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A Two-Level Procedure for the Global Optimum Design of

Composite Modular Structures—Application

to the Design of an Aircraft Wing

Part 1: Theoretical Formulation

Marco Montemurro, Angela Vincenti, Paolo Vannucci

Abstract This work concerns a two-level procedure for the global optimum design

of composite modular structures. The case-study considered is the least weight design

of a stiffened wing-box for an aircraft structure. The method is based on the use of

the polar formalism and on a genetic algorithm. In the first level of the procedure,

the optimal structure is designed as it was composed by a single equivalent layer,

while a laminate realizing the optimal structure is found in the second level. The

method is able to automatically find the optimal number of modules, no simplifying

assumptions are used, and it can be easily generalized to other problems. The work

is divided into two parts: the theoretical formulation in this first part, the genetic

procedure and some numerical examples in the second one.

Keywords Laminates · Composite materials · Polar method · Genetic algorithms

1 Introduction

The design of modular systems is a difficult task whenever the number of modules

is unknown. The difficulty increases even more when the modules can have different

dimensions. Similar problems arise in several engineering domains. We consider here
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a case which can be viewed as paradigmatic: the design of a least weight wing-box

girder, with an unknown number of stiffeners, that is to be realized by composite

laminates.

Stiffened panels are largely used in many structural applications, mostly because

they allow for a substantial weight saving. Of course, this point is of paramount im-

portance especially in aircraft design, where an important reduction of the structural

weight can be achieved if composite laminates are used in place of aluminum alloys.

A drawback of such a choice is that the optimal design of the structure is much more

cumbersome than that of a classical metallic structure. In fact, though the use of lam-

inated structures is not a recent achievement in structural mechanics, up to now no

general rules and methods exist for their optimal design, and engineers always use

some simplifying assumptions or rules.

These assumptions are used on one side to obtain a short-cut to a possible solution,

i.e., to eliminate from the true problem some particularly difficult points or proper-

ties to be obtained. On the other side, some of such rules are considered to prevent

the final structure from some undesired phenomena, though this is never clearly and

rigorously stated and proved. Unfortunately, for the most part, the use of such simple

rules leads only to a suboptimal solution, i.e., to a solution which is not a real global

optimal one. Two examples are the use of symmetric stacking sequences, a sufficient

but not necessary condition for bending-extension uncoupling, and the use of bal-

anced stacks to obtain orthotropic laminates in bending. When symmetric stacking

sequences are used, the design is done using half of the layers, which means also

half of the design variables. Once half of the stack has been designed, the other half

is simply added, symmetrically with respect to the mid-plane, in order to obtain un-

coupling. Of course, it is very difficult to obtain the lightest structure using a similar

strategy.

The use of balanced stacks, on the other side, leads systematically to mechanically

false solutions: whenever such a rule is used, bending orthotropy, a rather difficult

property to be obtained, [1], is simply understated, assumed, but not really obtained,

as in [2] or [3], sometimes ignored, like in [4] (about this topic, see [5] for more

details). In aircraft structural design, some other rules are imposed to the design of

laminated panels; see for instance [3]. None of them are mechanically well justified.

Certainly, an appropriate mathematical formulation of the design process could take

into account the mechanical and technological problems that such drastic, empirical

rules want to prevent.

Many works exist on optimal design of stiffened composite laminates. For exam-

ple, and without any ambition of exhaustiveness, we cite here the works of Butler and

Williams [6], Wiggenraad et al. [7], Nagendra et al. [8], Kaletta and Wolf [9], Bisagni

and Lanzi [10], but many other works on the topic can be found in the literature.

The research presented in this paper has been motivated by the following purpose:

to show that an appropriate optimization procedure can lead to a substantial weight

saving in the design of modular composite structures. The case that we have consid-

ered is that of a wing-box stiffened girder made of composite laminates. The objective

of the optimal problem is to design the lightest structure, submitted to a constraint on

the buckling load, which is a classical problem in aircraft structural engineering. The

same procedure, however, can be applied to other problems and also other require-

2



ments, in the form of additional constraints to the optimum problem, can be taken

into account.

The design procedure that we propose is inspired by a radical point of view: to

design a modular composite laminated structure by a mathematically rigorous nu-

merical optimization procedure that will not use any simplifying assumption. Only

avoiding the use of a priori assumptions one can hope to obtain the true global opti-

mum for a given problem: this is a key-point in our approach. The design process that

we propose is, on one side, completely free, i.e., not submitted to restrictions, and on

the other side completely automatic: the operator does not need to take any prelim-

inary decision, for instance on the number of the layers or of the stiffeners, because

the method will do that for him, in the best way. In fact, the approach presented in

this paper can automatically optimize also the number of design variables during the

iterations.

Actually our hope is twofold: first, to show that, if old design rules and a priori

assumptions are abandoned in the design of structural laminates, interesting solutions

can be obtained, especially in weight saving. Then that modern numerical methods

allow such an approach and make it possible to substitute old simplifying and limiting

assumptions with more rigorous requirements that can be included in the numerical

procedure.

Being the work rather lengthy, its presentation is divided into two parts. In this first

part, the theoretical formulation of the problem is detailed, along with a description of

the solution procedure. In the second part, the characteristics of the genetic algorithm

used to solve the problem are given and some numerical examples shown.

This first part is organized as follows: the mechanical problem considered in the

study is introduced in Sect. 2 and the optimization strategy is explained in Sect. 3.

The mathematical formulation of the minimum weight design problem is detailed in

Sect. 4 and the problem of determining a suitable laminate is formulated in Sect. 5.

Finally, Sect. 6 ends the paper with some concluding remarks and perspectives.

2 Description of the Structural Problem

The optimization procedure is applied to a classical long-range aircraft wing-box

stiffened panel. Figure 1 shows the conceptual steps which lead to the construction of

the approximate model of the wing-box section. In particular, we have considered the

wing-box section located at the 60 % of the wing span, whose typical dimensions are

shown in Fig. 1. These values represent specific dimensions for a long-range aircraft

with a design range of about 9300 km, 350 passengers, two engines, cruising alti-

tude between ∼7600 ÷ 10700 m and Mach number of about 0.82. For more details,

see [11].

