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1. Introduction

The Dalang–Morton–Willinger theorem [5] asserts, for the discrete-time final
horizon frictionless market models, that the no-arbitrage property (NA) is
equivalent to the existence of an equivalent martingale measure and any of
these properties ensures that the set of super-replicated claims AT is closed
in probability.

The models with friction were first considered in the pioneering paper [10]
and, later, were extensively studied, e.g. in the papers [12], [8], [16], [7], [14].
With proportional transaction costs, it is classical to express the portfolio
processes as stochastic vectors of Rd, d ≥ 1. Indeed, in presence of transaction
costs, the exchanges are allowed between the assets at different rates so that
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it is not possible to describe them directly through the liquidation values (see
[13, Ch. 3]).

In the theory of markets with proportional transaction costs, the closest
analog of NA is the property NAw, i.e. the absence of strong arbitrage op-
portunities usually denoted. With the latter concepts, the DMW theorem
can be extended but only for two-asset models and only partially. The corre-
sponding result is known as the Grigoriev theorem, claiming that NAw holds
iff there is a consistent price system, accompanied by unexpected examples
where the set of all vector-valued terminal portfolio processes is not closed
under NAw, see [13, Ex. 1, Sect. 3.2.4 ]. Closedness is only proved under a
strong absence of arbitrage opportunity, i.e. a robust no-arbitrage property
NAr, see [13, Lem. 3.2.8]. Actually, one can mention that closedness is the
important property to characterize the super-hedging prices (see [2] and [4]).

Here, we prove that the set of all terminal liquidation values is closed
under NAw for the two dimensional conic models. We then deduce a dual
characterization of the prices super hedging a contingent claim when they
are only expressed in the first asset.

2. Model and basic properties

Notations.

We define e1 := (1, 0) ∈ R2, R2
+ is the set of all vectors in R2 having only

non negative components.
For a random set E, Lp(E,F), p ∈ [1,∞) (resp. p = ∞ or p = 0), is
the normed space of all measurable selections of the random set E and the
superscript p denotes the selections belonging to the corresponding Lebesgue
space Lp(E,F).

The Kabanov model. Let (Ω, IF := (Ft)t≤T ,P) be a discrete-time com-
plete stochastic basis. We consider a risk-free asset S0 = 1 and a risky asset
defined by bid and ask adapted prices Sb > 0 and Sa > 0. This is the
two-dimensional Kabanov model, [13, Ch. 3], equivalently defined by a IF-
adapted set-valued process with values in the set of closed sectors (convex
cones) (Gt)t≤T of the real plane R2 which are measurable in the sense that:

Graph Gt := {(ω, x) ∈ Ω× R2 : x ∈ Gt(ω)} ∈ Ft ⊗ B(R2), t ≤ T.

In finance, Gt is interpreted as the set of all positions x ∈ R2 it is possible to
liquidate at time t without any debt. We have Gt = {x ∈ R2 : Lt(x) ≥ 0}
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where the liquidation value process introduced in [1] is

Lt(x) := x1 + (x2)+Sbt − (x2)−Sat , x = (x1, x2) ∈ R2. (2.1)

It is easy to check that the liquidation value satisfies the following:

Lemma 2.1. Let Lt be defined by (2.1).

1. The mapping x 7→ Lt(x) is concave hence continuous.
2. Lt(x

0, z) = x0 + Lt((0, z)) for all x0, z ∈ R.
3. x− Lt(x)e1 ∈ ∂Gt for all x ∈ R2.

The boundary ∂Gt = {x ∈ R2 : Lt(x) = 0} is composed of two rays
R+(Sat ,−1) and R+(−Sbt , 1). The dual G∗t := {z ∈ R2 : zx ≥ 0, ∀x ∈ Gt} has
the rays R+(1, Sbt ) and R+(1, Sat ) as boundaries . We have G∗t \ {0} ⊆ intR2

+

and G∗t = cone ({1} × [Sbt , S
a
t ]) 1.

