + g

n(2)
T SbT ≥ 0. So we have

g
n(1)
T

g
n(2)
T

≥ −SbT =
g̃
∞(1)
T

g̃
∞(2)
T

.

Thus, (gnT − βng̃∞T )(1) ≥ 0, i.e.,

gnT − βng̃∞T ∈ R+e1.

On the set ΓT−2, we finally obtain that γnT e1 = −gnT−2 − ĝnT−1 − ĝnT , where

ĝnT−1 := gnT−11Ω\ΛT−1
+ (gnT−1 − βng̃∞T−1)I

g
n(2)
T−2≥0

1ΛT−1
∈ L0(GT−1,FT−1),

ĝnT := gnT1Ω\ΛT−1
+ (gnT−1 − βng̃∞T−1)I

g
n(2)
T−2<0

1ΛT−1

+(gnT − βng̃∞T )1ΛT−1
∈ L0(GT ,FT ).

By construction, notice that lim infn |ĝnT−1| < ∞ on ΓT−2. By [7, Lemma
2.1.2], we may assume that ĝnT−1 is convergent to ĝ∞T−1 ∈ L0(GT−1,FT−1) at
least for some FT−1-measurable subsequence nk(ω), ω ∈ Ω. As we already
know that gnT−2 → g∞T−2 ∈ L0(GT−2,FT−2), we still have gnk

T−2 → g∞T−2 ∈
L0(GT−2,FT−2) even if gnk

T−2 is no more FT−2-measurable. We deduce that
gnk
T → g∞T ∈ L0(GT ,FT ) and, finally, γ∞T 1ΓT−2

= −g∞T−2− ĝ∞T−1− ĝ∞T ∈ LTT−2.

On the set ΛT−2 := {lim inf |gnT−2| =∞}, we use the normalization proce-
dure to get

γ̄nT e1 = −ḡnT−2 − ḡnT−1 − ḡnT ,

where γ̄nT :=
γnT
|gnT−2|

, ḡnt :=
gnt
|gnT−2|

for t ≥ T − 2. As lim inf |ḡnT−2| = 1, we may

argue as we did on the complementary set ΓT−2 and assume that ḡnt → ḡ∞t ∈
L0(Gt,Ft) for t ≥ T − 2 such that

ḡ∞T−2 + ḡ∞T−1 + ḡ∞T = 0

with ḡ∞t ∈ ∂Gt if t = T−2, T−1 and |ḡ∞T−2| = 1. Since LT (ḡ∞T ) = LT (−ḡ∞T−2−
ḡ∞T−1) ∈ LTT−2 ∩ L0(R+,FT ) = {0}, we also get that ḡ∞T ∈ ∂GT .

For any CPS Z, taking the conditional expectation knowing FT−2 in the
equality ZT (ḡ∞T−2 + ḡ∞T−1 + ḡ∞T ) = 0, we deduce that

ZT−2ḡ
∞
T−2 + E(ZT−1ḡ

∞
T−1|FT−2) + E(ZT ḡ

∞
T |FT−2) = 0.

All the terms of the l.h.s. being non negative, we finally obtain that Ztḡ
∞
t = 0

for all t ≥ T − 2. As ḡ∞T = −ḡ∞T−2 − ḡ∞T−1 is FT−1-measurable, taking the
conditional expectation knowing FT−1 in the equality ZT ḡ

∞
T = 0, we deduce
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that ZT−1ḡ
∞
T = 0. But ZT−1(ḡ∞T−2 + ḡ∞T−1 + ḡ∞T ) = 0 hence ZT−1ḡ

∞
T−2 = 0.

Since |ḡ∞T−2| = 1, the two equalities ZT−2ḡ
∞
T−2 = ZT−1ḡ

∞
T−2 = 0 implies that

ZT−1 and ZT−2 belong to a same half line of G∗T−1 ∩G∗T−2.

Assume ḡ
∞(1)
T−2 > 0 and ḡ

∞(2)
T−2 < 0, the other case where ḡ

∞(1)
T−2 < 0 and

ḡ
∞(2)
T−2 > 0 is similar. Up to some FT−2-measurable random sequence (ñk)k we

may assume that g
n(1)
T−2 > 0 and g

n(2)
T−2 < 0. We then consider the following two

sub cases:
(c) When ḡ∞T 6= 0. In the case where ḡ∞T−1 6= 0, the two equalities ZT−1ḡ

