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Abstract
The topological properties of heat-checking patterns, produced on the oxidized surface of high
temperature tool steels under thermal fatigue experiments, are investigated using image
analysis methods. All crack networks are composed of polygonal cells with a mean number of
sides close to 6. Whatever the thermal cycling conditions, the semi-empirical Aboav–Weaire’s
and Lewis’ laws are quite well verified. The least-squares fit parameters of these laws are
discussed and compared with values reported in the literature for other random cellular
structures. It is shown that the heat-checking cells undergo a strong shrinkage and that the
cellular organization is rather disordered at the beginning of the fragmentation process. The
heat-checking networks evolve towards a more stable and ordered state upon cycling. Most
disordered cellular networks are obtained at low maximal temperatures and low heating rates.
The slope of Lewis’ law is mainly dependent on the maximum heat-flux density applied to the
specimen during the heating period. Whatever the test conditions, the stabilized heat-checking
networks obey a unique normalized Lewis’ law.

1. Introduction

When a brittle material (like an oxide film on a metallic
substrate) is subjected to transient thermal gradients under
thermal fatigue (TF), in-plane tensile stresses are generated
during the cooling phase, due to thermal expansion mismatch
between the layer and the substrate. According to their
amplitude, these tensile stresses may be relieved by the
formation of a multi-directional interconnected network of
cracks on the surface [1]. Similar ‘cooling-induced’ or
‘shrinkage’ cracks patterns are produced in ceramics under
thermal shock experiments [2, 3], in the glaze of ceramics
[4], in solidified basaltic lava flows [5], or in thin layers of
desiccating mud or gel [4, 6, 7]. These networks partition
the free surface of the material in a two-dimensional random
tessellation of cells, comparable to that formed by grains in
planar sections of polycrystalline materials, or by bubbles in
soap froths [8].

The topological properties of natural cellular patterns
have been studied for a long time, in many scientific
fields (e.g. biology, metallurgy, geology, geography) and at
widely different size scales (from m2 to µm2) [8]. Most
often, the universal Lantuejoul’s procedure [9], developed
for polycrystalline ceramics and based on mathematical
morphology, is used to determine the distribution of the number
of first neighbours (or sides) of the cells. This method is
applicable to all kind of networks, whatever the shape of
polygons. However, the computation time can be very long for
analysing a structure containing a large number of cells, due
to the iterative nature of processing. Bandeira et al [10, 11]
proposed a multi-layer approach to increase the processing
speed of the algorithm, since the spatial resolution of their
remotely acquired images was very high. This improved
algorithm reduces the computation time significantly, but
its application is restricted to tri- and tetravalent networks.
Bohn et al [12] investigated the dynamic evolution of the



topological structure of ‘hierarchical’ crack patterns, using the
‘genealogical tree’ of cell division. However, such an approach
requires that the cracking phenomenon is observed in situ.

Some semi-empirical statistical rules are commonly used
to relate topological and geometrical properties of the cells.
The Aboav–Weaire’s law [13, 14] states a linear relationship
between the number of neighbours (or sides) of a cell, n, and
the average number of neighbours (or sides) of its neighbouring
cells, m(n):

m(n) = ⟨n⟩ − a + (⟨n⟩a + µ2)/n, (1)

which can otherwise be expressed as

nm(n) = (⟨n⟩ − a)n + µ2 + ⟨n⟩a, (2)

where ⟨n⟩ is the average number of sides (or neighbours)
of the cells (⟨n⟩ = 6 in infinite cellular structures), a is a
structural constant and µ2 is the second moment (or variance)
of the probability distribution P(n) of cell sides (µ2 =∑

P(n)(n−⟨n⟩)2).
This structural equation of state (called ‘nearest-

neighbours correlation’) is a quantitative expression of the
empirical fact that in planar space-filling cellular structures,
many-sided cells tend to be surrounded by few-sided cells,
and vice versa. It describes a statistical equilibrium, assuming
that there is no correlation in cell shape beyond the nearest
neighbours [8]. Since then, some authors [15–17] have shown
that Aboav–Weaire’s law can be generalized to more distant
neighbours.

Studying the cellular structure of vegetal tissues, Lewis
[18] found that the average area of a n-sided cell, ⟨A(n)⟩, was
linearly related to n as

⟨A(n)⟩ = α(n − n0), (3)

where both α (slope) and n0 (intercept) depend on the
properties of the cellular structure.

This law reflects the tendency for many-sided cells to
be larger, on average, than fewer-sided cells. Using the
maximum-entropy principle, Rivier [8, 20, 21] showed that
agreement to this equation of state means that the shaping
of the network is governed only by mathematical constraints
imposed by the need to completely fill the space without
gaps. Furthermore, he defined λ (Lagrange multiplier related
to the time) as an important structural parameter with a
physical meaning, since it measures the topological ageing
in a coarsening structure (like a soap froth or a polycrystalline
aggregate). He demonstrated that λ is related both to the slope
(α = λ⟨A⟩) and the intercept (n0 = 6 − 1/λ) of Lewis’ law
[20–22]. Equation (3) thus becomes:

⟨A(n)⟩ = ⟨A⟩ [1 + λ(n − 6)] , (4)

where ⟨A⟩ is the average area of all cells in the network.
The above-mentioned author has also suggested in [21]

that the average area of a cell is linearly dependent on the
time, in agreement to Von Neumann’s law [23].

Differentiating Lewis’ law (3) with respect to time, the
rate of change of the average area of the cells, d⟨A(n)⟩/dt ,

can be expressed as a function of their local topology by the
following relationship:

d⟨A(n)⟩/dt = γ (n − 6), (5)

where γ is the diffusion constant of the system (γ > 0).
Concretely, this equation implies that, in average, the cells

with less than six sides grow, those which have more than six
sides shrink, whereas the area of 6-sided cells does not evolve
over time. This ‘topological growth’ correlation, established
by Von Neumann for soap bubble froths [23], is in fact
applicable to any evolving cellular mosaic, such as biological
tissues, soap froths and metallurgical grain structures [21].