Definition 2.2. An adapted self-financing portfolio process (Vt)t≤T starts
from an initial endowment V0− = V−1 and satisfies ∆Vt ∈ −Gt, ∀t ≤ T a.s.

We introduce the set of all terminal values at time t ≤ T of the portfolio
processes starting from the zero initial endowment at time u ≤ t, i.e.

Atu :=
t∑

s=u

L0(−Gs,Fs).

The corresponding set of terminal liquidation values is:

Ltu := {Lt(V ) : V ∈ Atu}.

We introduce a condition E satisfied by classical examples of markets:

Definition 2.3. Let T ≥ 2. We say that condition E holds if the following
implications hold for all t ≤ T − 1, for all u ≥ t+ 1 and for all Fu ∈ Fu:

(i) If Sat = Sbu on Fu, then there exists r ≥ u such that Sat ≥ Sar on Fu,
(ii) If Sbt = Sau on Fu, then there exists r ≥ u such that Sbr ≥ Sbt on Fu.

Remark 2.4. Note that (Sat ,−1) ∈ Gr iff Sat ≥ Sar and (−Sbt , 1) ∈ Gr if and
only if Sbr ≥ Sbt .

1The notation cone (A) designates the smallest cone containing A.



/ 4

Let us present some examples where condition E holds:

Example 1: This first example generalizes the model [8]. Let (St)t≤T be
a mid-price adapted process and consider a process (εt)t≤T of proportional
transaction cost rates with values in [0, 1). We suppose that (St)t≤T and
(εt)t≤T are two independent processes and for every t < u, one of the random
variables Su/St and (1 + εt)/(1− εu) does not admit any atom. The bid and
ask prices are given by Sbt := St(1− εt), Sat := St(1 + εt). Then, we show that
P(Sat = Sbu) = 0 if u > t so that condition E trivially holds.

Example 2: We consider the Cox-Ross-Rubinstein model with bid-ask spreads
of [11, Sect. 4]. The bid and ask prices are Sbt = (1+ζbt )S

a
t−1, Sat = (1+ζat )Sbt−1,

where ζ = (ζb, ζa) is such that 0 < Sbt ≤ Sat a.s. for all t ≤ T . In [11, Sect.
4], ζb and ζa take two distinct values. Here, we suppose that P (ζat = 0) =
P (ζbt = 0) = 0 for all t and, for all u ≥ 2, 1 + ζbt+u ≥ minr≥t+u S

a
r /S

a
t+u−1

when 1 + ζbt+u = Sat /S
a
t+u−1 and 1 + ζat+u ≤ maxr≥t+u S

b
r/S

b
t+u−1 when we

have 1 + ζat+u = Sbt /S
b
t+u−1. In that case, condition E holds. On the other

hand, if we suppose that P (ζat = 0) = P (ζbt = 0) = 0 for all t and ζat , ζat
are independent of Ft−1, while the ratios Sat+r/S

a
t and Sbt+r/S

b
t , r ≥ 1 admit

densities, then condition E trivially holds.

Example 3: As in [8], we suppose that the bid and ask prices are Sbt =
St − εt and Sat = St + εt, t ≤ T. Here, S and ε are two positive adapted
processes such that Sb > 0. Then, condition E trivially holds when S and ε
are independent and one of them does not admit any atom.

3. Main result

Definition 3.1. We say that the market model G satisfies the weak no-
arbitrage property NAw if LT0 ∩ L0(R+,FT ) = {0}.

For the models with proportional transaction costs, GT strictly dominates
R2

+, i.e. R2
+ \ {0} ⊂ int GT , and we may easily show the following:

Lemma 3.2. If GT strictly dominates R2
+, then

LT0 ∩ L0(R+,FT ) = {0} ⇐⇒ AT0 ∩ L0(R2
+,FT ) = {0}.