∞
T−1 =

ZT−1ḡ
∞
T = 0 implies that ḡ∞T−1 and ḡ∞T are collinear. As ZT (ḡ∞T−2 + ḡ∞T−1 +

ḡ∞T ) = 0, we have ZT (ḡ∞T−2 + ḡ∞T−1) = 0 where ZT ḡ
∞
T−1 = ZT ḡ

∞
T = 0 since

ḡ∞T−1 ∈ R+ḡ
∞
T . It follows that ZT ḡ

∞
T−2 = 0. In the case where ḡ∞T−1 = 0, the

equality ZT (ḡ∞T−2 + ḡ∞T−1) = 0 implies that ZT ḡ
∞
T−2 = 0. Finally, ZT−2ḡ

∞
T−2 =

ZT−1ḡ
∞
T−2 = ZT ḡ

∞
T−2 = 0 implies that ZT−2, ZT−1 and ZT are both collinear

with some positive coefficients of collinearity when both ḡ∞T−2 and ḡ∞T are
different from zero. This implies that ZT ∈ G∗t for all t ≥ T −2. Since γnT e1 =
−gnT−2 − gnT−1 − gnT , we deduce that ZTγ

n
T e1 = −(ZTg

n
T−2 + ZTg

n
T−1 + ZTg

n
T )

ZTγ
n
T e1 ≤ 0 hence γnT ≤ 0 on the set ΛT−2 ∩ {ḡ∞T 6= 0}.

(d) When ḡ∞T = 0, ḡ∞T−2 + ḡ∞T−1 = 0. Let us define the FT−2-measurable
positive real-valued random variable as

β̄n :=
g
n(2)
T−2

ḡ
∞(2)
T−2

.

Since ḡ∞T−1 = −ḡ∞T−2, ḡ
∞(1)
T−1 < 0 and ḡ

∞(2)
T−1 > 0, we may replace gnT−1 by

gnT−11{gn(1)
T−1<0; g

n(2)
T−1>0} + ḡ∞T−11

Ω\{gn(1)
T−1<0; g

n(2)
T−1>0} and assume that g

n(1)
T−1 < 0 and

g
n(2)
T−1 > 0 . As ḡ∞T−2 + ḡ∞T−1 = 0, we rewrite γnT e1 as γnT e1 = −(gnT−2 −
β̄nḡ∞T−2) − (gnT−1 − β̄nḡ∞T−1) − gnT where gnT−2 − β̄nḡ∞T−2 = 0 by construction.

As ḡ∞T−2 ∈ ∂GT−2 and ḡ∞T−1 ∈ ∂GT−1, LT−2(ḡ∞T−2) = ḡ
∞(1)
T−2 + ḡ

∞(2)
T−2 S

a
T−2 = 0

and LT−1(ḡ∞T−1) = ḡ
∞(1)
T−1 + ḡ

∞(2)
T−1 S

b
T−1 = 0. So we have

ḡ
∞(1)
T−2

ḡ
∞(2)
T−2

= −SaT−2 and

ḡ
∞(1)
T−1

ḡ
∞(2)
T−1

= −SbT−1. As ḡ∞T−1 = −ḡ∞T−2, SaT−2 = SbT−1.

The second component of gnT−1 − β̄nḡ∞T−1 is (gnT−1 − β̄nḡ∞T−1)(2) = −gn(2)
T .

Thus, β̄n =
g
n(2)
T−1+g

n(2)
T

ḡ
∞(2)
T−1

, which is FT−1-measurable. Notice that gnT−1− β̄nḡ∞T−1
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is also FT−1-measurable. Its first component is

(gnT−1 − β̄nḡ∞T−1)(1) = g
n(1)
T−1 − β̄

nḡ
∞(1)
T−1

= g
n(1)
T−1 −

g
n(2)
T−1 + g

n(2)
T

ḡ
∞(2)
T−1

ḡ
∞(1)
T−1

= g
n(1)
T−1 + (g

n(2)
T−1 + g

n(2)
T )SbT−1

= g
n(1)
T−1 + g

n(2)
T−1S

b
T−1 + g

n(2)
T SbT−1

= g
n(2)
T SbT−1

since g
n(1)
T−1 + g

n(2)
T−1S

b
T−1 = LT−1(gnT−1) = 0. Then

gnT−1 − β̄nḡ∞T−1 = (g
n(2)
T SbT−1,−g

n(2)
T )

so that
γnT = −gn(2)

T SbT−1 − g
n(1)
T .

Liquidate the position gnT−1 − β̄nḡ∞T−1 at time T − 1 to get

LT−1(gnT−1 − β̄nḡ∞T−1) = g
n(2)
T SbT−1 − g

n(2)
T SaT−1I

g
n(2)
T >0

− gn(2)
T SbT−1I

g
n(2)
T ≤0

.

This implies that LT−1((gnT−1 − β̄nḡ∞T−1)I
g
n(2)
T ≤0

) = 0, i.e.,

(gnT−1 − β̄nḡT−1)I
g
n(2)
T ≤0

∈ ∂GT−1.

Similarly we deduce by liquidating it at time T − 2 that

(gnT−1 − β̄nḡT−1)I
g
n(2)
T >0

∈ ∂GT−2.