Both Aboav–Weaire’s and Lewis’ laws have been
empirically validated for a wide variety of random
cellular systems [8, 24], as biological and vegetable
tissues [16, 18, 22, 25–27], soap froths [13, 28], polygonal
convective structures [29], colloidal aggregations [30]
and polygonal networks on the surface of stars [31, 32].
However, experiments reported in soap foams [26, 33] and
polycrystalline materials [21, 34–36] have shown that Lewis’
law is not always obeyed. For these structures, it is
the cell perimeter (or radius), rather than the area, which
depends linearly on n (as expressed by Desch’s law [21, 37]).
The failure of Lewis’ law has been attributed to particular
constraints acting on the cellular network, other than strictly
the mathematical and universal constraints of space-filling.
These additional specific forces, which may be physical,
biological or chemical, are linked to the energy carried by
the cell interfaces (surface tension in soap froths, or grain
boundary in metallurgical aggregates [22]), and associated
with the mechanism driving the evolution towards statistical
equilibrium [21, 30].

In this paper, the topological properties of microscopic
crack patterns, produced by TF laboratory experiments on the
oxidized surface of a X38CrMoV5 tool steel, are investigated
using image analysis and Lantuejoul’s algorithm [1]. Based on
many experimental data, topological and metric correlations
(such as Aboav–Weaire’s and Lewis’ laws) are verified and
compared with other natural cellular structures. The effects of
the number of cycles and of the conditions of the TF test are
shown and discussed.

2. Experimental procedure

2.1. TF tests

TF experiments were carried out on X38CrMoV5 tool steel,
heat-treated to achieve either 42 or 47 HRC hardness. The
tubular cylindrical-shaped specimens present an external
diameter of 30 mm with a polished surface, and a wall thickness
of 10 mm in the central gauge area [38]. During the test, the
external surface of the specimen was alternatively fast-heated
using a high-frequency induction system, and air-cooled by
natural convection. The inner wall was continuously cooled
by a flow of water circulating through the central hole of the
specimen, thus generating a high thermal gradient.

Several thermal cycles were investigated, with a minimal
temperature (Tmin) always fixed to 100 ◦C, while the maximum



Table 1. Thermal fatigue test conditions performed on 42 and/or 47 HRC treated X38CrMoV5 steels.

Heating period Cooling period Cycling interruptionsThermal Maximum
TF cycle Mean heat-flux Mean First and last
test Tmin–Tmax Duration rate hr density Duration rate cr Number stops (number
N◦ (◦C) ht (s) (◦C s−1) $max (MW m−2) ct (s) (◦C s−1) of stops of cycles)

1 100–550 0.90 500 4.75 14.5 31 2 30 000–80 000a

2 100–575 0.95 500 4.84 14.8 32 7 5000–50 000
3 100–600 1.0 500 4.85 15.0 33 9 2500–60 000
4 100–625 1.1 477 4.93 16.0 33 5 10 000–50 000a

5 100–650 1.2 458 4.95 17.0 32 9 1000–20 000
6 100–650 2.0 275 3.93 20.0 28 9 1000–30 000
7 100–650 3.7 149 2.78 22.0 25 8 2000–30 000
8 100–650 6.5 85 2.13 30.0 18 7 3000–50 000
9 100–685 1.6 366 4.75 22.0 27 7 500–3000

a Tests non-interrupted in the early stages of crack initiation.

Figure 1. (a) Typical SEM cartography of the microscopic crack pattern observed on the surface of the specimen; (b) enlarged binary image
of the skeletonised crack network (cracks in black and polygonal cells in white).

temperature (Tmax) was varied from 550 to 685 ◦C. For the tests
performed between 100 and 650 ◦C, various heating periods
(1.2 < ht < 6.5 s) were applied, leading to maximum heat-
flux densities ($max) imposed on the specimen surface ranging
from 2.13 to 4.95 MW m−2 (table 1). The experiments were
regularly stopped in order to investigate the crack pattern
evolution, and determine the number of cycles to crack
initiation and to achieve a stabilized crack density (see details
in [38]). In table 1, for each TF test, the first interruption
of cycling (corresponding to the number of cycles when the
micro-cracks were detected first), and the last interruption
are given (end of the test, when the crack density was fully
stabilized).

2.2. Crack pattern analysis

After each cycling interruption, the surface of the TF specimen
was observed with a scanning electron microscope and a
back-scattered electron detector. By selecting a magnification
of 250, an interconnected microscopic crack pattern (named
‘heat-checking’ [1]) was revealed on the superficial oxide
layer covering the steel. A matrix of (3 × 3) images
was acquired on a randomly chosen area of 0.825 mm2 in
the centre of the specimen. The nine SEM images were
assembled to form a cartography sizing about (1740 × 1210)

pixels2, with a spatial resolution of 0.5 µm/pixel (figure 1(a)).
Using an image analysis algorithm [1] and the Aphelion®

software, the micro-cracks were segmented and skeletonized

(i.e. thinned to one pixel). An example of the resulting
two-dimensional cellular network is illustrated in figure 1(b).
To analyse the topological features of the cellular structure,
the cells touching the field border were eliminated, since
their neighbourhood was incomplete. Within the ‘measuring
mask’ consisting of the remaining cells, between 320 and
4750 cells (Nc) were counted in the 70 heat-checking maps
investigated for this study (table 2). Despite their high number,
an exhaustive analysis of all cells was systematically carried
out, leading to large computation time (typically several hours
for most of cartographies). On the other hand, a statistical
reliable description of the cellular networks was achieved.
A previous study [1] has revealed that the crack-junctions
were predominantly tri-, tetra- and pentavalent, excluding
the possibility to apply the algorithm developed by Bandeira
et al [11]. Therefore, the analysis was carried out following
the procedure of Lantuéjoul [9], considering that two cells
are neighbours if they share at least one side. This method
consists of five steps, as illustrated in figure 2: individual
extraction of each cell in the measuring mask (a) ; dilatation of
size 2 of the selected cell using a square structuring element,
which provides markers both in the selected cell and its first
neighbours (b); geodesic reconstruction of the cell and its
neighbourhood, using image b as a ‘marker’ in the initial
cellular mosaic (c); logical subtraction of the central cell (d);
labelling and counting of the first neighbours of the central cell
(e). These operations were iteratively applied to each cell of
the network, leading to a labelled image wherein the cells are



Table 2. Range of variation of topological properties (minimum and maximum values between the first and last cycle interruptions)
calculated on the microscopic heat-checking cells produced under various TF test conditions on 47 HRC heat-treated specimens.