Recall that a consistent price system (CPS) is a martingale (Zt)t≤T satis-
fying Zt ∈ G∗t \ {0} for all t ≤ T .
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Theorem 3.3. ( Grigoriev theorem, [6], [13, Th. 3.2.15]) The following con-
ditions are equivalent :

1 NAw.
2 AT0 ∩ L0(Rd

+,FT ) = {0} 2;

3 For any P̃ ∼ P, there exists a bounded CPS under P̃ .

With friction, AT0 is not necessarily closed, see [13, Ex. 1, Sect. 3.2.4].

Theorem 3.4. Suppose that condition E holds if T ≥ 2. The following con-
ditions are equivalent:

1 NAw

2 LT0 is closed in probability and LT0 ∩ L0(R+,FT ) = {0}.
3 There exists Q ∼ P with dQ/dP ∈ L∞ such that EQLT (V ) ≤ 0 for all

LT (V ) ∈ LT0 ∩ L1(P).
4 There exists Q ∼ P with dQ/dP ∈ L∞ such that, for all t ≤ T − 1,

EQ(Sat+1|Ft) ≥ Sbt and EQ(Sbt+1|Ft) ≤ Sat .

5 There exists Q ∼ P with dQ/dP ∈ L∞ and a Q-martingale S̃ ∈ [Sb, Sa].

In the following, we denote by M∞(P ) the set of all Q ∼ P such that
dQ/dP ∈ L∞ and EQLT (V ) ≤ 0 for all LT (V ) ∈ LT0 . For any contingent
claim ξ ∈ L1(R,FT ), we define the set Γξ of all initial endowments of portfolio
processes whose terminal liquidation values coincide with ξ, i.e.

Γξ := {x ∈ R : ∃V ∈ AT0 : LT (xe1 + VT ) = ξ}.

Corollary 3.5. Suppose that condition E holds. Let ξ ∈ L0(R,FT ) be such
that EP|ξ| <∞. Then, under condition NAw, Γξ = [supQ∈M∞(P ) EQξ,∞).

The following is suggested by C. Kühn and confirms the necessity of E.

Example 3.6. There exists a financial market model satisfying NAw but
condition E fails and such that LT0 is not closed.

Proof. Let us define Ω = {ωk,i : k ∈ N \ {0}, i = 1, 2} and T = 2. Suppose
that F0 = {∅,Ω}, F1 = σ{{ωk,1, ωk,2} : k ≥ 1} and F2 = 2Ω. The bid and
ask prices are defined by

2The closure is taken in L0.
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Sb0 = Sa0 = 1, Sb1 = 1, Sa1 = 2,

Sb2(ωk,i) = Sa2 (ωk,i) = 1 +
(−1)i+1

k
, k ∈ N \ {0}, i = 1, 2.

Moreover, we suppose that P ({ωk,1}|F1) = P ({ωk,2}|F1) for all k ≥ 1 so
that E(Sb2|F1) = 1. We deduce that Zt = (1, Sbt ) is a CPS so that NAw holds
by the Grigoriev theorem. This is an example where condition E does not
hold at time t = 0. Indeed, in the contrary case, as Sa0 = Sb1 a.s., we should
have a.s. the existence of r ≥ 1 such that Sa0 ≥ Sar . Necessary r = 2 so that
we should have 1 ≥ Sa2 a.s., which is not the case.

Let us define H1n = {ωk,1 : k ≤ n} and H2n = {ωk,2 : k ≤ n} for all
n ∈ [1,∞] and H i = H i∞, i = 1, 2. We may show by contradiction that the
payoff H = 1H1−1H2 does not belong to L2

0. On the other hand, H = limnH
n

where Hn = 1H1n − 1H2n . We claim that Hn ∈ L2
0. Indeed, it suffices to buy

n + 1 risky assets at time t = 0, sell n + 1 − k ≥ 0 assets at time t = 1 on
each {ωk,1, ωk,2} ∈ F1 such that k ≤ n and sell the n+ 1 assets otherwise. At
last, liquidating the position at time t = 2, we finally get the payoff[

k(1 + (−1)i+1/k − k
]

1k≤n = Hn(ωk,i).