The structure has a width w of 2610 mm, height hb of 720 mm and a length L

of 700 mm. The wing-box section represents a portion of the wing between two

consecutive ribs. We consider the wing-box simply-supported on these ribs. Figure 1

shows also the loads acting on the structure in normal flight conditions: in this case,

only on the upper panel there can be buckling phenomena. The whole wing-box is

made of composite laminates composed of highly anisotropic unidirectional carbon-

epoxy layers T300/5280, [12]. The material properties of the elementary layer are
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Fig. 1 (a) Conceptual phases which lead to the construction of the wing-box model (b) Structure of the

wing-box stiffened panel and applied loads

Table 1 Technical moduli and

polar parameters for

unidirectional plies of

carbon-epoxy T300/5208

Technical moduli Polar parameters

Young’s modulus E1 [MPa] 181000 T0 [MPa] 26880

Young’s modulus E2 [MPa] 10300 T1 [MPa] 24744

Shear modulus G12 [MPa] 7170 R0 [MPa] 19710

Poisson’s ratio ν12 0.28 R1 [MPa] 21433

Density ρ [kg/m3] 1580 Φ0 0

Ply thickness tply [mm] 0.125 Φ1 0

shown in Table 1. Both upper and lower panels have Z-shaped stiffeners with equal

flanges. The core and the flanges of each stiffener have the same thickness.

As previously said, no simplifying hypotheses are made for the panel: indeed each

stiffener can be different from any other, in terms of geometrical and mechanical be-

havior, but, and this is very important, for evident mechanical reasons we impose that

each plate composing the structure is orthotropic both in bending and in extension,
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and with the orthotropy axes aligned with the axes of the wing-box. Indeed, about the

geometry of the structure, we only assume that, for constructive reasons, the wing-

box section is symmetric with respect to the global x − y plane, as shown in Fig. 1.

3 The Optimization Strategy

The optimal design of a stiffened wing-box girder made of composite laminates is

an hard task, if no simplifying assumptions are used. Actually, such a problem, like

many other similar problems in structural engineering, has some peculiarities and the

optimization strategy must take into account all of them:

– the structure is a mechanical system composed by modules. Actually, there are

two types of modules in this system: the modules of the first type are the stiffeners.

All the stiffeners are modules because they have the same function and geometry,

but not necessarily the same dimensions and mechanical properties. In fact, in

the most general case each stiffener can be different from another one, because

it can have different dimensions, number, and orientation of the plies, and hence

different mechanical properties. The modules of the second type are the layers: All

the layers, composing each part of the structure, are identical, but each member of

the structure (stiffeners, skins) can be composed by a different number of layers

that normally are differently oriented;

– the design process must be able to completely determine the optimal configuration

of each module and their optimal number; this point is of a particular importance

whenever the objective is the least weight, because dimensions and number of

modules greatly affect the final weight of the structure;

– the design process must be able to take into account all the mechanical prescrip-

tions imposed to the structure, without using simplifying assumptions; namely, it

must be possible to take into account general properties concerning the elastic sym-

metries, like orthotropy for both bending and extension behavior, uncoupling and

so on; this can be done effectively by a proper choice of the anisotropy representa-

tion;

– the design procedure must be able to handle the direction of anisotropy, namely the

orientation of the orthotropy axes, without imposing particular stacking sequences

and/or orientation angles that automatically fix the anisotropy direction in a partic-

ular direction, like cross-ply, angle-ply, or balanced quasi-isotropic sequences;

– all the constraints imposed to the problem, of mechanical or technological nature,

of the inequality or equality type, must be effectively handled by the procedure;

– the numerical tool used for the solution of the optimum problem must be able to

handle, at the same time, design variables of different nature: continuous, discrete

or grouped variables, these last being a sort of pointers that when chosen in a list,

imply the automatic choice of a set of variables; it is typically the case of materials,

whose choice in a set of technical materials that are at the disposal of the designer

implies automatically the choice of all the physical properties of the material to be

used;

– the numerical strategy used to solve the optimum problem must be able to handle

effectively highly nonconvex problems, both in the objective function and in the

constraints.
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Another point is very important when the design concerns composite laminated

structures: There is not a bijective correspondence between the elastic properties of

the laminate and the stacking sequence; see, for instance, [13]: the same mechani-

cal behavior in bending, coupling, or extension can be obtained by several different

laminates, all composed of the same identical plies but not necessarily by the same

number of plies or with the same orientations.

Regardless of the layers number, the mechanical properties of the laminate are de-

termined only by a restricted set of overall mechanical parameters. There are different

possible choices for these mechanical parameters, but in all the cases they are at most

18 parameters in the framework of the Classical Laminated Plates Theory (CLPT),

though they are not completely independent.

All the above points have suggested us the optimization strategy to be used to

tackle structural problems like the one considered in this paper. In particular, they

have inspired us in the choice of the general organization of the procedure, of the

mathematical formulation, of the mechanical parameters and of the numerical algo-

rithm.

For what concerns the general organization of the procedure, we have adopted a

two-level strategy: the problem of finding the lightest stiffened wing-box, composed

of identical layers of a chosen material, is split into two different but linked optimum

problems:

– First level: at this stage, we consider each part of the structure, skins, and stiffeners,

as composed of a single equivalent homogeneous layer; the problem of finding

the least weight structure with the imposed constraints is formulated and solved.

The output of this step is hence the geometry of the structure, i.e., the number

and dimensions of stiffeners and skins, in particular their number of layers, and

its mechanical properties, i.e., the components of the stiffness tensors of the skin

and of each stiffener. Hence, this is the step where the true optimal design of the

structure is done, in terms of its overall properties.

– Second level: during this phase, we look for one stacking sequence giving the op-

timal overall properties found during the first step, and this for all the parts of the

structure, i.e., for the skins and for each stiffener. At this stage, the design variables

are the layer orientations and we can add some requirements concerning different

aspects. For instance, more constraints on the elastic behavior can be added for dif-

ferent reasons, or the orientations of the layers can be restricted to a set of possible

values and so on. This is possible because the fact that several laminates share the

same overall elastic behaviour leaves us a large panel of possibilities in terms of

suitable laminates, and this panel rapidly increases with the number of the plies.

