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Abstract—Many computer graphics applications use visual
saliency information to guide their treatments such as adaptive
compression, viewpoint-selection, segmentation, etc. However, all
these applications rest on a partial estimation of visual saliency
insofar that only geometric properties of the considered 3D
mesh are taken into account leaving aside the colorimetric ones.
As humans, our visual attention is sensitive to both geometric
and colorimetric informations. Indeed, colorimetric information
modifies the eye mouvements while visualizing a multimedia
content. We propose in this paper an innovative approach for the
detection of global saliency that takes into account both geometric
and colorimetric features of a 3D mesh simulating hence the
Human Visual System (HVS). For this, we generate two multi-
scale saliency maps based on local geometric and colorimetric
patch descriptors. These saliency maps are pooled using the
Evidence Theory. We show the contribution and the benefit
of our proposed global saliency approach for two applications:
automatic optimal viewpoint selection and adaptive denoising of
3D colored meshes.

Index Terms—Global saliency, Geometry, Color, 3D colored
mesh.

I. INTRODUCTION

Visual attention represents a major feature of the Human
Visual System (HVS) that selects the significative informations
in scenes or on objects. When we look to an object, our visual
attention is focalized on particular attractive regions rather than
on non-interesting ones. These attractive regions are placed in
the center of our glance after several eye movements and con-
stitute a restreint part of the visual field that is treated in details
by our HVS in contrary to the rest. Many complex attentional
mechanisms are involved for selecting these particular regions.
We are interested in this paper only on the part of attention
related to the saliency of a region.
Visual saliency can be defined as the perceptual information
that makes some regions or vertices of a 3D mesh standing
out from their surrounding and hence attracts the glance of
the human observer. Thereby, the degree of saliency of a
region depends on the distinction of the concerned region
compared to its neighborhood. This distinction is associated to
the geometry or colors of the 3D mesh that represents features
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related only to the visual stimuli and not to the observer nor to
the task entrusted to him. Hence, the proposed Global Saliency
map is more related to the Bottom-up attention process than
to the Top-down process.

With the fast development of 3D scanners, we are able
from now to scan real objects by acquiring both geometry and
colors. The acquired 3D meshes and their computed saliency
are used in many computer graphics and computer vision
applications such as optimal viewpoint-point selection [1] [2],
adaptive mesh simplification [3], face recognition [4], etc. All
these applications rest on a partial estimation of visual saliency
insofar as only geometric properties of the considered 3D mesh
are taken into account leaving aside the colorimetric ones. Yet,
as confirmed in [5], colorimetric information plays an essential
role in directing the visual attention of human observers while
visualizing multimedia contents. This means that the degree
of saliency of a region depends not only on its geometry but
also on its colors.
The main contributions of the present paper can be resumed as
follows:1) The introduction of an innovative concept named
Global Visual Saliency of a 3D colored mesh. 2) The use
of the Dempster-Shafer Theory for combining the visual
geometric and colorimetric saliency maps. This provides the
Global Visual Saliency map of a 3D colored mesh. 3) The
description and the availability of a constructed 3D colored
mesh database used for testing the applications of the proposed
Global Saliency.

To the best of our knowledge, the concept of Visual Global
Saliency of a 3D colored mesh has never been proposed
before. We define the Global Saliency map of a 3D colored
mesh by the fusion result of its geometric and colorimetric
saliency map. This Global Saliency map, more precise than
a pure geometric or colorimetric map, due to the sensitivity
of the HVS to both geometric and colorimetric features of
a 3D content, associates a scalar reflecting the perceptual
importance of each vertex. The paper is organized as follows.
Section 2 presents the related works. Section 3 describes
the proposed approach. In section 4, we present a new 3D
colored mesh database used for the experimental tests. Section
5 presents the global saliency results of two colored meshes
from the proposed database. In Section 6, we present two
applications of our proposed approach and conclude in section
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7.
II. RELATED WORK