As H = limnH
n, we conclude that LT0 is not closed. 2

4. Proofs of the main results

4.1. Proof of Theorem 3.4

The implication (2) ⇒ (3) follows from [13, Th. 2.1.4]. The implications
(3)⇒ (1) and (2)⇒ (1) are trivial. The implication (3)⇒ (4) is deduced by
considering the liquidation values at time t + 1 of the positions (Sbt ,−1)1Ft

and (−Sat , 1)1Ft , Ft ∈ Ft. The implication (4) ⇒ (5) is deduced from [3,
Th. 4.5]. At last, if (5) holds, Z = (ρ, ρS̃) is a CPS with ρt = E(dQ/dP |Ft)
so that NAw holds. If NAw holds, LT0 ∩ L0(R+,FT ) = {0} by the Grigoriev
theorem, where the closure is in L1. We deduce (3) by [13, Th. 2.1.4].

Closedness. It remains to show that (1)⇒ (2), i.e. LT0 is closed in probability.
With one step, this is immediate as LTT = −L0(R+,FT ). We may show that,
for any γ ∈ LT0 , γe1 = −gT0 ∈ AT0 where gtu, u ≤ t, is a general notation we
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introduce to designate a sum gtu =
∑t

r=u gr with gr ∈ L0(Gr,Fr), r ≤ T .
Moreover, we may suppose w.l.o.g. that gr ∈ ∂Gt for all t ≤ T − 1. By the
Grigoriev theorem, there exists a CPS Z.

Two steps. Consider γ∞T = limn γ
n
T where γnT e1 = −gT,nT−1 ∈ LTT−1. Define the

set ΓT−1 := {lim inf |gnT−1| = ∞} ∈ FT−1. We normalize the sequences by

setting γ̃nT := γnT/|gnT−1|, g̃
T,n
T−1 := gT,nT−1/|gnT−1|. As |g̃nT−1| = 1, we may assume

that g̃nT−1 → g̃∞T−1 ∈ GT−1, see [13, Lem. 2.1.2]. As limn γ̃
n
T e1 = 0, we deduce

that g̃nT → g̃∞T ∈ GT and g̃∞T−1 + g̃∞T = 0 where g̃∞T−1 ∈ ∂GT−1 and g̃∞T ∈ GT .
We set g̃∞T−1 = g̃∞T = 0 on ΛT−1 = Ω \ ΓT−1 ∈ FT−1. Let Z be a CPS.
As ZT (g̃∞T−1 + g̃∞T ) = 0, we deduce that ZT−1g̃

∞
T−1 + E(ZT g̃

∞
T |FT−1) = 0.

By duality, we get that ZT−1g̃
∞
T−1 = ZT g̃

∞
T = 0. As g̃∞T = −g̃∞T−1 is FT−1-

measurable, we get that 0 = E(ZT g̃
∞
T |FT−1) = ZT−1g̃

∞
T . So, ZT−1g̃

∞
T = ZT g̃

∞
T

hence ZT−1 ∈ (R+ZT )∩G∗T . Therefore, ZT−1γ
n
T e1 = −ZT−1g

n
T−1−ZT−1g

n
T ≤ 0

by duality. Since ZT−1e1 > 0, we deduce that γnT ≤ 0. So, γnT e1 = −ĝT,nT−1 a.s.,
where ĝnT−1 = gnT−11ΛT−1

∈ ∂GT−1 and ĝnT = gnT1ΛT−1
+ (−γnT e1)1ΓT−1

belongs
to L0(GT ,FT ). By construction, lim infn |ĝnT−1| < ∞ hence we may suppose
that ĝnT−1 → ĝ∞T−1 ∈ L0(GT−1,FT−1) by [13, Lem. 2.1.2]. We deduce that

ĝnT → ĝ∞T ∈ L0(GT ,FT ) hence γ∞T = −ĝT,∞T−1 ∈ LTT−1.