It is worth noting that this kind of strategy has already been used in the past, with

various approaches to the first and second level, by some of the coauthors, [14, 15], or

by other scientists on other problems; see, for example, the classical excellent work

of Foldager et al. [13].

For what concerns the mathematical formulation, this will be detailed, for both

the first and second step, in the next section. Nevertheless, we can see immediately

that during the first stage, the design of the thickness of the different parts of the

structure must be done using discrete variables, with a step equal to the thickness of
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the material layer used for the fabrication of the structure. Of course, this responds to

a technological need, and moreover, this will give us also another result: the number

of layers to be used during the second phase design.

Concerning the mechanical parameters, we describe the elastic behavior of each

structural part by a set of elastic invariants, the polar parameters, originally intro-

duced by Verchery [16]. Through these quantities, it is possible to express the clas-

sical A, B, D tensors which describe the behavior of the laminate in an effective

way, especially for design problems. Moreover, being the polar parameters tensor in-

variants, they are frame-independent. In addition, they allows for the most effective

invariant description of elastic symmetries and for easily expressing the bounds on

the design of the material of both elastic and geometric nature; see [17]. We will de-

scribe the role of these parameters in Sect. 4. For more details on the polar formalism,

the reader is addressed to [18].

Other tensor representations can of course be employed in the description of

anisotropic problems, namely we could use the so-called parameters of Tsai and

Pagano, [19], or the classical Cartesian representation. Nevertheless, these methods

make use of frame-dependent quantities, and in anisotropic design problems, where

properties depend upon the frame, the use of frame-independent parameters consti-

tutes a true advantage. In a sense, this is very similar to what is often done in physics

problems, when invariant quantities are very used, like first integrals.

About the numerical procedure, we have used a genetic algorithm, coupled to a

finite element code in the first level problem. The reasons of this choice, the details on

the special genetic algorithm that we have used and the description of the numerical

finite element model used to simulate the mechanical behavior of the structure, are

the topics of the second part of this work, whereto we address the reader.

The structural problem considered in this paper mainly concerns, through the con-

straint on the buckling load, the bending behavior of the different laminates that

compose the structure. Nevertheless, we have also imposed a condition on the exten-

sion behaviour of the laminates: each laminate is required to be quasi-homogeneous.

Quasihomogeneity is a property first introduced by Kandil and Verchery, [20]: a lam-

inate is quasi-homogeneous when its extension and bending behaviors are uncoupled

and identical in each direction, [21]. In this way, only the extension tensor A has to

be designed, the bending one, D, is automatically obtained. So, the choice of using

quasi-homogeneous sequences, a mechanical assumption, has two direct mathemati-

cal consequences on the optimum problem: it reduces to only six the elastic param-

eters to be designed for the laminate, and transforms the problem from the design

of the bending tensor to that of the extension tensor, much easier to be done. An-

other mathematical consequence, important for a correct definition of the constraints

to be imposed to the optimum problem, as specified below, is the fact that with quasi-

homogeneity the interdependency of the elastic parameters of extension and bending

is complete. Finally, it must be noticed that this choice does not diminish the gen-

erality of the approach under a mechanical point of view, because for the bending

behavior, the fundamental one for this kind of problems, no restrictions are given and

all the situations are still possible.

Another important point is constituted by the feasibility conditions: during the

first step, an anisotropic equivalent layer is designed and, just like for any other elas-

tic material, some bounds are to be imposed to the search, in order to obtain elastic
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parameters that satisfy physical existence conditions. Nevertheless, this is not suf-

ficient because the fictitious homogeneous anisotropic material designed during the

first step, is not really fabricated. In fact, the optimal mechanical properties obtained

as results of the first level problem are realized in practice using composite laminates,

that in general are different for the skin and for the stiffeners. So, in the second level

problem, a laminate having the overall elastic properties optimized in the first step is

looked for, and this is done for the skin and for each stiffener.

Recently, Vannucci [17] has shown that laminates constitute a sort of restricted

elastic class: the elastic bounds valid for a homogeneous anisotropic material can

never be attained by a laminate composed by the same material. This happens be-

cause the stacking sequence imposes some links among the different elastic moduli

of the extension or of the bending tensor, links that shrink the existence domain of

the elastic moduli of the tensor. Such links are of geometrical nature, because they

depends on the geometry of the stack, i.e., upon the orientation angle and the position

of each layer in the stacking sequence. As the fictitious material object of the first

design level will be, in the second level, realized by a laminate, in order to obtain a

feasible laminate, the geometric constraints on the feasibility of the laminate are to

be imposed directly to the optimum problem of the first level, otherwise one could

get an optimum elastic tensor that cannot be obtained using a laminate of the same

material.

To this purpose, it is worth noting also the importance of the quasi-homogeneity

requirement: the bounds for the elastic moduli of the extension and bending tensors

taken together are not known, and it should be impossible to specify them correctly in

the first step problem. The assumption of quasi-homogeneity allows for considering

in the first phase a fictitious material that has the same properties for bending and

extension, for which the same geometric bounds are valid for both the tensors and

hence are mathematically correct.

After these considerations, we pass to detail and mathematically formulate the two

different steps of the procedure.

4 Mathematical Formulation of the First Level Problem

The overall characteristics of the optimal structure are to be designed during this

phase. For the problem at hand, this means that in this phase the optimal values of the

following parameters are to be determined:

– the number of the stiffeners;

– the thickness, and hence the number of layers, of the skin and of each stiffener;

– the geometrical dimensions of each stiffener;

– the mechanical properties of the skin and of each stiffener.

It is worth noting the peculiarity of this structural optimization problem: unlike

classical optimum problems of structural engineering, where the only design vari-

ables are the geometrical dimensions of the structure, in this case we need also deter-

mine the optimal number of the modules and their mechanical characteristics, besides

their dimensions. We recall, in fact, that in the most general situation, the stiffeners

share the same form but can have different dimensions and mechanical properties.
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Fig. 2 Geometrical design

variables of the wing-box

stiffened panel

The objective is to minimize the weight of the wing-box; we have already specified

that this must be done satisfying on one side the constraint on the buckling load, and

on the other side the geometric bounds for the elastic moduli.