Measuring mask Distribution of the number of cell neighbours (or sides) nTF
test Total number Cell density
N◦ of cells Nc dc (mm−2) nmin nmax ⟨n⟩ µ2 P (6)

∑7
n=5 P(n)

1 2812–3002 3705–4015 3 12–13 6.01–6.02 2.37–2.63 0.19–0.25 0.57–0.66
2 2495–3439 3311–4523 3 11–13 6.01–6.03 2.11–2.94 0.18–0.26 0.52–0.69
3 2256–3381 4109–4606 3 11–12 6.01–6.02 1.73–2.27 0.20–0.26 0.57–0.70
3a 2798–4468 3693–5502 3 11–14 5.98–6.03 1.80–2.96 0.15–0.25 0.53–0.71
4 3645–4133 4746–5370 3 11–12 6.03 1.74–2.20 0.20–0.22 0.58–0.61
5 1855–3509 2487–4593 3 10–13 5.99–6.03 1.27–3.12 0.27–0.32 0.69–0.80
5a 2038–3114 2726–4122 3 10–11 5.96–6.01 1.27–2.31 0.27–0.32 0.70–0.78
6 1567–2187 2322–2919 3 10–13 5.98–6.02 1.52–2.73 0.18–0.23 0.51–0.63
7 479–860 853–927 3 10–11 5.92–6.00 1.85–2.72 0.18–0.29 0.51–0.74
8 323–525 460–718 3 10–12 5.91–5.99 2.33–4.30 0.15–0.25 0.47–0.65
9 2820–3667 3755–4840 3 11–13 5.98–6.02 1.55–2.76 0.25–0.31 0.64–0.77
9a 2651–4749 3952–5294 3 11–12 6.01–6.02 1.75–2.22 0.19–0.22 0.56–0.60

a Test performed on a 42 HRC heat-treated specimen.

Figure 2. Procedure to determine the number of first neighbours (n) of the heat-checking cells [9]: (a) selection of a cell in the measuring
mask; (b) dilatation of size 2 of the selected cell; (c) reconstruction of the cell and its neighbourhood; (d) subtraction of the central cell;
(e) labelling and counting of its first neighbours; (f ) cellular mosaic in which the cells are classified with a grey level related to their number
of neighbours; (g) histogram of frequency distribution P(n) (probability of finding a cell with n neighbours or sides).

classified with a grey level related to their topological class n
(figure 2(f )). The counting of the cells of each topological
class n allowed determining the discrete probability function
P(n), as shown in figure 2(g). To compute the average
number of neighbours of second order m(n) (i.e. the average
number of neighbours of the cells that are adjacent to n-
neighboured cells), the previous procedure was repeated for
each adjacent cell of the selected n-sided cells. According to
Lantuejoul’s algorithm, in the particular case of two different
cracks crossing at right angle, thus determining four adjacent
cells, all these cells are considered as neighbours since they
share a common point on their border (i.e. the intersection of
the two cracks).

It should be emphasized that detailed investigations [39]
have revealed that under the test conditions examined in this
study, spalliation of the oxide layer did not occur in the
central useful area of the specimen (although some spalled
areas may appear at geometrical singularities such as corners
or free edges, due to growth effects leading to high strains
of the oxide on highly curved surfaces). However, for
maximum temperatures (Tmax) of the thermal cycle lower than
550 ◦C, oxide scale spalling becomes a non-negligible damage

mechanism. The oxide layer then breaks preferentially by a
buckling mechanism, and the heat-checking network is absent
or very limited [39]. In such cases, the analysis procedure
proposed here would not be appropriate.

3. Topological properties of the heat-checking
networks

3.1. Distribution of number of cell sides

Table 2 gives some topological descriptors, such as the density
of cells in the heat-checking network (dc, i.e. the number of
cells Nc per mm2) and the statistical distribution of the number
of cell sides n (minimum nmin, maximum nmax, average ⟨n⟩,
variance µ2, fraction of 6-sided cells P (6) and cumulative
fraction of 5–6–7-sided cells

∑7
n=5 P(n)). These results show

that the investigated cellular patterns are composed of polygons
whose number of sides lies in the range from 3 to between 10
and 14. The average number ⟨n⟩ varies between 5.91 and 6.03,
depending on the TF test. This is very close to the ergodic
theoretical value of 6 expressed by Euler’s theorem [8, 9, 14],
indicating that the polygonal cells are predominantly 6-sided



Table 3. Least-squares fit parameters of Aboav-Weaire’s law (minimum and maximum values between the first and last cycle stops)
calculated on the heat-checking networks produced under various TF test conditions on 47 HRC heat-treated specimens.

TF test conditions Aboav-Weaire’s law (2) parameters

N◦ Tmax ht $max Slope of linear System Determination
test (◦C) (s) (MW m−2) regression constant a coefficient RAW

1 550 0.90 4.75 5.1–5.5 0.51–0.96 0.992–0.995
2 575 0.95 4.84 5.1–5.3 0.68–0.93 0.995–1.000
3 600 1.0 4.85 4.9–5.1 0.93–1.09 0.991–1.000
3a 600 1.0 4.85 4.6–5.2 0.78–1.39 0.993–1.000
4 625 1.1 4.93 4.9–5.2 0.85–1.11 0.997–1.000
5 650 1.2 4.95 4.7–5.2 0.79–1.26 0.994–1.000
5a 650 1.2 4.93 4.7–5.2 0.79–1.25 0.996–1.000
6 650 2.0 3.93 4.7–5.1 0.85–1.47 0.980–1.000
7 650 3.7 2.78 4.9–5.1 0.88–1.15 0.992–0.999
8 650 6.5 2.13 4.5–5.5 0.44–1.44 0.973–0.999
9 685 1.6 4.75 4.8–5.2 0.81–1.20 0.995–1.000
9a 685 1.6 4.75 4.8–5.2 0.84–1.16 0.991–1.000

a Test performed on a 42 HRC heat-treated specimen.

