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bLERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers Cedex 01, France

cInstitut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France

Abstract

The periodic capacitated arc routing problem (PCARP) is a challenging general model

with important applications. The PCARP has two hierarchical optimization objectives: a

primary objective of minimizing the number of vehicles (Fv) and a secondary objective of

minimizing the total cost (Fc). In this paper, we propose an effective two phased hybrid

local search (HLS) algorithm for the PCARP. The first phase makes a particular effort

to optimize the primary objective while the second phase seeks to further optimize both

objectives by using the resulting number of vehicles of the first phase as an upper bound

to prune the search space. For both phases, combined local search heuristics are devised to

ensure an effective exploration of the search space. Experimental results on 63 benchmark

instances demonstrate that HLS performs remarkably well both in terms of computational

efficiency and solution quality. In particular, HLS discovers 44 improved best known values

(new upper bounds) for the total cost objective Fc while attaining all the known optimal

values regarding the objective of the number of vehicles Fv. To our knowledge, this is the

first PCARP algorithm reaching such a performance. Key components of HLS are analyzed

to better understand their contributions to the overall performance.
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1 Introduction

Due to their theoretical hardness and practical importance, the periodic capacitated

arc routing problem (PCARP) as well as many of its closely related problems in

logistics have attracted considerable research effort in the last decades [8]. Com-

pared to the popular capacitated arc routing problem (CARP) [15], the PCARP

requires that the tasks are served for a certain number of times over a given multi-

period horizon. The PCARP is typically encountered in waste collection applica-

tions, where we want to design a plan to collect the daily waste on each street in

the city. In the PCARP that was first introduced in [20], streets may require several

services for a multi-period time horizon (e.g., one week) according to a service pat-

tern (e.g., a street requiring two services can be serviced by a Monday-Thursday or

Tuesday-Friday pattern). The PCARP is to schedule vehicles to cover the required

services of each day over the time horizon while optimizing two hierarchical ob-

jectives: a primary objective of minimizing the number of vehicles used over the

time horizon (Fv) and a secondary objective of minimizing the total cost (Fc).

The PCARP is computationally challenging since it generalizes the classical and

NP-hard CARP [15]. Compared to its single-period special case–CARP–which has

been intensively studied in the last decades (e.g., [1,3,17,25,27,30,31]), the PCARP

is somewhat less investigated. Due to its intrinsic intractability, existing research

on the PCARP focuses mainly on designing effective heuristics to find high-quality

near-optimal solutions in a reasonable time frame. As a first attempt to solve this

problem, Chu et al. [5] presented several constructive heuristics. Later, two ad-

vanced heuristic algorithms were proposed: the Memetic Algorithm (LMA) by La-

comme et al. [22] and the Scatter Search algorithm (SS) by Chu et al. [6]. Both

approaches adapted the representation scheme and search operators of the classical

CARP to the PCARP, and applied a greedy heuristic to build elite initial solutions of

the population. Kansou and Yassine [19] introduced an Ant Colony heuristic with

an efficient constructive procedure which outperformed the previous methods on a

set of instances. Finally, Mei et al. [28] presented another memetic algorithm with

route-merging (MARM) which clearly dominated all previous PCARP approaches,

making a significant improvement in PCARP solving. This approach will serve as

the main reference for our algorithm assessment.

For a comprehensive literature review, we mention a close relative of the PCARP,

called the Periodic Vehicle Routing Problem (PVRP), which is the vertex routing

counterpart of the PCARP. The PVRP appeared earlier than the PCARP and con-

sequently has received more research attention (e.g., [7, 9, 11, 12]). Different from

the PCARP investigated in this work which is a bi-level optimization problem, the

PVRP involves a single objective (the total cost objective). Moreover, the PVRP

can be considered to be inherently less complex than the PCARP if we compare

their single-period special cases (CARP vs. VRP). Indeed, a CARP with n tasks

corresponds to a VRP with 2n + 1 vertices [23]. These observations also confirm
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the challenge of solving the PCARP compared to the PVRP.

In this work, we propose a two phased hybrid local search (HLS) approach for

solving the PCARP with the following motivations and contributions.

• We notice that to handle the two hierarchical objectives, the existing studies on

the PCARP typically optimize an aggregated weight function which is a linear

combination of the two hierarchical objectives. Even if this approach is simple

to implement, it does not explicitly recognize the priority of the primary objec-

tive and the algorithms using this approach need to explore a very large search

space including many irrelevant solutions. Contrary to this objective aggregation

approach, our HLS algorithm proposed in this paper relies on: 1) a first phase

which focuses on the minimization of the number of vehicles, and 2) a second

phase which uses the resulting number of vehicles as an upper bound to strongly

constrain the optimization process.

• The proposed HLS algorithm integrates dedicated search operators and heuristics

to ensure an effective search of both phases. To obtain an initial PCARP solution

with a small number of vehicles, the first phase of HLS employs a specific tabu

search procedure to evenly assign the tasks among the different periods of the

time horizon and applies a heuristic CARP algorithm to generate vehicle routes

for each period. In order to further ameliorate this initial PCARP solution, the

second phase of HLS relies on two complementary local search procedures to

reduce both the number of vehicles and the total cost. In particular, HLS uses

the number of vehicles of the initial solution (from the first phase) as an upper

bound to discard all candidate solutions whose number of vehicles is larger than

the upper bound, and thus only explores a largely reduced search space.

• We assess our HLS algorithm on three sets of 63 popular benchmark instances in

the literature. Our computational results indicate that HLS competes very favor-

ably with the current best PCARP algorithms and is able to reach all the known

optimal values in terms of Fv, and discovers 44 improved best values (new upper

bounds) in terms of Fc which can be used to evaluate new PCARP algorithms.

To our knowledge, no previous algorithm achieves such a performance.

The reminder of the paper is organized as follows. We introduce the PCARP in

Section 2 and then present the HLS algorithm in Section 3. We show a performance

assessment of the proposed algorithm and an analysis of the key elements of HLS

in Sections 4 and 5 respectively, followed by concluding remarks in Section 6.
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2 Problem Description and Solution Representation

2.1 Problem description

Given a m-period time horizon H = {1, 2, ...,m} and an undirected graph G(V,E)
with vertex set V and edge set E, a set of required edges (also called tasks hereafter)

ER (ER ⊂ E) and a fleet of identical vehicles with a capacity of Q that are based at

the depot vertex vd (vd ∈ V ). Let n be the number of required edges (i.e., n = |ER|).
Each edge e = (i, j) ∈ ER (a task), which is considered as a pair of arcs < i, j >
and < j, i >, is associated with a traversal cost (tc(e)). Additionally, each task

t ∈ ER is associated with a service cost sc(t), a service frequency f(t) (based on

which, an allowable service pattern set ASP (t) is also given) and a demand vector

d(t) = {d1(t), d2(t), ..., dm(t)} where dx(t) (x = 1, ...,m) indicates the intraperiod

demand of period x of task t.