As said above, for mechanical reasons, we impose also two other requirements:

the fictitious material to be designed in this phase must be orthotropic and with the

orthotropy axes parallel to the wing-box axes. Actually, we will see that this two last

conditions are quite simple to be obtained in this phase, and will not give additional

constraints, while they will be an important part of the second level problem.

4.1 Geometrical Design Variables

Before specifying the mathematical formulation, we introduce the design variables;

these are of two types: geometrical and mechanical. For what concerns the geomet-

rical design variables, they are shown in Fig. 2 and are:

– the number of stiffeners N ;

– the thickness of each stiffener tSi , i = 1, . . . ,N ;

– the height of each stiffener hS
i (i = 1, . . . ,N);

– the thickness of the skin t .

All these variables are discrete valued; the ranges of their variation, along with

their steps, are shown in Table 2. As previously said, the step of the thickness is equal

to the thickness of the carbon-epoxy T300/5208 layers, the material chosen for the

structure, see Table 1.

For technological reasons, the width of the flange of each stiffener, dS
i (i =

1, . . . ,N), is not a design variable and depends on the height of the stiffener as shown

in Fig. 2. The stiffeners are automatically equispaced, with a step b which depends

on the number of stiffeners through the following relation:

b =
w

N + 1
, (1)

where w is the width of the whole wing-box section.

An important point to be remarked: the dimension of the design space, i.e., the

number of the design variables, depends on the number of modules, the stiffeners,
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Table 2 Design variables for

the first optimization problem Design variable Type Lower bound Upper bound Step

N discrete 18 23 1

tS
i

[mm] discrete 2.0 5.0 0.125

hS
i

[mm] discrete 40.0 90.0 0.5

(RA∗

0K
)S
i

[MPa] continuous −19710 19710 –

(RA∗

1
)S
i

[MPa] continuous 0.0 21433 –

t [mm] discrete 2.0 5.0 0.125

(RA∗

0K
) [MPa] continuous −19710 19710 –

(RA∗

1
) [MPa] continuous 0.0 21433 –

and must be optimally determined by the procedure. The determination of the optimal

value of the other module, the number of the layers, is implicitly done determining

the optimal value of the thicknesses.

4.2 Mechanical Design Variables

For what concerns the mechanical variables, we have already said in Sect. 3 that

we use the polar formalism, which gives a representation of any planar tensor by

means of a complete set of independent invariants. These invariants are called polar

parameters and a great advantage in the design of anisotropic structures is that they

are directly linked to the different symmetries of the tensor, [16, 18].

By the polar formalism, the reduced stiffness tensor Q of a layer is expressed as:

Qxxxx = T0 + 2T1 + R0 cos 4Φ0 + 4R1 cos 2Φ1,

Qxxyy = −T0 + 2T1 − R0 cos 4Φ0,

Qxxxy = R0 sin 4Φ0 + 2R1 sin 2Φ1,

Qyyyy = T0 + 2T1 + R0 cos 4Φ0 − 4R1 cos 2Φ1,

Qyyxy = −R0 sin 4Φ0 + 2R1 sin 2Φ1,

Qxxyy = T0 − R0 cos 4Φ0.

(2)

In (2), T0, T1, R0, R1, Φ0 − Φ1 are the polar tensor invariants. T0 and T1 are the

moduli related to the isotropic part of the tensor, R0 and R1 are the moduli related to

the anisotropic one, while Φ0 and Φ1 are the polar angles. The polar parameters of the

material used in the numerical examples presented in the second part of this research

are given in Table 1. The same (2) apply to any other fourth-rank tensor having the

elastic tensor symmetries. For more details on the properties of polar parameters,

see [18].
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The CLPT gives the constitutive law of a laminate, linking the internal actions to

the deformations of the laminate:
{

N

M

}

=

[

A B

B D

]{

ε

κ

}

. (3)

In (3), N, M, ǫ, and κ are second-rank symmetric plane tensors; N represents the

membrane forces, M the bending moments, ǫ the in-plane strains and κ the out-of-

plane curvatures. The CLPT gives also the composition laws of these three tensors

for a laminate composed of n plies. Such laws depend on the mechanical properties

of the layers, on their thickness, orientation, and position:

A =

n
∑

j=1

Qj (δj )(zj − zj−1),

B =
1

2

n
∑

j=1

Qj (δj )
(

z2
j − z2

j−1

)

,

D =
1

3

n
∑

j=1

Qj (δj )
(

z3
j − z3

j−1

)

.

(4)

The previous laws are independent from the tensor representation and hence apply

also to the polar formalism. Some standard passages give then the polar parameters

of A, B, and D:

T A
0 , T B

0 , T D
0 =

1

m

n
∑

j=1

T0j

(

zm
j − zm

j−1

)

,

T A
1 , T B

1 , T D
1 =

1

m

n
∑

j=1

T1j

(

zm
j − zm

j−1

)

,

RA
0 e4iΦA

0 ,RB
0 e4iΦB

0 ,RD
0 e4iΦD

0 =
1

m

n
∑

j=1

R0j e4i(Φ0j +δj )
(

zm
j − zm

j−1

)

,

RA
1 e2iΦA

1 ,RB
1 e2iΦB

1 ,RD
1 e2iΦD

1 =
1

m

n
∑

j=1

R1j e2i(Φ1j +δj )
(

zm
j − zm

j−1

)

,

(5)

where T A
0 , T A

1 , RA
0 , RA

1 , ΦA
0 , and ΦA

1 are the polar components of tensor A, T B
0 ,

T B
1 , RB

0 , RB
1 , ΦB

0 , and ΦB
1 are the polar components of tensor B, and T D

0 , T D
1 ,

RD
0 , RD

1 , ΦD
0 , and ΦD

1 are the polar components of tensor D. In (5), m = 1,2,3 for

the extensional, coupling and bending stiffness tensor, respectively. T0j , T1j , R0j ,

R1j , Φ0j , and Φ1j are the polar parameters of the reduced stiffness tensor of the j th

lamina; δj is the j th ply’s orientation measured with respect to the global frame of

the laminate, while zj and zj−1 are the z coordinates of the top and bottom of the j th

layer’s surfaces.
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As already said, in this work we use quasi-homogeneous, orthotropic laminates for

both the skin and the stiffeners of the wing-box section. Introducing the normalized

stiffness tensors, defined as

A∗ =
1

hlam

A, B∗ =
2

h2
lam

B, D∗ =
12

h3
lam

D, (6)

the conditions on general elastic properties specified above, i.e., quasi-homogeneity

and orthotropy, are mathematically expressed by:

B∗ = O uncoupling condition,

A∗ = D∗ homogeneity condition,

ΦA∗

0 − ΦA∗

1 = KA∗ π

4
orthotropy condition.