If we set hnT−1 := gnT−2 + gnT−1, then

hnT−1 = gnT−1 − β̄nḡ∞T−1 = (g
n(2)
T SbT−1,−g

n(2)
T )

belongs to the boundary of GT−2 or GT−1.

In the case where g
n(2)
T ≤ 0, it is possible to change gnT−1 into gnT−1− β̄nḡ∞T−1

which still belongs to the boundary of GT−1.

On the set {gn(2)
T > 0} ∈ FT−1, we consider two sub cases. On the set

{supn g
n(2)
T < ∞} ∈ FT−1, up to a convex combination (see [7, Theorem
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A.2.3]), we assume that g
n(2)
T is convergent. As γnT = −gn(2)

T SbT−1 − g
n(1)
T ,

g
n(1)
T is also convergent, i.e. gnT converges to gT ∈ L0(GT ,FT ). Then γ∞T e1 =

limn(−gnT−2 − gnT−1 − gnT ) = limn(−gnT−2 − gnT−1 − gT ), i.e. we may replace
gnT by gT . By the initial normalization on ΛT−2, we then get that γnT =

−g(2)
T SbT−1 − g

(1)
T instead of γnT = −gn(2)

T SbT−1 − g
n(1)
T , i.e. γnT does not depend

on n any more: we may write γnT e1 = −g1
T−2−g1

T−1−g1
T where g1

t is a constant
substitution of gnt for each t ≥ T − 2.

On the FT−1-measurable set {supn g
n(2)
T =∞}, first recall that for any CPS

Z, ZT−2 and ZT−1 are colinear vectors of R2
+ orthogonal to the line generated

by ḡ∞T−2. Through the normalizing procedure which consists in dividing by

g
n(2)
T on both sides of the equality γnT e1 = −hnT−1 − gnT , we get that

h̃T−1 + g̃T = 0

where h̃T−1 ∈ L0(Rḡ∞T−2,FT−1) and g̃T ∈ L0(GT ,FT ). Taking conditional

expectation knowing FT−1 in the equality ZT (h̃T−1 + g̃T ) = 0, we deduce
that ZT−1h̃T−1 + E(ZT g̃T |FT−1) = 0. As ZT−1h̃T−1 = 0 and ZT g̃T ≥ 0, we
then deduce that ZT g̃T = 0 hence ZT h̃T−1 = 0. The equality ZT−1h̃T−1 =
ZT h̃T−1 = 0 with h̃T−1 6= 0 implies that ZT and ZT−1 also belongs to the
same half line. Finally ZT ∈ G∗t for all t ≥ T − 2 and, by a similar argument
as above, we deduce that γnT ≤ 0.

Gathering with the case (c) where ḡ∞T 6= 0, we can conclude that on the
FT−2-measurable set ΛT−2, we have γnT e1 = −g1

T−2 − ĝnT−1 − ĝnT where

ĝnt :=
4∑
i=1

ĝnit ∈ L0(Gt,Ft), t ≥ T − 1,

with

ĝn1
T−1 := (‖g1

T−2‖ḡ∞T−1)Iḡ∞T 6=0,

ĝn2
T−1 := (−g1

T−2 + gnT−1 − β̄nḡ∞T−1)Iḡ∞T =0I
g
n(2)
T ≤0

,

ĝn2
T−1 := g1

T−1Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T <∞,

ĝn2
T−1 := (−g1

T−2)Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T =∞
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and

ĝn1
T := (‖g1

T−2‖ḡ∞T − γnT e1)Iḡ∞T 6=0,

ĝn2
T := gnT Iḡ∞T =0I

g
n(2)
T ≤0

,

ĝn3
T := g1

T Iḡ∞T =0I
g
n(2)
T >0

I
supng

n(2)
T <∞,

ĝn4
T := (−γnT e1)Iḡ∞T =0I

g
n(2)
T >0

I
supng

n(2)
T =∞.

We can easily see that ĝniT−1 ∈ ∂GT−1 when i = 2, 3, 4 and ĝniT ∈ GT for
all i = 1, 2, 3, 4. The expressions of ĝn1

t , t = T − 1, T are obtained from the
following equality: gnT−2 = ‖gnT−2‖ḡnT−2 = ‖gnT−2‖ḡ∞T−2 = −‖gnT−2‖(ḡ∞T−1 + ḡ∞T )
with n = 1 and γ1

T e1 = −g1
T−2 − (−g1

T−2)− (−γ1
T e1).

Since the sequence (gnT−2)n≥1 is replaced by the constant g1
T−2, we may

follow the reasoning we did on the complementary ΓT−2 so that we finally
obtain γ∞T e1 = −g∞T−2− g∞T−1− g∞T where g∞t ∈ Gt for all t = T − 2, T − 1, T
and γ∞T = LT (γ∞T e1) ∈ LTT−2. 2
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