General case. Condition E is only used for 3 steps and more and we argue
by induction. Suppose closedness holds between the dates t + 1 and T ≥ 2
and let us show the closedness holds between t and T . To do so, we suppose
that limn δ

n
T = δT ∈ L0(Re1,FT ) where δnT = −gT,nt ∈ ATt . We claim that

δnT = −ĝT,nt + εnT , where −ĝT,nt ∈ ATt satisfies supu≤T lim infn |ĝnu | < ∞ a.s.
and limn ε

n
T = 0 a.s. Moreover, ĝnt = gnt 1{lim infn |gnt |<∞}. This holds for t = T−1

as shown above.

(i) We first work on Λt := {lim infn |gnt | < ∞} ∈ Ft. Consider the smallest
u ≥ t+ 1 such that P (lim infn |gnu | = +∞|Λt) > 0. As lim infn |gnr | <∞ a.s.,
we suppose that gnr → gr ∈ L0(∂Gr,Fr) by [13, Lem. 2.1.2] if r ≤ u−1. Then,
we replace gnr by gr if r ≤ u − 1, letting aside a residual error εnT → 0 a.s.
and we only need to consider the case u ≤ T − 1. We split Λt into Λu ∈ Fu
and Γu = Ω \ Λu.

On Γu, we mormalize by dividing by |gnu | and we get that δ̃nT = −g̃T,nt where
δ̃nT = δnT/|gnu | and g̃nr := gnr /|gnu | for r ≤ T . As δ̃nT and g̃nr , r ≤ u − 1, tend to
0, we may suppose that lim infn |g̃nr | <∞ by the induction hypothesis on Γu
if r ≥ u. By [13, Lem. 2.1.2], we may suppose that g̃nr → g̃∞r ∈ L0(Gr,Fr)
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if r ≥ u. Finally, we get that g̃T,∞u = 0 and g̃∞u ∈ L0(∂Gu,Fu). We get that
g̃∞T ∈ L0(∂GT ,FT ) under NAw. Let us consider the stopping time τ as the
first instant τ ≥ u+ 1 such that g̃τ,∞u = 0. By Lemmas 4.1, 4.2, for all r ≥ u,
there exists kr ∈ L0(R,Fr) such that g̃∞r 1r≤τ = krg̃

∞
u 1r≤τ . Consider the first

instant σ ∈ [u + 1, τ ] such that kσ < 0. It exists since ku = 1 and g̃τ,∞u = 0.

We consider the case where g̃
∞(1)
u > 0 and g̃

∞(2)
u < 0, then g̃

∞(1)
σ < 0 and

g̃
∞(2)
σ > 0. The symmetric case may be solved similarly.

Note that g̃∞σ = kσg̃
∞
u hence −k−1

σ g̃∞σ = −g̃∞u . By NAw, we get that

Lσ(g̃∞σ ) = 0. Since Lu(g̃
∞
u ) = Lσ(g̃∞σ ), g̃

∞(1)
u /g̃

∞(2)
u = g̃

∞(1)
σ /g̃

∞(2)
σ and then

Sau = Sbσ. As (g̃u,nt )(2) = −(g̃T,nu+1))(2) − δ
n(2)
T → g̃

∞(2)
u < 0. We may as-

sume that g̃
n(2)
u < 0 and (g̃u,nt )(2) < 0. Let us define βn := (gu,nt )(2)/g̃

∞(2)
u

in L0((0,∞),Fu)). With gt−1
t = 0 and ǧnu = gnu − βng̃∞u , we rewrite δnT as

δnT = −gu−1
t − ǧnu − βng̃∞u − g

T,n
u+1.

We may verify that ǧnu = (gu−1
t )(2)(Sau,−1) is constant, and so satisfies

lim infn |ǧnu | < +∞. On the set Θ1
u−1 := {(gu−1

t )(2) ≥ 0}, we have Lu(ǧ
n
u) = 0.

This implies that ǧnu1Θ1
u−1
∈ ∂Gu. On the set Θ2

u−1 := {(gu−1
t )(2) < 0}, we

have Lσ(ǧnu) = 0 hence ǧnu1Θ2
u−1
∈ ∂Gσ.