(7)

If the first two conditions of (7) are satisfied, the laminate is said to be quasi-

homogeneous; see [21]. In (6), hlam is the total thickness of the laminate, while in the

third of (7) ΦA∗

0 and ΦA∗

1 are the polar angles of the tensor A∗. The invariant KA∗

determines the type of ordinary orthotropy (see [18, 22]), and it can assume only

the values 0 or 1. Vannucci [23] has shown the importance of this material invariant

parameter in some problems of optimal design; namely, if a solution is optimal for

K = 0, it is normally antioptimal for K = 1 and inversely, and in some cases, the

change of K can lead to a loss of uniqueness of the solution of an optimum problem.

To be remarked that the second and third of (7) give also bending orthotropy.

A simple result of the polar formalism is that, for the general case of laminates

with identical layers, the isotropic moduli T A∗

0 and T A∗

1 are equal to those of the

elementary layer, T0 and T1, respectively; see [21]. T A∗

0 and T A∗

1 are hence fixed by

the choice of the material of the layers, so they are no more design variables: the polar

formalism allows for easily eliminating some redundant mechanical variables from a

design problem of a laminate composed of identical layers.

From the third condition of (7), we get

cos 4ΦA∗

0 = (−1)K
A∗

cos 4ΦA∗

1 ,

sin 4ΦA∗

0 = (−1)K
A∗

sin 4ΦA∗

1 ,

(8)

relations that can be used in (2), valid for any fourth-order elasticity-like tensor,

so for tensor A∗ too. Therefore, introducing the quantity RA∗

0K = (−1)K
A∗

RA∗

0 (see

also [24]) thanks to quasi-homogeneity and to the polar formalism, we are reduced to

only 3 mechanical design variables for each laminate: the polar parameters RA∗

0K , RA∗

1 ,

concerning the anisotropic part, and the polar angle ΦA∗

1 that represents the direction

of the orthotropy axis. A theoretical remark: RA∗

0K is still a tensor invariant, because it

is a combination of two distinct tensor invariants, KA∗
and RA∗

0 .

As said previously, we must introduce in this phase the geometric bounds for the

design of the laminate that will be done during the next second level problem. Such

bounds can be written independently for tensors A∗ or D∗, and are of course the same
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for the case of quasi-homogeneous laminates. They can be written using the well-

known lamination parameters, introduced by Tsai and Hahn, [12], and a wide dis-

cussion about the geometric bounds is given in [25]. The expression of these bounds

using the polar formalism can be found in [17], and for the case of an orthotropic

tensor A∗ they are (the quantities without the index A∗ refer to the layer)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−R0 ≤ RA∗

0K ≤ R0,

0 ≤ RA∗

1 ≤ R1,

2
(RA∗

1
R1

)2
− 1 ≤ (−1)K

RA∗

0K

R0
.

(9)

These constraints are to be considered for the optimal design of every laminate com-

posing the skin or the stiffeners of the wing-box section.

4.3 Mathematical Formulation of the First Level Problem

As said previously, the goal of the global structural optimization is to find a minimum-

weight wing-box configuration respecting the buckling and geometric constraints. To

state the optimum problem in a standard form, we first reorder the design variables

according to the following scheme (the apex S stands for stiffeners, the quantities

without this apex are referred to the skin):

– the vector x collects the following design variables, concerning the overall structure

and the skin:

x =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x1 = N

x2 = t

x3 = RA∗

0K

x4 = RA∗

1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

; (10)

– each one of the vectors yi collects the design variables of the ith stiffener, i =

1, . . . ,N :

yi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

y1 = hS
i

y2 = tSi

y3 = (RA∗

0K)Si

y4 = (RA∗

1 )Si

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (11)

Then we introduce the following functions:

– the objective function W , expressing the overall weight of the structure:

W = W
(

x,yi
)

; (12)

– the function for expressing the constraint on the critical buckling load:

f
(

x,yi
)

= pref − pcr

(

x,yi
)

; (13)

13



– the functions for expressing the five geometric constraints (9) on the polar param-

eters of the skin:

g1(x3) = −x3 − R0; (14)

g2(x3) = x3 − R0; (15)

g3(x4) = −x4; (16)

g4(x4) = x4 − R1; (17)

g5(x3, x4) = 2

(

x4

R1

)2

− (−1)K
x3

R0
; (18)

– the functions for expressing the five geometric constraints (9) on the polar param-

eters of the ith stiffener, with i = 1, . . . ,N :

hi
1

(

yi
3

)

= −yi
3 − R0; (19)

hi
2

(

yi
3

)

= yi
3 − R0; (20)

hi
3

(

yi
4

)

= −yi
4; (21)

hi
4

(

yi
4

)

= yi
4 − R1; (22)

hi
5

(

yi
3, y

i
4

)

= 2

(

yi
4

R1

)2

− (−1)K
yi

3

R0
. (23)

In (13), pref is a limiting value for the critical buckling load of the structure, pcr .

The parameter K in (18) and (23) fixes the orthotropy shape of the material, and it is

equal to 0 for the carbon-epoxy T300/5208, which has Φ0 = Φ1; see Table 1 and the

third of (7).

Finally, the problem can be stated in the standard form:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min W(x,y1, . . . ,yN ),

s.t. f (x,yi, . . . ,yN ) ≤ 0,

gj (x) ≤ 0, j = 1, . . . ,5,

hi
l (y

i) ≤ 0, i = 1, . . . ,N, l = 1, . . . ,5.