(as in trivalent networks). In all heat-checking networks,
the cells having 5, 6 or 7 sides represent 50–80% of the
population. The contribution of 4-sided cells and 8-sided cells
is minor, whereas cells with 3 sides and 9 sides or more are
rarely observed. Rather comparable distributions of cell sides,
mainly composed of a pentagonal–hexagonal–heptagonal mix,
have also been reported for other cooling-induced crack
networks (in thermal shocked ceramics [2] and basaltic lava
flows [5]) as well as for many cellular systems (such as soap
froths [8, 13], polycrystalline materials [9, 14, 34], Bénard-
Marangoni convective structures [29] or polygonal terrains
on Mars [32]). On the other hand, shrinkage-crack patterns
generated by desiccation (such as in thin layers of dried slurries
[6, 7] or in a ceramic glaze [4]) form an arrays of predominantly
4-sided polygons.

The variance µ2, which measures the spread in the
probability distribution of cell sides P(n), is a key indicator
of the topological disorder which characterizes the deviation
of the cellular structure with respect to the perfect hexagonal
pattern [29]. The higher the µ2, the more the cells are randomly
distributed in the network and the probability of finding 4-sided
cell and/or 8-sided cells is high. Delannay and Le Caër [40]
reported that µ2 never exceeds 5 in natural cellular structures.
The values determined on the heat-checking patterns fall in
the interval 1.27–4.30 (table 2), with an average value close
to 2.2. A rather comparable degree of disorder was measured
in thermal shocked ceramics (where µ2 = 2.75 ± 0.07 [2]),
Al metal grains (µ2 = 2.90 ± 0.8 [34]) and polygonal
terrains on Mars (1.24 < µ2 < 3.46 [32]), despite the very
different size scales of these cellular networks (from µm2

to m2). However, lower values (µ2 ! 1.5) were reported,
for example in biological cells, cork patterns and Bénard-
Marangoni convective structures (see [41] and references
therein).

3.2. Aboav–Weaire’s law

As indicated in table 3, all heat-checking networks satisfy
the Aboav–Weaire’s law remarkably well. The slope of the
regression line is close to 5, and the coefficient of determination

RAW is better than 0.99 in 97% of cases (the minimum RAW

is 0.97). The system-constant a (calculated from the slope
(⟨n⟩ − a) of equation (2)) ranges from 0.44 to 1.47. These
values are in agreement with those reported in [41] for most
cellular networks (0.5 < a < 1.5). Different interpretations
of this parameter are proposed in the literature. According
to Zsoldos and Szasz [41], a is a numerical expression of the
collectivity of the cellular pattern: the more the increase in
a, the stronger the collectivity (with a maximum value of 2).
A strong collectivity corresponds to the state of minimum
energy for the system. It reflects the presence in the hexagonal
structure of dipoles (or chains) of pentagonal and heptagonal
cells, which can be regarded as ‘topological dislocations’
[8] (like the crystallographic defects or irregularities within
the atomic structure of a crystalline material). These local
‘defects’ result from topological transformations (for example
successive cell divisions) that change the number of sides of the
cells involved. By considering the structure as an elastic solid,
the topological dislocations constitute a local manifestation of
plasticity [22]. In addition, Cerisier et al [29] have stated
that a should be 1 when the cellular mosaic is evolutive,
meaning that the cells can coalesce, divide or disappear (such
as in polycrystallization processes [13], soap froths [28, 42] or
biological tissues [25]). In our experiments, the mean value of
a is slightly less than 1. We can therefore consider that our heat-
checking networks are non-equilibrium structures in which
the collectivity is not very strong (the results presented next
in section 4.2 will confirm that the cell organization evolves
effectively upon cycling).

3.3. Lewis’ law

The linear Lewis’ law (3), relating the average area of the cells
⟨A(n)⟩ to their number of sides n, is broadly verified by all
heat-checking networks (table 4). Determination coefficients
higher than 0.85 are found, except in four cases (0.635 < RL <

0.998). The slope α of the linear regression shows a wide
variation between 32 and 559, indicating that the mean size of
the heat-checking cells may vary considerably from one test to
another and during cycling. Parallelly, the intercept n0 ranges



Table 4. Least-squares fit parameters of Lewis’ law (minimum and maximum values between the first and last cycle stops) calculated on the
heat-checking networks produced under various TF test conditions on 47 HRC heat-treated specimens.

TF test conditions Lewis’ law parameters in (3) and (4)

N◦ Tmax ht $max Slope α Intercept n0 Slope λ Determination
test (◦C) (s) (MW m−2) (3) (3) (4) coefficient RL

1 550 0.90 4.75 69–78 2.56–2.63 0.30–0.32 0.856–0.956
2 575 0.95 4.84 67–170 2.61–4.11 0.31–0.62 0.790–0.972
3 600 1.0 4.85 52–60 1.57–2.46 0.24–0.34 0.940–0.981
3a 600 1.0 4.85 32–73 0.48–2.50 0.16–0.30 0.854–0.994
4 625 1.1 4.93 39–52 1.38–2.19 0.22–0.28 0.760–0.992
5 650 1.2 4.95 47–96 0.71–2.78 0.20–0.32 0.920–0.997
5a 650 1.2 4.93 45–95 1.02–2.25 0.20–0.28 0.911–0.998
6 650 2.0 3.93 63–102 0.96–1.88 0.20–0.34 0.923–0.990
7 650 3.7 2.78 196–259 1.34–2.02 0.20–0.25 0.899–0.993
8 650 6.5 2.13 303–559 1.33–2.43 0.21–0.30 0.635–0.993
9 685 1.6 4.75 39–77 1.61–2.59 0.23–0.32 0.924–0.995
9a 685 1.6 4.75 41–62 1.50–3.00 0.23–0.36 0.692–0.994

a Test performed on a 42 HRC heat-treated specimen.