Let us introduce ḡk := 1σ=k1Θ2
u−1
ǧnu ∈ L0(∂Gk,Fk). Then, ǧnu1Θ2

u−1
= ḡTu+1.

At last, since (−βng̃∞u − g
T,n
u+1)(2) = δ

n(2)
T → 0 and u ≥ t + 1, the induction

hypothesis implies that −βng̃∞u − g
T,n
u+1 = −ğT,nu + ε̃nT with ğnr ∈ L0(Gr,Fr),

r ≥ u, such that supr≥u lim infn |ğnr | <∞ and ε̃nT → 0 a.s. Finally, we write

δnT1Λt1Γu = −gu−1
t 1Γu − ĝT,nu 1Γu + ε̃nT ,

where ĝnu = ǧnu1Θ1
u−1

1Γu + ğnu1Γu and ĝnk = (ḡk1Θ2
u−1

+ ğnk )1Γu if k ≥ u+ 1. By

construction lim infn |ĝnk | <∞ a.s. and ĝnk ∈ L0(Gk,Fk) for all k.

On Λu, we may suppose that gnu → gu ∈ L0(Gu,Fu) by [13, Lem. 2.1.2]
and finally assume w.l.o.g. that δnT1Λu = −gut 1Λu − g

n,T
u+11Λu . We deduce that

δnT1Λt = δnT1Λt1Λu + δnT1Λt1Γu may be written as δnT1Λt = −gu−1
t 1Λt − gT,nu

where lim inf |gnu | < ∞ a.s. We then reiterate the procedure (i) on Λt where
u is necessarily replaced by û > u. We then conclude on Λt as the number of
dates is finite .

(ii) On the set Γt := {lim infn |gnt | = +∞}, we have δ̄nT = −ḡT,nt where
γ̄nT := γnT/|gnt | and ḡnr := gnr /|gnt | for all r ≥ t. Since |ḡnt | = 1, we deduce an
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equality of the type ḡT,∞t = 0. As ḡ∞t 6= 0, let us consider the first instant
τ̄ ≥ t+ 1 such that ḡτ,∞t = 0. Then, for any CPS (Zr)r≥t, Zt, · · · , Zτ ∈ R+Zt
by Lemma 4.1. It follows that Zt+1 ∈ G∗t ∩ G∗t+1 and (Zr)r≥t+1 is a CPS for

the market model from t+ 1 to T defined by G̃t+1 = Gt ∪Gt+1 ⊆ (Zt)
∗ and

G̃u = Gu for u ≥ t+ 2. Then, the model (G̃r)r≥t+1 satisfies NAw and E since
Sbt ∨ Sbt+1 and Sat ∧ Sat+1 are the bid and ask prices at time t+ 1.

Since gnt + gnt+1 ∈ L0(G̃t+1,Ft+1), we may apply the induction hypothesis

and deduce that−δnT = ĝT,nt+1 where ĝnu ∈ L0(Gu,Fu) satisfies lim infn |ĝnu | <∞
a.s. for u ≥ t + 2 and ĝnt+1 = (gnt + gnt+1)1lim infn ‖gnt +gnt+1‖<∞. So, assume that

−δnT = (gnt +gnt+1)1lim infn ‖gnt +gnt+1‖<∞+gT,nt+2 where each gnu , u ≥ t+2, converges.
As lim infn |gnt | = +∞, we deduce by the normalisation procedure an equality
(g̃t + g̃t+1)1lim infn ‖gnt +gnt+1‖<∞ = 0 where g̃t ∈ L0(∂Gt,Ft) and |g̃t| = 1. As

g̃t+1 ∈ ∂Gt+1 we deduce that Sat = Sbt+1 when ḡ
∞(1)
t > 0 and ḡ

∞(2)
t < 0

and Sbt = Sat+1 otherwise. On the set {ḡ∞(1)
t > 0}, let us consider the first

instant τ̂ ≥ t + 1 such that (Sat ,−1) ∈ Gτ̂ . By E and Remark 2.4, we get
that τ̂ ≤ T and ğnr = gnt 1τ̂=r ∈ L0(Gr,Fr) for all r ≥ t + 1. We then write