Let ad(t, p, h) denote the accumulated demand of task t (t ∈ ER) in period h ∈ H ,

where task t is served by pattern p (p ∈ ASP (t)). We recall that a pattern depicts

the number of services provided for a task over a time horizon, and the periods when

the service is performed. Once the pattern for a task is determined, its accumulated

demand in a particular service period is calculated by summing up all intraperiod

demands between last service period and the current one. For instance, a pattern

p0 = {2, 5} is selected for task t0 indicating t0 is serviced on the second day (i.e.,

Tuesday) and fifth day (i.e., Friday) of the week, then the accumulated demand of

task t0 on Tuesday is ad(t0, p0, 2) = d5(t0)+d6(t0)+d7(t0)+d1(t0) and on Friday

is ad(t0, p0, 5) = d2(t0) + d3(t0) + d4(t0).

The PCARP amounts to deciding a pattern p (p ∈ ASP (t)) for each task t (t ∈ ER)

and to designing a set of vehicle routes for each period h (h ∈ H), with the purpose

of minimizing the number of vehicles (Fv) used over the time horizon H as the

primary objective, and minimizing the total cost of all vehicle routes (Fc) as the

second objective, while respecting the following constraints: 1) each vehicle route

starts and ends at the depot vd; 2) each task t (t ∈ ER) is served no more than once

in each period h (h ∈ H); 3) the service pattern selected for each task t (t ∈ ER)

must be from its allowable service pattern set ASP (t); 4) the total demand serviced

on the route of a vehicle must not exceed the vehicle capacity Q. A mathematical

formulation of the PCARPA was described in [28], which is based on a solution

representation different from the representation we adopted (described below).

2.2 Solution representation

Our HLS algorithm uses the following solution representation to encode the candi-

date solutions of the PCARP. First, each task (i.e., each required edge) is assigned
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two IDs (a, a+n) (a = 1, ..., n) to represent the two associated arcs of the task. We

also define a dummy task with 0 as its task ID and both its head and tail vertices

being the depot vertex vd. This dummy task is to be inserted somewhere in the solu-

tion as a route delimiter. A candidate solution S of the PCARP is then represented

by m (number of periods) CARP solutions, i.e., S = {S1, S2, ..., Sm}. Suppose

each CARP solution Si (i ∈ {1, ...,m}) involves ni tasks and ri vehicle routes, Si

can then be encoded as an order list of (ni + ri +1) task IDs among which (ri +1)
are dummy tasks: Si = {Si(1), Si(2), ..., Si(ni + ri + 1)}, where Si(j) is a task ID

(an arc of the task or a dummy task) in the jth position of Si. Si can also be written

as a set of ri routes: Si = {0, Ri1, 0, Ri2, 0, ..., 0, Riri , 0}, where Rij denotes the jth

route composed of |Rij| task IDs (arcs), i.e., Rij = {Rij(1), Rij(2), ..., Rij(|Rij|)},
with Rij(k) being the task ID at the kth position of Rij . Let dist(u, v) denote the

shortest path distance between the head vertex of arc u (head(u)) and the tail vertex

of arc v (tail(v)). The primary objective value Fv(S) and the secondary objective

value Fc(S) of the candidate solution S can be expressed as

Fv(S) = maxi∈H(ri) (1)

Fc(S) =
m∑

i=1

ni+ri∑

j=1

(tc(Si(j)) + dist(Si(j), Si(j + 1))) (2)

The total load load(Rij) of a route Rij (j ∈ {1, ..., ri}, i ∈ H) is given by

load(Rij) =
|Rij |∑

k=1

ad(Rij(k), sp(Rij(k)), i) (3)

where sp(Rij(k)) is the pattern selected for task Rij(k).

Notice that Expression (1) is not the primary objective, but indicates how the pri-

mary objective value Fv(S) of a candidate solution S = {S1, S2, ...Sm} is calcu-

lated, which is the maximum number of vehicles used by the different routes over

m periods of H in the solution.

3 Main Scheme of HLS and Algorithm Components

The HLS algorithm (Algorithm 1) starts with its first phase to generate an initial fea-

sible PCARP solution satisfying the constraints given at the end of Section 2.1. This

is achieved by the InitSol procedure (Section 3.1), which determines a balanced

assignment of the tasks over the time horizon (with a dedicated tabu search proce-

dure) and designs a set of routes for each period (with an existing route building

procedure). The number of vehicles used in the initial solution naturally constitutes

an upper bound of the first objective Fv, denoted as nvUB . To further improve the

input solution and avoid unpromising solutions, the second phase of HLS (Section

3.2) examines only feasible solutions and discards any candidate solution with a
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Fv value higher than nvUB . Specifically, the second phase applies two local search

procedures to improve both the pattern assignment and vehicle routes, and triggers

a perturbation procedure (i.e., accepting some controlled deteriorating solutions)

when a local optimum trap is encountered. The HLS algorithm continues until the

best solution cannot be improved for W consecutive rounds.

Algorithm 1: Main Scheme of HLS for the PCARP

Data: P : a PCARP instance; W : max allowed number of consecutive non-improving
rounds

Result: the best solution S∗ found
1 {First phase - Generate an initial solution with a small number of vehicles} ;
2 S ← InitSol() ;
3 S∗ ← S ; /* S∗ records the global best solution */

4 nvUB ← Fv(S) ;
5 {Second phase - Improve the solution by using nvUB as an upper bound} ;
6 while noImp < W do
7 Sc ← S∗ ;
8 while Improving solutions can be found do
9 (S, S∗)← route improve(S,nvUB) ;

10 (S, S∗)← pattern improve(S,nvUB);

11 (S, S∗)← pattern perturb(S,nvUB) ;
12 if S∗ improves on Sc then
13 noImp← 0

14 else
15 noImp← noImp+ 1

16 return S∗

3.1 First phase: generate an initial solution to bound the number of vehicles

Among the two objectives of the PCARP, the first objective (minimizing the used

vehicles) has a higher priority over the second objective (minimizing the total cost).