Figure 3. Relation between the average number of sides ⟨n⟩ of the
cells and their density dc in the stabilized heat-checking networks.

from about 0.5 to 4. In most cellular systems, n0 generally
stand between 2 and 2.5 [24, 29], which is close to the average
value found for the 70 heat-checking maps investigated here
(n0 = 2.06+2.05

−1.58). The parameter λ (calculated from (4), as
the slope of the normalized curve ⟨A(n)⟩/A versus n) lies in
the interval from 0.16 to 0.62, with a mean value of 0.27.
For comparison, values of the same order of magnitude were
reported for Bénard–Marangoni convective structures (where
λ = 0.23 in the steady regime [29]), and polygonal networks
on Mars (0.26 < λ < 0.51 [32]).

4. Discussion

4.1. Relations between topological quantities

For the stabilized crack networks, the average number of cell
sides ⟨n⟩ seems to be strongly linked to the cell density dc

(figure 3), according to a power law with a high coefficient of
determination (R = 0.936):

⟨n⟩ = 5.76d0.0052
c . (6)

This relationship can be attributed to the fact that in finite
cellular structure, ⟨n⟩ increases as the number of cells increases

Figure 4. Universality of Lemaı̂tre’s law: correlation between the
variance µ2 and P (6) for the heat-checking networks investigated in
this work and other cellular structures reported in the literature.

(as stated by Euler’s theorem: ⟨n⟩ ! 6 − 12/Nc [27, 30]).
Such observation has also been reported in other cellular
structures (two-dimensional soap froths [42], inflorescences
of plants [27] and polygonal networks on Mars [32]). In our
heat-checking networks, Nc varies from 323 to 4749, meaning
that ⟨n⟩ should theorically vary between 5.96 and 6.00. In
fact, the range of variation found experimentally is larger than
expected (5.91 ! ⟨n⟩ ! 6.03), and values greater than 6.0 are
even achieved, as also noted by Saraiva et al. Presumably, this
could be explained by the large number of cells (much higher
than in other studies) analysed in both cases.

Both the fraction of 6-sided cells P (6) and the topological
variance µ2 reflect the inhomogeneity of the cellular structure,
the first inversely and the second directly since it measures the
topological disorder [30]. Figure 4, plotting the variation of
the topological variance µ2 as a function of P (6), confirms
that these two thermodynamic variables are linked, despite
the diversity of their origin. As can be seen, our data and
those collected in the literature for others 2D cellular structures
[2, 18, 29, 31, 32, 34, 35] lie on a single curve. This non-
linear relationship between µ2 and P (6) was first discovered
empirically by Lemaı̂tre et al in two-dimensional foams
[43, 44]. Lemaı̂tre’s law has been expressed by Le Caër and



Figure 5. Linear relation between a (expressing the collectivity in
Aboav-Weaire’s law) and the variance µ2, for the heat-checking
networks.

Delannay [45], and later by Rivier (based on maximum entropy
analysis [46, 47]), as

µ2·P(6)2 = 1/(2π) = 0.159 (for 0.3 < P(6) < 0.7), (7.1)

and µ2 = 1 − P(6) (for P(6) > 0.7). (7.2)

This structural equation of state, which is the equivalent of
the virial equation of state in liquids and gases, is very robust for
both experimental and simulated cellular systems [22, 30, 45].
The second expression (7.2) reflects an asymptotic behaviour
for P(6) > 0.7. It corresponds to the case of a ‘topological
gas’ (TG), which is an ideal model of uncorrelated arrangement
of cells introduced by Fradkov [48]. Our experimental data
obey (7.1) with good accuracy, confirming the universality
of Lemaı̂tre’s law for cellular mosaics as a consequence of
maximum entropy inference [46]. Figure 4 further shows the
reliability of this equation in the interval 0.18 < P(6) <
0.3 (hitherto not reported in the literature), indicating that
Lemaı̂tre’s law is also valid for highly disordered cellular
networks with µ2 " 3.

It seems that the parameters of Aboav–Weaire’s law (a
and µ2) are interdependent [40, 49]. Figure 5 shows that there
is a tendency for the decrease of the system-constant a when
the variance µ2 becomes larger:

a = −0.168µ2 + 1.3482. (8)

Even if the scattering is high (R = 0.335), it can be noted
that the slope of the linear regression curve calculated from
our data (s = −0.168) is very close to that reported by Vincze
et al (s ′ = −1/6, with a coefficient of determination even
lower, R′ = 0.21 [49]).

In figure 6 the variation of ρ (quotient a/µ2) as a function
of µ2 (with µ2 ranging from 0.14 to 4.3) is plotted, for various
natural structures including our crack networks. As already
established by Delannay and Le Caër [40], this figure reveals
that ρ decreases quasi-universally according to a curve near
1/µ2, and approaches an asymptotic value equivalent to that
of a TG (ρTG = −1/6) for cellular structures with a high
disorder µ2.

Figure 6. Variation of ρ(= a/µ2) versus µ2 for the heat-checking
networks investigated in this work and other cellular structures
reported in the literature.

4.2. Effect of the number of TF cycles

For most TF tests the topological properties of the heat-
checking patterns were investigated in the early stages of
cracking (for the first 500 or 1000 cycles, as indicated in
table 1). Figure 7 shows that the frequency distributions of
cell sides, P(n), are quasi-normal and centred on 6. However,
it should be emphasized that for a low number of cycles
(i.e. when the heat-checking density is not fully stabilized or
saturated [1]), P(n) is slightly asymmetric and flattened, with
a smaller proportion of 6-sided cells (figure 7(a)) compared
with larger numbers of cycles (figures 7(b) and (c)). Whatever
the number of cycles N , P (6) is always higher than P (5),
and P (5) higher than P (7), as also reported for crack patterns
formed in quenched ceramics [2] and basaltic lava flows [5],
or for polygonal networks on Mars [32]. In addition, one can
observe that the number of cells with 9 or more sides decreases
or disappears with increasing N (figures 7(a)–(c)).