Visual saliency estimation of 3D meshes is a new
promising research area due to high potential applications.
Until now, few methods were proposed in the state-of-the-art
in comparison to the number of approaches computing visual
saliency of 2D images. For exemple, we would find only
one approach for the detection of colorimetric visual saliency
of 3D meshes [6]. The rest of the state-of-the-art saliency
estimation methods is dedicated to the geometry of the 3D
mesh. Lee et al. [7] compute visual saliency of a 3D mesh by
using a center-surround operator on Gaussian curvatures in a
DoG (Difference Of Gaussians) scale space. Leifman et al.
[1] define regions of interest by combining the distinctiveness
of a vertex (using Spin-Images descriptor [8]) and extremities
of the 3D mesh. Wu et al. [9] propose an approach that
considers both the local contrast (multi-scale similarities
between depths maps) and global rarity (based on a clustering
of local features of local contrast). Song et al [10] estimate
saliency in the spectral domain by analyzing the deviation
and features of the log-Laplacien spectrum. In [11], Tao et
al. compute Zernike coefficients for patches obtained after an
oversegmentation of the surface mesh. Then, after measuring
the distinctness for each patch, the saliency proper to each
patch is estimated based on its relevance to the most unsalient
patches via manifold ranking.

All the methods presented above do not take into account
the colorimetric features of the target 3D colored mesh. There-
fore, in the next section, we present approaches generating
two saliency maps (geometric and colorimetric) used in the
proposed method for the computation of global saliency.

III. GLOBAL SALIENCY OF 3D COLORED MESHES

Given a 3D object, our visual attention is placed on areas
that present interesting geometric and colorimetric features of
high degrees of saliency. To detect these regions, we compute a
global saliency map obtained from the fusion of a geometric
saliency map [2] and a RGB colorimetric saliency map [6]
proposed in our previous works. These are based on two low
level features of the HVS for the estimation of visual saliency
that are the sensitivity to high contrast [12] and to strong
discontinuities [13]. We present in this section the principal
steps of these two approaches as well as the fusion process
generating the final global saliency map.

A. Notations

In the following, we represent a 3D mesh M by a non-
oriented graph G = (V,E) where V = {v1, . . . , vN} is the set
of N vertices and E ⊂ V×V the set of edges. The set of edges
is deduced from the mesh faces that connect vertices. To each
vertex vi are associated its 3D coordinates pi = (xi, yi, zi)

T ∈
R3 that determine its position and a RGB color vector ci =
(ri, gi, bi)

T ∈ R3. The notation vi ∼ vj is used to denote two
adjacent vertices in G.

B. Geometric saliency map

It is commonly accepted that the human visual system
is sensitive to large fluctuations surfaces [13]. Thereby, we
consider that a vertex of the surface mesh is salient if it
stands out from its surrounding and if its local geometric
configuration is distinct from the one of its neighboring
vertices. For this, we define our local patches of adaptive size
that represent geometric surface descriptors.

We start by modeling the surface mesh by associating to
each vertex vi its vector representing the normal z(vi) and its
two directional vectors x(vi) and y(vi) defining the 2D tangent
plan P(vi) on vi. For this, we compute a PCA at each vertex
followed by an uniform orientation of the normal vectors [14].
In order to construct our local adaptive patches, we consider a
spherical neighborhood Sε(vi) of ray ε around each vertex vi.
The vertices vj belonging to the sphere Sε are considered
as neighbors of the target vertex vi and are projected on
the tangent plan P(vi). Hence, 2D projected vectors v

′

i are
obtained:

v
′
j = [(vj − vi).x(vi), (vj − vi).y(vi)]T (1)

It remains to precise the size of the patch. We propose
patches of dynamic sizes obtained from the distance between
the 2D coordinates of the projected vertices v