Thus, a solution with a smaller Fv value is always better than a solution with a larger

Fv value, regardless of their total costs. Consequently, given a feasible solution S0

with Fv(S0) vehicles, it is useless to examine any solution S with Fv(S) > Fv(S0)
since S is necessarily worse than S0. Based on this consideration, we first generate

an initial solution with a Fv value as small as possible in order to effectively prune

the search. For this purpose, a natural idea is to evenly allocate the tasks of ER to

each period, leading to the following demand balancing problem (DBP).

max min
i∈H

(
∑

t∈ER

∑

p∈ASP (t)

ad(t, p, i) ∗ xtp) (4)

subject to: ∑

p∈ASP (t)

xtp = 1 ∀t ∈ ER (5)
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xtp ∈ {0, 1} (6)

Objective (4) is to maximize the minimum amount of demand serviced on a specific

period of the time horizon. Constraint (5) requires that each task is assigned to

exactly one pattern. Each decision variable xtp equals to 1 if task t is serviced with

pattern p, and 0 otherwise.

To solve the DBP, we devise an effective algorithm called DBTS based on the

well-known tabu search method [13]. DBTS starts from a random solution which

is generated as follows. For each task t, a service pattern is randomly selected

from the allowable pattern set and assigned to the task. Then DBTS iteratively

moves from the incumbent solution to one of its neighbor solutions. DBTS relies

on a FLIP operator which for a given task, simply selects another pattern in its

allowable service pattern set to replace the current pattern. At each iteration, DBTS

applies the best move among the set of eligible moves (a move being eligible if

it is non-tabu or if it leads to a neighbor solution better than all visited solutions).

The involved task of the performed move, say u, is added to the so-called tabu

list and cannot be changed for the next tt iterations (tt is a parameter called ‘tabu

tenure’). DBTS terminates either when the iteration counter reaches a predefined

maximum number MaxIter or the objective value reaches its best possible value

Best Obj, calculated as Best Obj = TD/m where TD =
∑

t∈ER

∑
i∈H di(t) is

the total demand of all tasks over the time horizon.

DBTS outputs an assignment of service patterns to tasks such that the tasks are

approximately evenly allocated over the time horizon H . Then, for each period

i ∈ H , we run the path scanning algorithm [14] to solve the associated CARP to

generate a number of routes able to cover all tasks assigned to period i. Basically,

this algorithm always selects an arc (from a candidate set) that is the closest to the

end of the route in construction. When an arc is selected, its inverse arc is removed

from the candidate set to make sure that the required edge is served no more than

once. More details about the implementation of the path scanning algorithm can

be found in the original paper [14]. The whole set of resulting routes over all m
periods constitutes the starting PCARP solution S0 of the second phase of the HLS

algorithm. The number of vehicles of this starting solution (Fv(S0)) provides an

upper bound which is used to prune any solution with a number of vehicles greater

than Fv(S0).

3.2 Second phase: iterated improvement with pattern and route adjustments

The second phase of HLS seeks to further reduce the number of used vehicles and

the total route cost. For this purpose, HLS jointly applies a pattern improvement

procedure (PI) and a route improvement procedure (RI) combined with a perturba-

tion mechanism to escape local optimum traps.

8
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3.2.1 Pattern improvement

The PI procedure improves the solution by adjusting the pattern assignment of each

task, which is achieved by exploring a neighborhood induced by the alter-pattern

operator.

• alter-pattern (AP(t, p, q)): change the current service pattern p of task t to a new

pattern q from the allowable service pattern set (i.e., q 6= p, p, q ∈ ASP (t)). To

do this, AP removes, from the current solution, all the services of pattern p of

task t, and then for each period of pattern q, inserts a new service to task t in

the best location where the augmentation of the total costs is the least while the

solution feasibility is maintained.

AP is a large-step-sized operator because it generates neighbor solutions that re-

quire multiple changes of the current solution. The number of changes depends on

the number of periods in the dropped and new patterns. This operator allows a tran-

sition between structurally different feasible solutions which cannot be reached by

the small-step-sized operators used in the route improvement procedure (see Sect.

3.2.2). From this point of view, PI and RI are two complementary procedures.

The PI procedure iterates on tasks in random order. For each task t, the patterns

in the allowable service pattern set is examined one by one using the AP operator.

Once an improving solution is found in terms of the problem objectives, the transi-

tion is performed before examining the next task. Given the current solution S and

a new solution S
′

, S
′

improves on S if Fv(S
′

) < Fv(S), or when Fv(S
′

) = Fv(S),
Fc(S

′

) < Fc(S). The pattern improvement procedure stops when all tasks have

been successively considered without leading to any solution improvement.

3.2.2 Route improvement

A PCARP solution S is composed of m CARP solutions where each CARP so-

lution is a set of vehicle routes. During the route improvement (RI) procedure, the

service pattern assignments to tasks are kept fixed and tasks are only allowed to dis-

place within each period of the assigned service pattern. This amounts to solving m
CARPs with the m CARP solutions of S as their starting solutions. To optimize a

CARP solution related to a specific period, any approach to the conventional CARP

can be applied in general. However, expensive CARP approaches like [4,21,30,31]

are not suitable in our case due to two reasons. First, they might significantly in-

crease the overall solution time since the CARP routine is frequently called in our

HLS algorithm. Indeed, m calls of CARP approach are needed at each RI-PI it-

eration and this might continue for a large number of iterations. Second, a CARP

approach able to provide optimal (or very high quality) CARP solutions does not

necessarily lead to better PCARP results. This is because a PCARP solution is

determined not only by the routing plan at each period but also by its pattern as-

signment. Allowing HLS to explore more pattern assignments instead of spending
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a large portion of time in optimizing the routing plan to a given pattern assignment

would presumably lead to better PCARP solutions.

Given the above remarks, we decided to call for a dedicated fast CARP heuris-

tic able to provide good quality solutions. For this purpose, we adopted the Vari-

able Neighborhood Search framework [16] to devise a simple and fast VNS pro-

cedure with constrained neighborhoods (VNS-C). We notice that the idea of VNS

has previously been used in several effective CARP heuristics (e.g., [18, 29]). Our

VNS-C procedure shares with these existing procedures a set of common move

operators and makes improvements in particular by introducing a dedicated neigh-

borhood reduction method. Our experimental experience showed that VNS-C is

a suitable procedure for route improvement in our context and contributes to the

overall high performance of the HLS algorithm. VNS-C relies on four traditional

operators (neighborhoods) for the CARP, namely Single insertion (N1), Double

insertion (N2), Swap (N3) and Two-opt (N4), which are described as follows [21].

Let u and v be a pair of tasks in the current CARP solution, tasks x and y be

respectively the successor of u and v, rt(u) be the route including task u.

• Single insertion (N1): displace task u after task v (also before task v if v is the

first task of rt(v)); both arcs of u are considered when inserting u in the target

position, and the one yielding the best solution is selected;

• Double insertion (N2): displace a sequence (u, x) after task v (also before task

v if v is the first task of rt(v)); similar to N1, both directions are considered for

each task and the resulting best move is chosen;

• Swap (N3): exchange task u and task v; similar to N1, both directions are con-

sidered for each task to be swapped and the resulting best move is chosen;

• Two-opt (N4): two cases exist for this move operator: 1) if rt(u) = rt(v), reverse

the direction of the sequence (x, v); 2) if rt(u) 6= rt(v), cut the link between

(u, x) and (v, y) , and establish a link between (u, y) and (v, x);

Notice that these operators test both arcs for each associated required edge, but only

one of them is selected finally. This ensures that for each required edge, only one

direction is served at any time of the route improvement process.