(24)

Problem (24) is nonlinear, in terms of both the geometrical and mechanical vari-

ables. Its nonlinearity is given not only by the objective function and the geometrical

constraints like those in (18) and (23), but, in a stronger way, by the constraint on

the value of the buckling load, pcr ≥ pref . The value of the buckling load can be

computed analytically if it has a theoretical expression, which happens for some par-

ticularly simple structures, like beams or plates of simple form. Unfortunately, no

analytical solution is known for the buckling load of a structure as complicated as the

one considered in this research; see Fig. 1. Hence, for the solution of problem (24)

we need a tool for the numerical evaluation of pcr . To this purpose, the structure, a

continuum, is discretized in finite elements and the computation of pcr is done using

the well-known technique of the finite elements method.

14



From a mathematical point of view, the transformation of a continuum, i.e., of

a body having infinite degrees of freedom, into a discrete structure that has a finite

number of degrees of freedom, transforms the search of the buckling load into a

classical algebraic problem: pcr is the smallest eigenvalue λ of

[K]{u} = λ{u}; (25)

[K] is the stiffness matrix of the discretized structure; it is symmetric, positive defi-

nite, and its dimension is equal to the number of the degrees of freedom of the struc-

ture; {u} is the vector of the state variables of the problem which, in the classical

formulation of a finite element method, are physically the displacements, i.e., the de-

grees of freedom of the discrete structure. In our case, as it will be specified in the

second part of this research, the discretization of the structure leads to a model hav-

ing some hundreds of thousands of degrees of freedom. The solution of the Laplace’s

equation for a matrix having a so great dimension is clearly a nonlinear problem

whose solution can be obtained only numerically.

As already said, we impose that the fictitious material designed in this first step

must be orthotropic, with the axes of orthotropy aligned with the axes of the structure,

and uncoupled. All these properties are easily obtained in this phase. In fact, the ten-

sor A∗ is computed, during this phase, using condition (8) in (2). This automatically

ensures the orthotropy of the tensor, which is unique for bending and extension by the

quasi-homogeneity assumption. Bending-extension coupling is simply ignored dur-

ing this phase: the fictitious material being homogeneous, though anisotropic, cou-

pling simply does not exist in this computation phase. Finally, we fix the orthotropy

direction, for both the skin and the stiffener laminates, simply posing

ΦA∗

1 =
(

ΦA∗

1

)S

i
= 0, ∀i = 1, . . . ,N, (26)

which means that the principal orthotropy axis of each laminate composing the struc-

ture is aligned with the global x axis of the whole wing-box section, Fig. 1. In this

way, we eliminate from the problem a mechanical design variable for each laminate.

Finally, the dimension of the design space, i.e., the number of design variables,

and the number of constraint equations depend on the number N of the stiffeners. In

particular, the total number of design variables is 4N + 4 (there are in fact 4 vari-

ables for each stiffener, 3 variables for the skin and the number of stiffeners, N ),

while the total number of constraint equations is 5N + 6: the buckling constraint,

5 constraints for the skin, and finally 5 constraints for each stiffener; see the second,

third, and fourth of (24), respectively. Nevertheless, though the number of constraints

is variable, each constraint added by the addition of a module depends only on the

unknowns concerning that module, not on the other ones too; see again the fourth

of (24).

The numerical method used to solve an optimization problem, which includes the

number of design variables among the unknowns to be determined, is detailed in the

second part of this work.
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5 Mathematical Formulation of the Second Level Problem

The second problem of the optimization procedure concerns the design of the lam-

inates. Of course, this second problem depends upon the results of the first one,

because the laminates to be designed must own the optimal elastic properties and

thickness obtained as results of the first level design problem.

It is to be highlighted that in our approach, that wants to be completely general,

hence not using special stacking sequences nor orientations, also general elastic prop-

erties are concerned by the design problem, in particular quasi-homogeneity and or-

thotropy.

Several authors have considered different laminate design problems (rather com-

plete but not exhaustive reviews on the state of the art can be found in [26–28]).

Some papers on the general elastic properties of the laminates are the classical works

of Werren and Norris, [29], on isotropy, those of Fukunaga, [30], Paradies, [31], Van-

nucci and Verchery, [32], still on isotropy, of Caprino and Crivelli-Visconti, [33],

of Grédiac, [34] and of Valot and Vannucci, [1], on orthotropy, and finally those of

Vannucci and Verchery, [21, 35], on uncoupling and quasi-homogeneity.

Vannucci [22] has considered the problem of designing the general elastic proper-

ties of a laminate. In that work, a general approach based on polar tensor invariants

was proposed: no simplifying hypotheses nor special stacks or orientations are used,

hence the method allows for finding a general solution to a given problem. This ap-

proach was applied in other works and extended in [36] to the constrained optimiza-

tion of laminated plates and in [24] to the optimal design of laminates with given

elastic moduli.

By this approach, the design of a laminate having some elastic properties is re-

duced to an unconstrained minimum problem. Mathematically, the technique is very

simple: in the space of the polar parameters, a target tensor is fixed in some way. In

the problem that we consider in this paper, the target is fixed by the optimal values

of the polar parameters of the laminate, obtained as results of the first level problem.

The tensors of the laminate to be designed must be the same of the target. Hence,

the problem is reduced to the minimization of a distance between tensors in the

18-dimensional space of the polar parameters describing tensors A, B, and D. Ac-

tually, this is a typical inverse problem and the same approach can be extended to

other mechanical properties, concerning other tensors, and hence other polar param-

eters; see, for instance, [37] or [38].

Therefore, the key-point of this phase is the construction of the distance func-

tion, objective of the minimum problem. This function drives the search for a quasi-

homogeneous, orthotropic laminate, having the optimal elastic polar moduli issued

from the first step. The design variables of this second level problem are the layer

orientations δj (see (5)), and the optimization process has to be repeated for the lam-

inates of each stiffener and of the skin.