With rare exceptions, the variance µ2 is less than 3
(table 2). According to Stavans and Glazier [8, 28, 42], such
value means that the spatial disorder is ‘long-lived in time’ and
characteristic of a non-asymptotic behaviour. This statement
is confirmed by figure 8, plotting the evolution of µ2 versus
number of cycles N , which shows a decreasing trend and tends
to a minimal value (µ2 < 2) when N increases, regardless
of Tmax. This figure suggests that the heat-checking pattern
evolves towards a more ordered geometry in the stabilized
regime, without however achieving a markedly asymptotic
behaviour. In soap froths, a somewhat different evolution
was reported for µ2 versus time [42]: the initially ordered
cellular structure, composed mostly of hexagonal bubbles
(with µ2 < 0.5), widens to a maximum (µ2 = 2.65) before
narrowing to a steady intermediate value (µ2 = 1.5 ± 0.2)

at longer times. In their experiments, Stavans and Glazier
observed the evolution of the soap bubbles in situ, while our
TF tests must be periodically interrupted to check the crack
initiation. Therefore, we are not sure that the very early stages
of fragmentation were observed, and a behaviour similar to
soap froths cannot be completely excluded.

Both Aboav–Weaire’s and Lewis’ laws are satisfied
throughout the whole TF cycling, as shown for test 5 in



Figure 7. Frequency distributions P(n) of the number of cell sides at increasing number of cycles N (test 5): (a) N = 1000 cycles;
(b) N = 5000 cycles; (c) N = 20 000 cycles; (d) evolution of P(n) versus N , for n = 5 to 7. (⟨n⟩ is the average number of sides of the
cells, and µ2 is the variance of P(n)).

Figure 8. Evolution of the variance of µ2 versus number of cycles,
indicating a decreasing topological disorder in the heat-checking
pattern.

figures 9 and 10(a), respectively. It should be emphasized that
the coefficient of determination of both laws slightly increases
with N . A higher deviation from the linear regression is,
however, observed for many-sided cells (with n > 9), that
can be explained by a lower number of data for this population.
This is particularly true for Lewis’ law at low number of cycles,
since the heat-checking cells have not yet completely reached
their stabilized size [1]. Figure 10(b), showing the evolution
of the slope of Lewis’ law (α) as a function of the number of
cycles N , indicates that α decreases to an asymptotic minimal
value. It was previously shown [1, 38] that the heat-checking
density (which is inversely proportional to the mean cell size
expressed here by α) follows a sigmoidal trend versus N ,
whatever the thermal cycling conditions. After an incubation
period during which no crack is observed (since the oxide

Figure 9. Applicability of the Aboav-Weaire’s law (linear relation
relating the average number of sides of cells surrounding a n-sided
cell, m(n), to (n), for test 5. The data are the mean values of
n · m(n) calculated between the first (1000 cycles) and last (20 000
cycles) interruption of the test, and the error bars represent their
minimum and maximum values.

layer is too thin and has not achieved a critical thickness to
rupture), the crack network initiates and stabilizes rapidly to
a saturated density. Figure 10(b), which shows a bi-linear
dependence of α on N , reflects the same phenomenon. Thus,
α decreases strongly at the beginning of the cracking process
(as shown by the first highly sloped linear portion of the curve),
indicating that the heat-checking cells undergo rapidly a strong
shrinking after successive cell divisions. Then, beyond a
critical number of cycles (Nsat) which may change depending
on the test conditions [38], α remains quasi-constant when N

increases (corresponding to the second linear part with a near-
zero slope), meaning that the cells have reached their stabilized
(or saturated) size.



(a) (b)

Figure 10. Applicability of Lewis’ law (test 5): (a) linear relation relating the average area ⟨A(n)⟩ of the cells to n, at different numbers of
cycles; (b) evolution of the slope α versus number of cycles.

(a) (b)

Figure 11. Application of the ‘modified’ Von Neumann’s law (9) to the heat-checking networks produced with test 5: (a) evolution of the
rate of change of the average area of the cells, d⟨A(n)⟩/dN , versus their topological class n, for various cycle intervals (the slope of the
curve, k, expresses the shrinkage rate of the cells); (b) evolution of k versus number of cycles.

Thus, the heat-checking networks are non-equilibrium
systems, whose topological and metric properties evolve with
time. In figure 11(a), the rate of change of the average area
of the cells, d⟨A(n)⟩/dN , is plotted versus their topological
class n, for different intervals of cycling (test 5). By excluding
the cells with n > 9 (which are very few in the heat-checking
network), a linear evolution is observed as a function of n, for
each interval between two successive cycling stops:

d⟨A(n)⟩/dN = k(N) · n + b, (9)

where k(N) is called the ‘rate constant’, which depends on the
TF cycling interval and indicates either a growth (k > 0) or a
shrinkage (k < 0) of the cells, and b is a constant.

This expression can be considered as a ‘modified’ Von
Neumann’s law, by substituting the time t by the number of
cycles N in (5) (it must be recalled that N is proportional
to t for a given thermal cycle). At the beginning of the
test (i.e. for low number of cycles, up to 2500 cycles in
the case of test 5), a negative rate constant is observed
(k < −2.10−2 µm2/cycle), meaning that the heat-checking
cells shrink (due to their fragmentation). This behaviour is
analogous to that of biological tissues (such as epidermis),
where successive divisions occur under a microscopic process

called ‘mitosis’ [22]. It can be also noted that the linear
regression curve predicts negative values of d⟨A(n)⟩/dN
even for values of n higher than 6, in contradiction with
Von Neumann’s law (which states a linear dependence of
d⟨A(n)⟩/dt with (n − 6)). This is also in contradiction
with experimental observations reported for bubbles in soap
froths [28] and grains in polycrystalline aggregates [34, 35],
which may shrink or expand in agreement with Von Neumann’s
law. However, even if the sign of d⟨A(n)⟩/dN does not
change according to the topological class of the cells, many-
sided cells have a higher ‘shrinkage rate’ than few-sided cells
(figure 11(a)). In addition, the cells with n > 10 tend
to disappear during the fragmentation process, as previously
shown in the frequency distributions P(n) (figure 7(d)).
Figure 11(b) indicates that the rate constant k, which expresses
the rate constant of the cell size variation (slope of equation
(8)), varies according to the number of cycles N . It may
be noted that this curve follows the opposite trend to that
of α versus N (figure 10(b)). As explained above, the
heat-checking cells globally shrink at the beginning of the
fragmentation process, whatever their number of neighbours.
Figure 11(b) better shows that the rate of shrinkage k decreases
rapidly between the beginning of the fragmentation process
and the number of cycles to saturation Nsat (as k varies from



(a) (b)

Figure 12. Frequency distributions of the number of cell sidesP(n) in the stabilized regime, for various maximum temperatures Tmax
(a) and heating periods ht of the thermal cycle (b).