In order to accelerate neighborhood examinations, we use an estimation criterion to

reduce the number of neighbor solutions to be considered, leading to a constrained

version of the four neighborhoods. This estimation criterion is based on a distance

measure between two tasks t1, t2 which is defined as:

Dtask(t1, t2) = (
2∑

a=1

2∑

b=1

D(va(t1), vb(t2)))/4 (7)

where D(va(t1), vb(t2)) is the traversing distance between t1’s ath end node va(t1)
and t2’s bth end node vb(t2) (this distance measure was first used in [26] to de-

fine the distance between two routes). For each task t, we create a list Lt(nl) that
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contains t’s nearest nl (nl is a parameter, nl < n) neighboring tasks according to

formula (7). Then at each iteration, VNS-C restricts its examination to those moves

involving at least one other task taken from the list Lt(nl). One notices that all four

move operators involve two distinct tasks. Indeed, insertion is to insert one task

after or before another task; swap is to swap one task with another task; two-opt is

to exchange a subsequent part of a task with that of another one. As such, given a

task t, the other task the move operator is allowed to consider is delimited inside

Lt(nl), which leads to the neighbor solutions that VNS-C explores.

As outlined in Algorithm 2, at each iteration, VNS-C applies k times the Shake
operation, each Shake application performing a move randomly chosen from N3.

Then a basic variable neighborhood descent (VND) based on the neighborhoods

N1–N4 is applied to attain a local optimum S
′

. If S
′

is better than the current so-

lution S, S is replaced by S
′

and k is reset to its initial value 1; otherwise k is

incremented by 1. This process continues until k reaches kmax.

Algorithm 2: VNS-C procedure

Data: S: a CARP solution; kmax: max allowed iterations without improvement
Result: the best solution S∗ found

1 S ← V ND(S) ;
2 k ← 1 ;
3 while k < kmax do

4 S
′

← S ;
5 for i = 1 to k do

6 S
′

← Shake(S
′

, N3) ;

7 S
′

← V ND(S
′

) ;

8 if S
′

improves on S then

9 S ← S
′

;
10 k ← 1 ;

11 else
12 k ← k + 1 ;

13 return S∗

3.2.3 Perturbation to escape local optimum traps

When the current solution cannot be further improved by the PI and RI proce-

dures, a local optimum is reached. HLS then triggers the threshold based explo-

ration (TBE) procedure (see Algorithm 3) to escape the trap. TBE basically applies

the alter-pattern operator of Section 3.2.1 with a solution accepting criterion. The

choice of the alter-pattern operator is based on its two remarkable characteristics.

First, AP is an inter-period operator able to modify multiple periods. Second, AP

can simultaneously modify pattern assignments and routes in a single operation.

Different from the improvement procedures where the alter-pattern operator is used

to seek strictly improving solutions, TBE accepts under specific conditions deteri-
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orating solutions. In particular, TBE adapts the Threshold Accepting heuristic [10]

to control the solution deterioration. TBE starts by a random shuffling of all tasks.

For each task, TBE examines the patterns in the allowable service pattern set with

the alter-pattern operator. A neighbor solution S
′

is accepted to replace the incum-

bent solution S if Fv(S
′

) < Fv(S), or when Fv(S
′

) = Fv(S), Fc(S
′

) <= δ. δ is

a total-cost threshold value which is determined according to the current best total

cost Fc(S
∗) and a ratio r (r is a parameter): δ = (1 + r)× Fc(S

∗).

Algorithm 3: Threshold based exploration procedure

Data: S: a CARP solution; L: exploration strength; r: threshold ratio; S∗: input best
solution

Result: the best solution S∗ found
1 δ ← (1 + r)× Fc(S

∗) ;
2 for i = 1 to L do
3 Randomly shuffle all tasks in T ;
4 for t ∈ T do
5 for p ∈ ASP (t) do

6 S
′

← apply alter-pattern operator and pattern p to task t of S ;

7 if (Fv(S
′

) < Fv(S)) ∨ ((Fv(S
′

) = Fv(S)) ∧ (Fc(S
′

) <= δ)) then

8 S ← S
′

;

9 if (Fv(S
′

) < Fv(S
∗)) ∨ ((Fv(S

′

) = Fv(S)) ∧ (Fc(S
′

) < Fc(S
∗))) then

10 S∗ ← S
′

;
11 δ ← (1 + r)× Fc(S

∗) ;

12 return S and S∗

4 Experimental Evaluation

To assess the proposed HLS algorithm, we show in this section computational re-

sults in comparison with the best performing algorithms in the literature based on

three sets of 63 well-known PCARP benchmark instances.

4.1 Benchmarks

The PCARP benchmark instances used in our experiments are very popular and

widely used in previous studies, which belong to three sets: pgdb, pval and pG.

The pgdb and pval sets were generated from the corresponding gdb and val CARP

benchmark sets. The pG set was extended from the G set generated by Brandão

and Eglese [3], which consists of 10 large CARP instances based on a road net-

work in Lancashire, U.K. The G set consists of two groups (G1 and G2), each with

5 instances (denoted as 1-A∼1-E and 2-A∼2-E). To ensure that the instances after

extension have different capacities, the pG set excludes four instances and finally
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contains 6 instances. These instances were generated to simulate a weekly waste

collection. Therefore, the time horizon is one week, with Saturday and Sunday as

idle days. If the service frequency of an edge (a street) is 2 or 3, then consecutive

services over the horizon (e.g., (Monday, Tuesday) and (Monday, Tuesday, Wednes-

day)) are forbidden. For each required edge e = (u, v) where u and v are numbered,

the service frequency is defined as f(e) = 1 + (u + v)%5, and each element di(e)
in the demand vector d(e) is the demand of (u, v) in the original CARP instance.

The capacities were duplicated (by 2, 3 or 4 depending on the instance) such that

the accumulated demand never exceeds the vehicle capacity. These three sets cover

instances of diverse scales from small-sized to large-sized, with a number of nodes

ranging from 7 to 255, and a number of edges ranging from 11 to 375.

The optimal Fv values for most instances were previously known, except three in-

stances whose optimal Fv values are proved for the first time in this work (see Sec-

tion 4.4). This is achieved when our upper bound coincides with the lower bound

(provided in [5]) for a given instance. On the other hand, optimal Fc values for

these instances are still unknown.