To construct the distance function in this case, we recall that we need to find a

stacking sequence which satisfies the conditions of (7), and that has the optimal polar

parameters found in the first step, K̂A∗
, R̂A∗

0 , and R̂A∗

1 . The relation among the polar

16



parameters R̂A∗

0 and K̂A∗
, and the polar quantity R̂A∗

0K is, of course,

R̂A∗

0 =
∣

∣R̂A∗

0K

∣

∣, K̂A∗

=

{

0 if R̂A∗

0K > 0,

1 if R̂A∗

0K < 0.
(27)

In addition, we need to orient the orthotropy axes, imposing

ΦA∗

1 = Φ̂A∗

1 ; (28)

in our case Φ̂A∗

1 = 0, which means that the principal orthotropy axis of each laminate

has to be aligned with the x axis of the whole structure. Unlike in other more com-

mon approaches, where the orthotropy and its direction are normally imposed choos-

ing particular sequences that automatically place the orthotropy axes in a direction,

normally aligned with the axes of the laminate, with the polar formalism orthotropy

and its direction are imposed by simple independent conditions, and any direction

different from the axes of the laminate can be easily imposed, simply choosing an

angle different from zero for Φ̂A∗

1 .

We remind that from the first level problem we know also the thickness of the skin

and of the stiffener laminates. Being each laminate thickness a multiple of that of the

elementary ply, the number of the laminate plies is also known.

Considering all these points, the tensor distance, objective function of the second

level problem, can be stated for each laminate of the skin and of the stiffeners as:

min
δ

F(δ) =

6
∑

j=1

fj (δ) with:

f1(δ) =

(

‖B∗‖

‖Q‖

)2

, f2(δ) =

(

‖C‖

‖Q‖

)2

,

f3(δ) =

(

ΦA∗

0 − ΦA∗

1 − K̂A∗ π
4

π
4

)2

, f4(δ) =

(

RA∗

0 − R̂A∗

0

R̂A∗

0

)2

,

f5(δ) =

(

RA∗

1 − R̂A∗

1

R̂A∗

1

)2

, f6(δ) =

(

ΦA∗

1 − Φ̂A∗

1
π
4

)2

.

(29)

In (29), δ is the vector of layer orientations, while fj (δ) is the j th partial term

of the objective function, j = 1, . . . ,6. The terms f1(δ) and f2(δ) are related to the

quasi-homogeneity conditions, while the third one, f3(δ), is linked to the orthotropy

condition; see (7). The function f3(δ) takes also into account the prescribed value

K̂A∗
of parameter KA∗

issued from the first optimization phase. The terms f4(δ) and

f5(δ) correspond to the prescribed optimal values R̂A∗

0 and R̂A∗

1 of the polar moduli

RA∗

0 and RA∗

1 . The term f6(δ) corresponds to the imposed direction of orthotropy

of the laminate: ΦA∗

1 = Φ̂A∗

1 = 0. Finally, ‖B∗‖ is the norm of the homogenized

coupling tensor and ‖C‖ is the norm of the homogeneity tensor.

The function defined in (29) is actually the square of a dimensionless tensor dis-

tance. In fact, we have normalized all the terms, which allows for all the terms to have
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a similar weight in the function. The tensor norms have been transformed in dimen-

sionless quantities dividing them by the normalization factor ‖Q‖, that is, the norm

of the layer reduced stiffness tensor. All the norms have been computed using the

tensor norm proposed by Kandil and Verchery [20]; see also [22]. The normalization

factor of the orthotropy requirement is assumed equal to π
4

, while for the anisotropy

parameters of tensor A∗, it is equal to the corresponding target polar parameter.

The quadratic form of (29) is a nondimensional, positive semidefinite function of

the polar parameters of the laminate. It depends on all the mechanical and geometri-

cal properties of the laminate, i.e., stacking sequence, ply orientations, material, and

thickness of the plies. In addition, the objective function of (29) is nonconvex in the

space of layer orientations, since the polar parameters of the laminate depend upon

circular functions of the orientations, as reported in (5).

A true advantage of formulation (29) is that the global minima of the function are

zero valued. This is important for the numerical search strategy, because the knowl-

edge of the value of the global minima is useful on one side to stop the numerical

search, and on the other side to ensure that the solution so found is really a global

minimum.

Finally, we remark that unlike the first problem, this second problem is an uncon-

strained problem with a known number of design variables, but the objective is still

a highly nonconvex function; a simple glance at (5) is sufficient to realize this. For

what concerns the nature of the design variables, the operator is free to chose contin-

uous, discrete equally stepped variables or variables whose possible values belong to

a defined set; actually, such a choice is mostly a practical, technological choice.

6 Concluding Remarks

The optimization procedure presented in this paper is characterized by several points

that make it an innovative, effective, general method for the design of composite stiff-

ened panels. Our motivation was to create a general procedure for the optimization

of modular systems, with the number of the modules that belongs to the set of the

design variables and without using special assumptions to get some results. The nu-

merical method is, however, a fundamental part of the procedure, because it is thanks

to an appropriate numerical tool that the simultaneous optimization of the number of

the modules and of their characteristics is possible. The details about the numerical

method are given in the second part of this work, to which we address the reader also

for a general perspective and remarks on the procedure.

Nevertheless, it is worth noting a fundamental point, already introduced in Sect. 3:

The correspondence between an elastic tensor and a laminate is not bijective. This is

extremely important, because it renders the two-level approach feasible and effective.

In fact, at the first level, we can consider the structure as it was formed by a fictitious

single layer, while the second level concerns the other properties to be designed,

just because the mechanical parameters are not uniquely determined by the stacking

sequence. For instance, in our case, this allows us for using quasi-homogeneous lam-

inates: at the first level, this assumption lets us consider only an elastic tensor to be

designed, at the second level this property has to be obtained, but this would be, gen-

erally speaking, impossible to be done if only one sequence should give the elastic
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tensor found at the first level. On the contrary, because several laminates share the

same elastic behavior obtained at the first step, we can look for one of them which is

also quasi-homogeneous.

Of course, in the same way, we could add at the second step other requirements

to select, among the possible laminates, one having some other additional properties,

for instance on the laminar strength or something else. Nevertheless, there is not any

guarantee of finding a laminate satisfying all the requirements: Mathematical con-

ditions ensuring that a given optimal design problem for a laminate has at least one

solution are in general unknown. Anyway, the condition for not having an overdeter-

mined problem is

n − 1 ≥ nr , (30)

where n is the number of layers and nr the number of requirements imposed to

the search of the layer. Actually, one layer must be subtracted because the require-

ments have to be frame independent, and eventual conditions on the direction of the

anisotropy are not to be considered; in our case, this is the condition given by f6(δ)

in (29). For the problem considered here, we have 7 requirements: 3 for getting K̂A∗
,

R̂A∗

0 and R̂A∗

1 , 2 for imposing that D∗ − A∗ = O and 2 for having B = O; see [21].