gnt = ğT,nt+1. Similarly, we rewrite gnt on the set {ḡ∞(1)
t < 0} and we conclude

by the induction hypothesis. 2

4.2. Proof of Corollary 3.5

It is trivial that Γξ ⊆ [supQ∈M∞(P ) EQξ,∞). Consider x ≥ supQ∈M∞(P ) EQξ

and suppose that x /∈ Γξ, i.e. ξ − x /∈ LT0 . As LT0 ∩ L1(P) is closed in L1

under NAw, we deduce by the Hahn-Banach theorem η ∈ L∞ and c ∈ R
such that E(ηX) < c < E(η(ξ − x)) for all X ∈ LT0 ∩ L1(P). Since LT0 is a
cone, we deduce that E(ηX) ≤ 0 for all X ∈ LT0 ∩ L1(P). Moreover, as LT0
contains −L0(R+,FT ), we deduce that η ≥ 0 and we may suppose E(η) = 1.
Consider η′ = dQ/dP where Q ∈ M∞(P ) 6= ∅ and choose α ∈ (0, 1) so that
η̂ := αη + (1 − α)η′ satisfies E(η̂(ξ − x)) > 0 since c > 0. By construction,
the probability measure Q̂ ∼ P such that dQ̂/dP = η̂ belongs to M∞(P ) in
contradiction with E(η̂(ξ − x)) > 0, i.e. x < EQ̂ξ. 2

4.3. Auxiliary results

Lemma 4.1. Consider τ = min{u ≥ t : gut = 0} where gu ∈ L1(Gu,Fu),
u ≥ t, and suppose that τ ∈ [t + 1, T ] a.s. Then, for all bounded CPS Z,
Zr ∈ R+Zt a.s. if r ∈ [t, τ ].
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Proof. Let us define ĝu = gu1u≤τ . Since ZT ĝ
T
u = 0, we deduce that

0 =
T∑
u=t

E(ZT ĝu|Ft) =
T∑
u=t

E(Zuĝu|Ft).

Since Zugu ≥ 0, we have Zuĝu = 0 if u ≥ t. Since {T ≤ τ} ∈ FT−1 and
ĝT1T≤τ = −gT−1

t 1τ=T ∈ L0(R2,FT−1), we get that ZT ĝT = 0 = ZT−1ĝT and
ZT−1 (ĝT−1 + ĝT ) = 0. Suppose that Zuĝ

T
u = 0 where u ≥ t + 1. We deduce

that Zu−1ĝ
T
u = 0 since ĝTu = −gu−1

t 1u≤τ ∈ L0(R2,Fu−1). As Zu−1ĝu−1 = 0
a.s., we get that Zu−1ĝ

T
u−1 = 0, i.e. we may conclude by induction.

In particular, Zu and Zu−1 are orthogonal to ĝu,T . As ĝu,T 6= 0 if u ≤ τ , we
deduce that Zu ∈ R+Zu−1 if u ≤ τ . The conclusion follows. 2

Lemma 4.2. Consider τ = min{u ≥ t : gut = 0} where gu ∈ L1(Gu,Fu),
u ≥ t, and suppose that τ ∈ [t+1, T ] a.s. If NAw holds, there exists a stopping
time σ ∈ [t+ 1, τ ] such that gt ∈ R−gσ a.s.

Proof. By NAw, a bounded CPS Z exists and Zt ∈ R+Zu a.s. if u ≤ τ by
Lemma 4.1. By lemma’s proof, Ztgu1u≤τ = 0 hence Ztgt = 0. As gt 6= 0 a.s.,
gu1u≤τ = kugt where ku = ku1u≤τ ∈ L0(R,Fu). Therefore, (1+kTt+1)gt = 0 and
there is a first instant σ ≥ t+1 such that ku < 0. We have gσ = gσ1σ≤τ = kσgt
so that gt ∈ R−gσ a.s. 2
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