4.2 Experiment setup

HLS was coded in C++ and compiled by GNU g++ 4.1.2 with ’-O3’ flag. The ex-

periments were conducted on a computer with an AMD Opteron 4184 processor

(2.8GHz and 2GB RAM) running Ubuntu 12.04. Running the DIMACS machine

benchmark program 1 without compilation optimization flag on our machine to

solve graphs r300.5, r400.5 and r500.5 requires 0.40, 2.50 and 9.55 seconds re-

spectively.

For our comparative studies on pgdb and pval sets, the MARM algorithm [28] was

used as our main reference since for these two sets, it dominates previous PCARP

algorithms like LMA [22] and SS [6], producing all the best known results in terms

of both Fv and Fc except one case (pgdb14). For the pG set, we used three reference

algorithms: MARM, LMA and SS. These algorithms have different performances

in terms of Fv and Fc for the pG instances. When comparing the average results,

we only compare with MARM since it outperforms other existing approaches.

Following the practice of previous PCARP approaches, we ran our HLS algorithm

30 times to solve each instance and reported the best and average results 2 . The

results of HLS are indicated in bold if they attain the current best known results. If

HLS further improves on the current best known results (i.e., the results of MARM),

the results are starred. The #Bests row counts the number of instances on which

each algorithm has achieved the best result among all the compared results. Here-

1 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
2 Our solution certificates will be available online
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after, we confirm a solution value (either Fv or Fc) is optimal when our upper bound

(the solution value provided by HLS) matches the lower bound (provided in [5]).

4.3 Parameter calibration

HLS relies on a number of parameters whose settings are summarized in Table

1. These settings were identified in the following manner. The parameters for the

tabu search procedure of the first phase were tuned independently whose goal was

to find an upper bound of Fv as small as possible. According to our experimental

experience, we set the tabu tenure tt to a value linearly correlated to the number

of tasks n plus rand(-2,2) (which denotes a random number between -2 and 2).

MaxIter is set large enough to ensure the best outcome of the largest pG set. This

large value of MaxIter does not lead to time waste for smaller instances since tabu

search may terminate before attaining MaxIter iterations when Fv reaches its best

possible value (see Section 3.1).

The rest of the parameters were tuned by the Iterated F-race (IFR) method [2, 24],

which allows an automatic parameter configuration. IFR takes, for each parameter,

a range of values as input. These ranges, listed in Table 1, were determined by

preliminary experiments. We set the tuning budget to 2000 runs of HLS and formed

the training set with 16 representative instances (4 from pgdb, 10 from pval and 2

from pG). To ease the use of IFR, we added an additional line of code in our HLS

program to output a single solution value to IFR which aggregates the two objective

values of the final solution by giving a large enough weight coefficient α to Fv (i.e.,

f(S) = α × Fv(S) + Fc(S)). It is obvious that this aggregation does not alter the

tuning results. The final choice of the parameter values shown in Table 1 were used

in all experiments in the following sections.

The parameters of tabu search were tuned separately since the first phase of HLS

is independent of the second phase. Moreover, according to our experimental ob-

servations, tuning all parameters (including those of tabu search) via IFR requires

more tuning budget while does not lead to better parameter settings.

Table 1

Parameter settings of HLS.

Component Name Description Range Value

Solution initialization
tt tabu tenure - 0.4n + rand(-2,2)

MaxIter max iteration - 100000

Improvement stage
kmax max number of iterations without improvement [10,20] 15

nl neighbor list size [6,16] 10

Perturbation stage
L exploration strength [20, 50] 30

δ threshold ratio [0.01,0.1] 0.04

Overall W max allowed number of non-improving attractors [5,20] 10

14
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4.4 Experimental results

The comparative results of our HLS algorithm and the reference algorithms on the

pgdb, pval and pG sets are summarized in Tables 2–4. From these three tables, we

observe that HLS performs remarkably well on the three benchmark sets both in

terms of the best and average performances over 30 runs.

When we consider the best performance (columns “Best results”, Tables 2–4), we

can make the following observations. First, HLS outperforms the state-of-the-art

algorithm MARM on a large portion of the benchmark instances. Out of the to-

tal of 63 instances, HLS discovers 44 (69.8%) new best known results (new upper

bounds), and matches the current best known result for other 8 cases. Second, HLS

reaches the optimal Fv values for all test instances, where three of them (G1-B,

G2-B and G2-C) are proved to be optimal for the first time by HLS (the optimality

is confirmed since the upper bound value of Fv listed in Table 4 coincides with

the lower bound value provided in [5]). Such a remarkable performance was not

observed for previous PCARP algorithms. In particular, for the three large-sized

instances of pG set where HLS manages to reach the optimal Fv value for the first

time, HLS also obtains a smaller Fc value compared to MARM which demon-

strates the dominance of HLS on these three instances. Third, for the remaining 60

instances where MARM also achieves the optimal Fv values, HLS finds 41 smaller

and 8 equal Fc values compared to the best known solutions. Finally, we observe a

clear trend that the superiority of our HLS algorithm over the reference algorithms

becomes prominent as the size of instance increases. HLS improves and matches

the best known results by 47.8% (11/23) and 69.6% (16/23) respectively for the

small-sized instances in the pgdb set, by 79.4% (27/34) and 88.2% (30/34) for the

medium-sized instances in the pval set while for the large-sized instances of the pG

set, HLS improves all the best known results.

Now if we examine the average performance of our HLS algorithm (columns “Av-

erage results”, Tables 2–4), we can make the following comments. First, HLS com-

petes favorably with MARM on the small and medium sized instances. For the

pgdb set, HLS matches MARM for 18 instances, and performs slightly worse for 5

cases. Among the instances with equal average Fv values, HLS improves 7 average

Fc values compared to MARM. For the pval set, HLS performs marginally worse

than MARM in terms of Fv for 4 instances. On the other hand, HLS outperforms

MARM in terms of Fc for 25 out of the 30 instances where both algorithms achieve

the same Fv values. Second, for the pG real-world data set, HLS consistently domi-

nates MARM in term of both Fv and Fc for all 6 instances. For 3 out of 6 instances,

even the average Fc results of HLS are better than the best results of MARM.

Finally, Table 5 compares the computational efficiency of HLS and MARM in

terms of the average runtime (in seconds) on the three test sets. Since MARM

and HLS were tested on different computers, we made a time conversion by scal-
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Table 2
Comparative results (best and average) of our HLS algorithm with MARM on the 23 in-
stances of the pgdb set. The results of HLS are in boldface if they are at least as good as
the best known results. The results of HLS are starred if they improves on the best known
results from MARM.