–0.041 to –0.0009 µm2/cycle). When the saturated regime is
achieved (i.e. before 5000 cycles), k stabilizes to a constant
value near zero, indicating that the cell size no longer evolves
under further cycles. Thus, this curve reflects the fact that
the fragmentation process is time dependent. Even if the
stabilization of the crack network is rapidly achieved, this is
not an instantaneous phenomenon since it takes a few thousand
cycles before the cells reach their saturated size. This time
dependence of k (which is equivalent to γ in original Von
Neumann’s law) was not observed in soap froths, where γ
remains constant with time [28].

4.3. Effect of TF test conditions

Focusing on the saturated heat-checking networks (when the
crack density is stabilized at a high number of cycles), the
effects of TF test conditions (maximal temperature Tmax and
heating period ht of the thermal cycle) on the topological
properties are investigated. Whatever Tmax, a Gaussian
probability distribution of the number of cell sides P(n) is
obtained, with a slightly more flattened shape when Tmax <
600 ◦C (figure 12(a)). In addition, figure 12(b) shows that
the kurtosis of the distribution is lower when the heating rate
hr decreases (i.e. ht increases), leading to a positively skewed
distribution for the slowest thermal cycle (ht = 6.5 s). The
average number of cell sides does not drastically change with
neither Tmax (⟨n⟩ = 6.01 ± 0.2), nor ht (⟨n⟩ = 5.99+0.03

−0.05).
However, it seems that a relationship exists between ⟨n⟩ and
the maximum heat-flux density ($max) applied to the specimen
during the heating period of the TF test (figure 13). It must be
recalled that $max depends on the test conditions and especially
on the heating rate, as indicated in table 1 (2.13 < $max <
4.95 MW m−2 when 85 < hr < 458 ◦C s−1 for the 100–650 ◦C
thermal cycle). In figure 13, data points are best-fitted by a
power law (with R = 0.82):

⟨n⟩ = 5.915$0.0107
max . (10)

This relationship can be related to the tendency of ⟨n⟩ to
increase with the cell density dc, as previously shown in
figure 3. Indeed, the thermal cycles performed with a low
$max produce heat-checking networks with fewer cells than
those performed with a high $max, and vice versa (table 2).

Figure 13. Effect of the maximum heat-flux density $max on the
average number of cell sides ⟨n⟩, for the saturated heat-checking
networks.

No very significant effect of the steel hardness and the
TF test conditions is observed on Aboav–Weaire’s correlation,
although the system-constant a appears to be lower when the
test is performed at low Tmax (<600 ◦C) or at high ht (table 3).
The topological disorder µ2 exhibits greater variations. More
disordered cellular networks (with µ2 > 2) are obtained at low
Tmax, while the most ordered organization seems to be reached
at 650 ◦C (figure 14(a)). On the other hand, figure 14(b)
indicates that µ2 increases by increasing ht, meaning that
low heating rates tend to produce a greater deviation from
geometric equilibrium, compared with fastest cycles.

Figure 15(a) shows the effect of Tmax on Lewis’ linear
correlation, whose slope α does not vary much in the saturated
regime. However, it can be noted that when Tmax < 600 ◦C
(tests 1 and 2), the dependence of ⟨A(n)⟩ upon n seems
rather quadratic than linear (figure 15(b)), thus improving
the average correlation coefficient from 0.91 to 0.97. The
failure of Lewis’ law under these conditions would suggest
that additional constraints to inescapable mathematical space-
filling requirements are involved in shaping the heat-checking
network [20–22]. In addition, figure 16 indicates that the
slope of the linear regression, α, is drastically increased by
increasing ht (i.e. decreasing the mean heating rate hr). The
scattering from the linear regression is also larger by increasing
ht, because the number of cells becomes lower (especially



(a) (b)

Figure 14. Effect of the maximal temperature Tmax (a) and of the heating period ht of the thermal cycle (b) on the variance µ2 in the
stabilized regime (µ2 is an indicator of the topological disorder in the cellular network).

(a) (b)

Figure 15. Effect of Tmax on the applicability of Lewis’ law in the stabilized regime: (a) classical linear variation of ⟨A(n)⟩ versus n, for
Tmax ! 600 ◦C; (b) quadratic variation of ⟨A(n)⟩ versus n, for Tmax < 600 ◦C.

Figure 16. Effect of the heating period ht of the thermal cycle on
Lewis’ law in the stabilized regime (note that the slope α increases
with increasing ht).

when ht " 3.7 s). In fact, figure 17 reveals that α, which is
linked to the average cell area, decreases with $max following
a power law:

α = 2414$−2.362
max . (11)

This curve, which fits our experimental points with a
remarkably high coefficient of determination (R = 0.95),

Figure 17. Effect of the maximum heat-flux density $max on the
slope of the Lewis’ law α, for the saturated heat-checking networks.

clearly shows that α reaches an asymptotic minimum when
$max is greater than 4 MW m−2. It means that beyond this
value, the saturated heat-checking cells would have achieved
their minimum size, and could not be more fragmented. A
previous study [38] revealed that the saturated crack density
ρsat is dependent on the input energy (applied at the specimen
surface during the heating period of the thermal cycle), which
is itself linked to the maximum heat-flux density $max. Thus,



Figure 18. ‘Universal’ normalized Lewis’ law (⟨A(n)⟩/⟨A⟩ versus
n) applied to all the heat-checking networks produced with various
test conditions (maximum temperature Tmax and heating period ht).