Hence, we can hope to obtain a solution if, for the skin and for each one of the stiff-

eners, we obtain a number of layers not less than 8. For this reason, but also for

technological reasons, we have put, for the ply thickness, a lower bound of 2 mm that

gives a minimum of 16 layers of T300/5208 carbon-epoxy; see Table 2.

The proposed approach appears to be very flexible and applicable to various prob-

lems of structural engineering. Moreover, the procedure has a high level of versatility:

more constraints could be easily added to the optimization problem, e.g., constraints

on the strength, yielding or delamination of the laminates which compose the struc-

ture, without reducing the power and the robustness of the proposed approach. This

is a substantial part of the future developments that we intend to study.

Some final remarks to end this part. The structural problem considered here,

namely the one concerning the first level of the procedure, is actually one of the oldest

structural optimum problems. In fact, the first to study a problem of this type was La-

grange, in 1770, [39]. He considered the case of a column subjected to a tip compres-

sive load; the objective was to design the lightest column able to withstand a given

load without buckling, which is just the problem that we have considered at the first

level. He gave an erroneous result, subsequently corrected by Clausen in 1851 [40].

All along the last century, several other authors considered the same or a closely simi-

lar problem. The dual of the problem originally considered by Lagrange has also been

treated: to maximize the buckling load for a column composed by a fixed amount of

matter and charged by a compressive force at its top. A rather complete bibliography

on this topic can be found in the classical book from Banichuk [41].

The problem that we have considered in this paper, however, is slightly differ-

ent from the classical ones considered since Lagrange. In fact, the constraint on the

minimum buckling load is not the only one; see (24). The geometrical constraints,

namely those in the third of (9), are particularly important. They change, of course,

the problem and its dual too. To the best knowledge of the authors, it is the first time
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that a similar problem has been formulated in the form given in this paper, and the

formulation of its dual is still an open problem.

There are at least two other reasons that render the problem considered in this

paper different from those, more classical, recalled hereon. In fact, normally the au-

thors consider the case of the optimal shape of the structure, and look for a function

defining the best form to be given to it. In our problem, the shape is known and the

dimensions are to be determined along with the number of the modules, the stiffen-

ers. In some sense, the number of modules changes the shape, but the changes are not

continuous, because the number of modules is an integer.

The second reason, is the fact that our structure is anisotropic, while normally

isotropic structures are considered. Hence, in our problem we need at the same time

to optimize geometrical and mechanical quantities (in our case, we have chosen the

polar invariants to represent the physical properties of the structure). Hence, we deal

with a problem which is at the same time mechanical and geometrical, for its design

variables.

The anisotropic nature of the problem, which in particular enters directly, though

not explicitly, in the definition of the buckling constraint, is important also for another

reason. In fact, we have already said that the first level problem is nonlinear; this is

easy to be understood, simply considering the objective function and the geometrical

constraints. About the buckling constraint, we have already recalled that it is impossi-

ble to be explicitly specified: the buckling load can be computed only by a numerical

approach. Nevertheless, it depends upon the stiffness of the structure, which in turn

depends on the mechanical and geometrical variables. It is well known, for instance,

that stiffness is a nonconvex function of the orientation of the anisotropy. So, it is

likely that the buckling load is a nonconvex function of the design variables.

A sensitivity analysis of the problems would greatly help in understanding the

role played by the different variables. Unfortunately, it cannot be done analytically,

of course, and a numerical procedure should be used. Nevertheless, to perform such

an analysis on a finite element model like the one considered by us, cfr. the second

part of this work, is a very long work, and we did not do it. An interesting strategy

should probably be the use of automatic differentiation, which, however, needs some

specific finite element codes, [42]. This is a possible subject for future investigations.

Finally, for what concerns the second level problem, it is always strongly non-

convex. To the best knowledge of the authors, its dual is not known. More generally,

in laminate design duality is an unexplored domain: no dual methods are known in

this field. In the reference book on laminated composite design and optimization,

[43], the word duality is never employed.

In addition, the solution is almost never unique, nor isolate. This is still an open

mathematical problem in laminates design. Actually, no rules are known up to day to

state if a problem like (29) has a solution and if it is unique or not. Such problems are,

in fact, constituted by a sum of optimization subproblems that are not independent

and that are, in some cases, compatible. In other words, if the number of layers, i.e., of

unknowns, is sufficiently large, a problem of this type will have at least one solution.

In this case, all the subobjectives that compose the objective function are compatible.

On the contrary, if the number of unknowns is not sufficiently large, the subobjectives

become incompatible and the global problem becomes a multiobjective one without

any mechanical meaning nor interest.

20



The minimum number of unknowns, i.e., of layers, to ensure the existence of the

solution to a given problem of the type (29) is not known; of course, it depends upon

the type of subobjectives composing the global objective function. An attempt to

give a numerical answer to such kind of questions have been proposed by the au-

thors, [44]: the general problem is stated in a slightly different manner from (29),

including the number of layers among the design variables. Then the problem is for-

mulated in a way similar to that used to solve the first level problem, by the genetic

algorithm BIANCA with variable length chromosomes; see the second part of this

work. The result is a laminate with the least number of layers satisfying the imposed

requirements. Nevertheless, this is just a numerical approach, and a general rigorous

theoretical study of the conditions for a laminate design problem like that in (29) have

a solution is still lacking.

What we have observed in all the cases that we have solved is that when the solu-

tion exists, it is not unique nor isolate. Actually, there exist some functional relations

among the solutions that allows to change solutions changing with continuity some of

the design variables. Unfortunately, it is possible, in general, to express analytically

such relations only in very elementary cases, [45], while in some other cases, very

simple too, a graphical representation of the locus of all the solutions has been found

numerically, [1].

All this points have also influenced the choice of the numerical procedure used

for solving the problem described in this paper. These aspects are considered in the

second part of this work.
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