Best results Average results

MARM HLS MARM HLSINST (|V |, |E|, |S|)
Fv Fc Fv Fc Fv Fc Fv Fc

1 (12,44,65) 3 810 3 815 3.00 827.40 3.00 841.33

2 (12,52,76) 3 917 3 913∗ 3.00 934.60 3.00 939.07

3 (12,44,61) 3 691 3 691 3.00 710.40 3.00 717.80

4 (11,38,52) 2 740 2 747 2.00 762.10 2.00 772.93

5 (13,52,75) 3 1004 3 1022 3.00 1032.40 3.00 1046.60

6 (12,44,67) 3 900 3 895∗ 3.00 912.20 3.00 917.50

7 (12,44,65) 3 819 3 815∗ 3.00 836.00 3.00 848.97

8 (27,92,143) 5 953 5 937∗ 5.00 986.00 5.10 964.17∗

9 (27,102,155) 5 892 5 883∗ 5.00 917.30 5.00 897.10∗

10 (12,50,65) 2 677 2 681 2.00 696.30 2.00 701.00

11 (22,90,133) 3 1089 3 1081∗ 3.00 1113.40 3.00 1100.57∗

12 (13,46,67) 3 1118 3 1142 3.00 1149.80 3.00 1173.80

13 (10,56,81) 3 1555 3 1557 3.00 1564.90 3.00 1568.80

14 (7,42,64) 2 290 2 290 2.50 291.00 2.70 289.83∗

15 (7,42,64) 2 174 2 174 2.00 176.20 2.00 176.00∗

16 (8,56,85) 3 360 3 358∗ 3.00 364.20 3.00 361.87∗

17 (8,56,85) 2 261 2 259∗ 2.00 266.10 2.07 263.00∗

18 (9,72,106) 2 487 2 487 2.00 494.40 2.00 492.40∗

19 (8,22,30) 2 171 2 171 2.00 172.70 2.00 173.47

20 (11,44,63) 2 348 2 350 2.00 357.80 2.67 351.57∗

21 (11,66,101) 3 498 3 495∗ 3.00 504.90 3.00 500.33∗

22 (11,88,129) 4 589 4 585∗ 4.00 593.00 4.00 590.40∗

23 (11,110,165) 5 686 5 683∗ 5.00 691.40 5.10 686.83∗

#Bests 23 12 23 16 23 11 18 12

ing the CPU times of MARM reported in its original papers into its equivalent

AMD Opteron 4184 2.8 GHz run times. Following [28], the conversion is based

on the assumption that the processor speed is approximately linearly proportional

to the processor frequency. Hence, the runtime of MARM is reduced by a factor

of 2/2.8 = 0.71. This comparison is only made for indicative purposes, since in

addition of the processor, the runtime of MARM is also influenced by some in-

accessible factors such as the operating system, compiler and coding skills of the

programmer. Nevertheless, Table 5 provides interesting indications. Indeed, after

time conversion, HLS is still always much faster than MARM in solving pgdb and

pval data sets (in less than 10 seconds). For the real-world pG data set, HLS attains

its solutions in about seven minutes (the runtime of MARM is unavailable).

5 Analysis and Discussions

In this section, we perform additional analysis to study the contribution of each

underlying component of the proposed algorithm. Specifically, we explore the role

of the first phase in enhancing the primary objective Fv, and the contribution of the
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Table 3
Comparative results of our HLS algorithm with MARM on the 34 instances of the pval set.
The results of HLS are in boldface if they are at least as good as the best known results.
The results of HLS are starred if they improves on the best known results from MARM.

Best results Average results

MARM HLS MARM HLSINST (|V |, |E|, |S|)
Fv Fc Fv Fc Fv Fc Fv Fc

1a (24,78,105) 2 470 2 470 2.00 488.80 2.00 488.70

1b (24,78,105) 3 530 3 520∗ 3.00 540.00 3.00 533.87

1c (24,78,105) 4 653 4 652∗ 4.00 678.50 4.20 667.27

2a (24,68,94) 2 697 2 699 2.00 706.00 2.00 711.00

2b (24,68,94) 2 775 2 786 2.00 788.80 2.00 794.03

2c (24,68,94) 4 1149 4 1169 4.00 1183.30 4.00 1190.33

3a (24,70,96) 2 222 2 218∗ 2.00 225.90 2.00 223.80

3b (24,70,96) 2 255 2 256 2.00 263.80 2.00 264.70

3c (24,70,96) 4 336 4 336 4.00 347.10 4.00 346.77

4a (41,138,205) 2 1228 2 1216∗ 2.00 1262.40 2.00 1250.37

4b (41,138,205) 3 1288 3 1254∗ 3.00 1314.70 3.00 1288.60

4c (41,138,205) 4 1409 4 1374∗ 4.00 1438.70 4.00 1408.57

4d (41,138,205) 6 1858 6 1853∗ 6.10 1905.60 6.47 1864.83

5a (34,130,194) 2 1315 2 1309∗ 2.00 1353.30 2.00 1335.03

5b (34,130,194) 3 1384 3 1381∗ 3.00 1417.60 3.00 1395.67

5c (34,130,194) 4 1522 4 1495∗ 4.00 1514.90 4.00 1514.73

5d (34,130,194) 6 1991 6 1960∗ 6.00 2033.30 6.17 1988.10

6a (31,100,150) 2 722 2 722 2.00 741.40 2.00 733.37

6b (31,100,150) 3 774 3 758∗ 3.00 786.40 3.00 772.07

6c (31,100,150) 7 1117 7 1102∗ 7.00 1139.00 7.07 1122.90

7a (40,132,201) 2 966 2 960∗ 2.00 997.70 2.00 984.20

7b (40,132,201) 3 960 3 938∗ 3.00 978.50 3.00 951.50

7c (40,132,201) 7 1165 7 1135∗ 7.00 1190.80 7.00 1149.93

8a (30,126,194) 2 1292 2 1289∗ 2.70 1282.30 2.13 1313.57

8b (30,126,194) 3 1301 3 1271∗ 3.00 1330.40 3.00 1305.13

8c (30,126,194) 7 1853 7 1829∗ 7.00 1886.00 7.00 1850.13

9a (50,184,274) 2 966 2 937∗ 2.00 990.00 2.00 957.47

9b (50,184,274) 3 990 3 951∗ 3.00 1014.00 3.00 968.20

9c (50,184,274) 4 1031 4 995∗ 4.00 1050.90 4.00 1003.73

9d (50,184,274) 7 1324 7 1279∗ 7.00 1367.20 7.00 1297.20

10a (50,194,300) 2 1385 2 1356∗ 2.30 1401.80 2.00 1380.63

10b (50,194,300) 3 1395 3 1356∗ 3.00 1415.90 3.00 1375.83

10c (50,194,300) 4 1461 4 1417∗ 4.00 1477.10 4.00 1437.80

10d (50,194,300) 7 1837 7 1791∗ 7.00 1879.80 7.00 1812.43

#Bests 34 7 34 30 32 5 30 29

Table 4
Comparative results of our HLS algorithm with three state-of-the-art algorithms on the 6
instances of the pG set. The best of average results and best results are in boldface. The
best result of HLS is starred if it is a new best known result.