ρsat increases by increasing $max, and beyond a critical limit
of the transmitted energy per unit-area, ρsat remains quasi-
unchanged. Therefore, the stabilized size of the cells may
vary in a wide range depending on the test conditions (and
especially the heating rate of the thermal cycle). The higher
the $max (and therefore the energy received by the specimen
surface, i.e. the oxide layer), the smaller the resulting cell
size. With our test facility, the maximum heat-flux density
that can be achieved (by adjusting the power of the generator
to 100%) does not exceed 5 MW m−2, leading to heat-checking
networks with a minimum cell size of about 15–20 µm [38].
Once the heat-checking network is initiated and stabilized,
increasing the number of thermal cycles leads to propagation of
the micro-cracks of the oxide layer in the steel substrate. Under
such conditions, the thermally induced mechanical energy
is dissipated by the crack propagation inwards of the steel,
rather than by subdividing the heat-checking cells [39]. The
interaction between the thermal stresses and oxidation ahead
of the crack tip modifies the oxidation diffusion paths. In
fact, due to in-depth crack propagation, localized pit oxidation
occurs preferentially to the formation of oxide on the surface
of the specimen. Therefore, fewer driving forces are available
to subdivide the existing cells.

By plotting the normalized area of the cells, ⟨A(n)⟩/⟨A⟩,
versus their topological class n (normalized Lewis’ law) for all
test conditions (figure 18), all data points tend to cluster on a
single curve, namely the linear law:

⟨A(n)⟩/⟨A⟩ = 0.267n − 0.574. (12)

Despite a higher scattering for the many-sided cells (n > 8), a
quite good coefficient of determination is obtained (R = 0.88).
This result indicates that irrespective of the TF test conditions,
the heat-checking networks are similar apart from a size scaling
factor, suggesting that the same rules govern the shaping of the
cellular structure in the stabilized state. However, as previously
shown, the cell organization could be affected, under some test
conditions, by additional forces to the inescapable space-filling
constraints. Actually, during our TF experiment, the maximum
heat-flux density imposed on the specimen generates thermo-
mechanical loading by self-constraining [38]. This thermo-

physical constraint contributes to the shaping of the heat-
checking network, under certain conditions (low Tmax and
low hr).

The steel grade investigated in this study is commonly
used as a tool material in hot-forming processes, such as die-
casting or forging. In service, the tools suffer from thermal and
mechanical solicitations, which can be reproduced at a lower
scale by our TF test [1, 38]. In the run of industrial application,
this work shows that by changing the test parameters (in
particular the heat-flux density by modifying the heating rate
of the thermal cycle), heat-checking networks with various
cell sizes can be generated. It is well known that the TF life
is considerably reduced when the superficial heat-checking
network is denser, because these micro-cracks contribute to
weakening the steel by accelerating the oxidation mechanisms
and the initiation of macro-cracks that propagate through the
tool material as a result of accumulated thermo-mechanical
solicitations [39]. Therefore, better controlling the heat
exchanges between the tool and the processed parts could be
an interesting way to improve the life of hot-working tools in
service [38].

5. Conclusions

This paper presents an experimental investigation on the
topological properties of microscopic heat-checking patterns
formed under thermal fatigue on the oxidized surface of
a X38CrMoV5 steel specimen. 300 and 6000 cells were
analysed in each polygonal crack network, leading to
statistically relevant results. An average number of sides per
cell very close to the ideal value expressed by Euler’s theorem
is found (⟨n⟩ = 6.0+0.03

−0.09), indicating that the cellular networks
are pseudo-hexagonal. The applicability of general topological
laws (such as Aboav–Weaire’s and Lewis’) is verified, meaning
that geometric correlations do not extend beyond adjacent cells
in the polygonal network, and that the shaping of the network
is governed by space-filling constraints [8]. The topological
properties of the microscopic heat-checking networks are
broadly consistent with those reported in the literature for crack
patterns in thermal shocked ceramics or for polygonal terrains
on Mars, which suggests that these random cellular systems are
governed by the same rules despite their very different scale.
The universality of Lemaı̂tre’s law is confirmed, and its domain
of validity extended to highly disordered structures.

It is shown that the heat-checking networks are non-
equilibrium systems, as their topological and geometrical
properties change with the number of cycles. The topological
disorder, estimated by the variance of P(n), is rather high
(µ2 = 2.22+2.08

−0.95). It decreases when increasing the number
of cycles, and evolves towards a geometric equilibrium with
µ2 < 2. A greater disorder is achieved for lower maximal
temperatures (Tmax < 600 ◦C) and lower heating rates. It is
shown that the heat-checking cells undergo a strong shrinkage
at the beginning of the thermal cycling. A modified version of
Von Neumann’s law is established, relating the rate of change
of the average area of the cells to their topological class.

Whatever the number of cycles and the TF test conditions,
the linear Aboav–Weaire’s law is satisfied with a correlation



coefficient always greater than 0.97. The system-constant is
near 1 on average (a = 0.96 ± 0.52). The Lewis’ law, which
states a linear relationship between the average area of the cells
and their number of sides, is generally obeyed with a slope
(32 < α < 559) mainly depending on the thermal cycling
conditions (and especially the heating rate). However, better
correlation coefficients are achieved when the heat-checking
pattern is stabilized (for a high number of cycles), and at
higher maximum temperatures (Tmax > 600 ◦C). Below this
Tmax, the best-fit correlation is quadratic rather than linear,
suggesting that physical forces (related to the maximum heat-
flux density applied to the specimen surface) are involved in the
fragmentation process. Neither the intercept (n0 = 2.06+2.05

−1.58)

nor the ‘ageing’ parameter (λ = 0.27+0.35
−0.11) of Lewis’ law

appears related to the test conditions. It is shown that for
stabilized cracks networks, the maximum heat-flux density
($max) influences both the average number of sides (⟨n⟩)
and the average size of the heat-checking cells (i.e. the slope
α of Lewis’ law). Whatever the test conditions, a unique
normalized Lewis’ law is found, indicating that the stabilized
cellular networks are indistinguishable apart from a scale factor
(the average cell size).
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