Best results Average results

LMA SS MARM HLS MARM HLSINST (|V |, |E|, |S|)
Fv Fc Fv Fc Fv Fc Fv Fc Fv Fc Fv Fc

G1-A (255,347,1062) 11 3623482 12 3513307 10 3678504 10 2984671∗ 11.00 3758286.10 10.17 3020754.17

G1-B (255,347,1062) 14 3874996 15 3808003 13 3947359 12∗ 3297719∗ 14.00 4093805.00 12.57 3335925.87

G1-C (255,347,1062) 13 3690919 14 3710681 11 3799614 11 3149909∗ 12.30 3935364.70 11.27 3175608.57

G2-A (255,375,1138) 12 3820365 14 3814253 11 3923292 11 3236804∗ 12.30 4051017.50 11.13 3266259.50

G2-B (255,375,1138) 15 4118258 16 4108672 14 4235707 13∗ 3533766∗ 15.00 4411075.30 13.27 3563373.50

G2-C (255,375,1138) 14 4019023 15 3949113 13 4103535 11∗ 3524297∗ 13.40 4210976.60 11.80 3431076.47
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Table 5

Average runtime (in CPU seconds) of HLS and MARM on the three test sets, na=not avail-

able.
Algo. pgdb pval pG

MARM 8.7 37.3 na

HLS 2.1 9.0 431.1

three components of the second phase in optimizing the second objective Fc.

5.1 Role of the first phase

Given the priority of the first objective Fv, the very first phase of HLS aims to

evenly allocate the tasks over the time horizon by solving a demand balancing

problem. On the other hand, one notices that Fv can also be optimized by the second

phase which is realized by an alternation between pattern improvements and route

improvements. A natural question arises: is the first phase necessary? And if the

answer is affirmative, which of the two phases provides more improvements of Fv?

To answer these questions, we compare HLS with two HLS variants: RandCnst

and 2nd HLS. RandCnst constructs a random solution which starts with a random

assignment of patterns to tasks and then applies the path scanning algorithm [14] to

solve the CARP of each period. 2nd HLS is a HLS variant without the first phase,

which starts with a random solution provided by RandCnst, and then improves it

with the second phase of HLS. This experiment allows us to appreciate how much

the second phase is able to improve on a random solution in terms of Fv, and how

much the first phase further contributes to the improvement of the first objective.

HLS and the two algorithm variants were run 30 times on the three sets of bench-

marks. The best and average results (over 30 runs) in terms of Fv are plotted in Fig.

1-3 where instances are numbered according to the order they appear in Table 2-4.

A Wilcoxon signed-rank test with a significance factor of 0.05 was also applied

to detect the statistical difference between any two comparable samples, and the

outcomes are displayed in Table 6 where for each comparison item, we listed the

negative rank sum (R-), the positive rank sum (R+), the resulting p-value (p-value)

and whether a significant difference is detected (diff?). From Fig. 1-3 and Table 6,

we can make the following observations.

• First, HLS on average attains the best outcome, followed by 2nd HLS and fi-

nally RandCnst. Indeed, the red lines (HLS) are generally below the black lines

(2nd HLS), which are further below the blue lines (RandCnst). This observation

implies that 1) the second phase of HLS is able to optimize Fv in many cases;

2) when it is combined with the first phase, more significant improvements are

achieved. The results of the Wilcoxon test (see Table 6) additionally confirm the

above observations, which indicate in a statistical manner the superiority of HLS

over 2nd HLS, and of 2nd HLS over RandCnst in a majority of cases. In partic-
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ular, HLS easily dominates 2nd HLS on all data sets in terms of both best and

average results (since a p-value<0.05 is detected for all compared samples). We

thus conclude that the first phase of HLS is undoubtedly necessary.

• Second, the improvement of HLS over 2nd HLS generally enlarges as the in-

stance size increases. Indeed, the extent of improvement of HLS over 2nd HLS

on the pG set (Fig. 3) is much larger than that on the pgdb set (Fig. 1) and the

pval set (Fig. 2). This observation confirms the critical role of the first phase in

ensuring the high performance of HLS, especially for large-sized problems. Also

from Fig. 3, we can clearly remark that the first phase provides more improve-

ment than the second phase in terms of Fv. Indeed, the gap between HLS and

2nd HLS is much larger than the gap between 2nd HLS and RandCnst.

The above experiments indicated that the performance of HLS deteriorates if its

first phase is disabled. Meanwhile, it would be interesting to know how tight the

upper bound of Fv obtained by the first phase is. For this purpose, we ran the first

phase of HLS (denoted as 1st HLS) 30 times on the three instance sets (pgdb, pval
and pG) and summarized the number of instances for which σ = X (X = 0, 1) is

satisfied in Table 7. For a given instance, σ = X indicates that the gap between the

worst Fv (obtained by 1st HLS over 30 runs) and the best known Fv (obtained by

HLS shown in Table 2-4) is X . From Table 7, we observe that the upper bound of

Fv provided by 1st HLS is very tight. Among all 63 test instances, the worst Fv is

only one unit from the best known Fv. Moreover, for 39 instances (14 from pgdb
and 25 from pG) out of 63, the worst Fv is exactly the best known Fv, which means

that 1st HLS consistently produces the best known Fv over 30 runs.
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Fig. 1. Fv results of three algorithm variants on the pgdb set

5.2 Contribution of the second phase

The improvement of the second objective Fc mainly relies on the second phase of

HLS, which involves three algorithm components – the route improvement (RI)

procedure, the pattern improvement (PI) procedure and the perturbation procedure.

In this section, we set the route improvement procedure as the base and investigate
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Fig. 2. Fv results of three algorithm variants on the pval set
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Fig. 3. Fv results of three algorithm variants on the pG set

the contribution of the other two components in optimizing Fc. For this purpose, we

compare HLS to two algorithm variants: HLS1 and HLS2. HLS1 is a HLS variant

without PI and perturbation. HLS2 includes PI, but without perturbation. Further-

more, we rename the original HLS algorithm as HLS3. The three algorithms were

run 10 times on 8 representative instances (see Table 8). For each instance, we re-

port the results according to two indicators: ∆12 and ∆23, which are calculated as

follows. ∆12 = (avg1−avg2)×100/avg3, where avg1 and avg2 denote the average
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Table 6

Wilcoxon test for pairwise comparison between the best and average results obtained by

three algorithm variants (HLS, 2nd HLS and RandCnst) in terms of Fv.

Best Results Average Results
Algorithm Pair DataSet

R- R+ p-value Diff? R- R+ p-value Diff?

HLS v.s 2nd HLS pgdb 15 0 3.69e-02 Yes 276 0 2.88e-05 Yes

pval 210 0 2.51e-05 Yes 561 0 5.64e-07 Yes

pG 21 0 3.45e-02 Yes 21 0 3.13e-02 Yes

2nd HLS v.s RandCnst pgdb 45 0 3.35e-03 Yes 276 0 2.87e-05 Yes

pval 120 0 3.26e-04 Yes 561 0 5.63e-07 Yes

pG 6 0 0.15 No 21 0 0.03 Yes

Table 7

Results of the first phase of HLS (1st HLS) that summarize the number of instances for

which σ = X (X = 0, 1) is satisfied according to the dataset. For a given instance, σ = X

indicates the gap between the worst Fv (obtained by 1st HLS over 30 runs) and the best

known Fv (obtained by HLS shown in Table 2-4).

Dataset σ = 0 σ = 1

pgdb 14/23 (60.87%) 9/23 (39.13%)

pval 25/34 (73.53%) 9/34 (26.47%)

pG 0/6 (0.00%) 6/6 (100.00%)

Fc (over 10 runs) attained by HLS1 and HLS2 respectively. This indicator reports

the improvement of HLS2 over HLS1 in terms of average Fc which highlights the

contribution of the PI procedure. Similarly, ∆23 = (avg2 − avg3) × 100/avg3 re-

ports the improvement of HLS3 over HLS2 and highlights the contribution of the

perturbation procedure. The results are summarized in Table 8. The reason why we

tested the algorithms 10 times on 8 representative instances is based on the fol-

lowing consideration. In order to investigate the effect of algorithm components on

Fc, we should keep Fv unchanged in the second phase. For this purpose, we run

each algorithm multiple times (more than 10) to select 10 runs where the algorithm

attains the lower bound of Fv in the first phase, such that its unique mission in the

second phase is to optimize Fc. This requirement is hard to meet in the general case

and the 8 representative instances we selected are relatively easy for the algorithms

to find such 10 runs.

From Table 8, we can see that the pattern improvement procedure and the per-

turbation procedure are two necessary and effective components in optimizing Fc.

Indeed, by including the PI procedure to HLS1, the improvement ∆12 reaches a

significant average value of 7.711% in terms of Fc. Integrating the perturbation

procedure to HLS2 further leads to an improvement 2.857% on average. Clearly,

compared to the perturbation procedure, the contribution of the PI procedure is even

higher (on average 7.711% v.s 2.857%). We also applied a Wilcoxon test (with a

significance factor of 0.05) to the pairwise comparison of HLS1 v.s HLS2 and HLS2

v.s HLS3, and the resulting p-value of 0.007813 (the same for both pairs) confirms

that the improvements provided by the PI procedure and the perturbation procedure
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are significant in a statistical sense.

Table 8

Contribution of each algorithm component in the second phase on 8 representative in-

stances. ∆12 indicates the improvement of HLS2 over HLS1 and highlights the contribution

of the pattern improvement procedure. ∆23 indicates the improvement of HLS3 over HLS2

and highlights the contribution of the perturbation procedure.

Set Instance ∆12(%) ∆23(%)

pgb 2 6.023 3.879

9 4.494 2.922

16 2.595 1.712

pval 1b 11.255 3.827

4c 8.545 2.543

6b 8.814 2.104

9d 7.147 3.073

pG G2-A 12.815 2.795

Average 7.711 2.857

6 Conclusions

The periodic capacitated arc routing problem is a relevant model with interesting

applications. The PCARP has a primary objective of minimizing the number of ve-

hicles and a secondary objective of minimizing the total cost. Motivated by the fact

that existing PCARP methods rely on an aggregated weight function to optimize

the two objectives, which has the clear drawback of examining many irrelevant

candidate solutions, we devised the first approach using a two phased paradigm to

focus on the primary objective to determine an upper bound for the number of vehi-

cles during the first phase, and then use this bound to strongly constrain the search

during the second phase by eliminating many irrelevant candidate solutions. To

ensure the search efficiency, both search phases integrate problem specific search

strategies and operators able to make a suitable balance between intensification and

diversification of the search process.

Experimental assessments on three sets of 63 PCARP benchmark instances com-

monly used in the literature demonstrated the effectiveness of the proposed ap-

proach compared to the state of the art methods. In particular, HLS appears to be

the first algorithm that is able to reach all the optimal values in terms of Fv, and

establishes 44 improved new upper bounds in terms of Fc.

Furthermore, we showed that the first phase of the proposed HLS algorithm plays a

critical role in optimizing the primary objective Fv, while the pattern improvement

procedure and the perturbation procedure are two highly effective components of

the second phase in improving the second objective Fc.

22



ACCEPTED MANUSCRIPT

This study indicates that for a hierarchical optimization problem like the PCARP,

it is more interesting to handle the hierarchical objectives as per and for each ob-

jective, it is relevant to design dedicated search procedures with respect to each

targeted optimization objective.
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iterated race for automatic algorithm configuration, Tech. rep., Citeseer (2011).

[25] R. Martinelli, M. Poggi, A. Subramanian, Improved bounds for large scale capacitated

arc routing problem, Computers & Operations Research 40 (8) (2013) 2145–2160.

24



ACCEPTED MANUSCRIPT

[26] Y. Mei, X. Li, X. Yao, Cooperative coevolution with route distance grouping for large-

scale capacitated arc routing problems, Evolutionary Computation, IEEE Transactions

on 18 (3) (2014) 435–449.

[27] Y. Mei, K. Tang, X. Yao, A global repair operator for capacitated arc routing problem,

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 39 (3)

(2009) 723–734.

[28] Y. Mei, K. Tang, X. Yao, A memetic algorithm for periodic capacitated arc routing

problem, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on

41 (6) (2011) 1654–1667.

[29] M. Polacek, K.F. Doerner, R.F. Hartl, V. Maniezzo, A variable neighborhood search for

the capacitated arc routing problem with intermediate facilities. Journal of Heuristics

14(5) (2008) 405–423.

[30] L. Santos, J. Coutinho-Rodrigues, J. R. Current, An improved ant colony optimization

based algorithm for the capacitated arc routing problem, Transportation Research Part

B: Methodological 44 (2) (2010) 246–266.

[31] K. Tang, Y. Mei, X. Yao, Memetic algorithm with extended neighborhood search for

capacitated arc routing problems, Evolutionary Computation, IEEE Transactions on

13 (5) (2009) 1151–1166.

25