′

j . This will lead
to patches defined on each vertex of different sizes depending
on the local geometric configuration of the target vertex. The
size of the patch of the target vertex vi is defined along
the x and y axis (respectively denoted Tx(.) and Ty(.)) by:
Td(vi) = max(v′j ,v

′
k)∈P(vi)(||v

′d
j − v′dk ||22) where d is the x or

y coordinate, v′dj represents the coordinate d of the vector
v′j and ||.||2 is the Euclidean norm. The constructed patch
is then divided into a number of cells l × l. This permits to
get the index of the cell in which a vertex of the spherical
neighborhood is projected. Finally, each cell of the patch P ki
(k ∈ [1, l × l]) is filled with the absolute value of the sum of
the projections heights:

H(vi) =

 ∑
v′j∈Pk

i

||(vj − v′j)||22, ∀k

T

(2)

where H(vi) ∈ Rl×l is the vector of cumulated heights in the
cells of the patch.

Once the local descriptor is constructed, we compute the
single-scale saliency of a target vertex vi through a similarity
measure between its associated patch and the patches associ-
ated to its neighboring vertices. This similarity is then affected
to the weight of the edge (vi, vj) ∈ ε and is defined by:

w(vi, vj) = exp
[
−κ(vj) ∗ ||H(vi)−H(vj)||22
σ(vi) ∗ σ(vj) ∗ ||vi − vj||22

]
with vj ∼ vi

(3)

where κ(vj) represents the curvature of the vertex vj with
the method described in [15], ||vi − vj ||2 represents the



Euclidean distance between the vertices vi and vj and σ(vi) is
a scale parameter defined by σ(vi) = maxvk∼vi(||vi− vk||2).

Finally the single-scale saliency of the vertex vi is defined
by its mean degree:

single-scale-saliency(vi) =
(

1

|vj ∼ vi|

) ∑
vi∼vj

w(vi, vj) (4)

where |vj ∼ vi| represents the cardinality of the adjacent
neighborhood of vi and w(vi, vj) is the weight of the edge
(vi, vj).

In order to enhance the precision of our saliency measure,
we compute this latter on different scales. To do so, we vary
the ray ε of the spherical neighborhood while constructing
the local adaptive patches. This leads to three neighborhoods
of rays ε, 2ε and 3ε and therefore to three single-scale
saliency geometric maps. These are combined using their
respective entropies as weights. The multi-scale geometric
saliency degree of a target vertex vi is defined by:

Multi-scale-geometric-saliency(vi) =∑3
k=1 Single-scale-saliencyk(vi) ∗ entropyk∑3

k=1 entropyk

(5)

where k is the scale index.

C. Colorimetric saliency map

To define the colorimetric measure of saliency, the RGB
color vectors ci associated to vertices of the mesh will
replace their geometric positions pi in the construction of the
local adaptive patches process. Hence, a patch is constructed
similarly to the patches necessary for the geometric map,
however its cells Pi are filled with the mean RGB colors
of the projected vertices 1

|c′j∈Pi|
∑

c′j∈Pi

c′j defining hence a

color vector C(vi) of the cumulated projections representing
the local colorimetric patch on each vertex. We use a different
similarity equation between the colorimetric patch of the target
vertex vi and the colorimetric patches of its neighboring ver-
tices vj that is affected to the weight of the edge (vi, vj) ∈ E:

wC(vi, vj) = exp
[
− ||C(vi)− C(vj)||22
σC(vi) ∗ σC(vj) ∗ l2

]
(6)

where σC(vi) = max
vk∼vi

(||ci−ck||2) and l is the cells number
of the patch.
We define in the same previous manner the single-scale
colorimetric saliency of a vertex vi at the scale k by its mean
degree:

Single-scale-colorimetric-saliencyk(vi) =

1

|vj ∼ vi|
∑
vi∼vj

wC(vi, vj)
(7)

and the multi-scale colorimetric saliency by:

Multi-scale-colorimetric-saliency(vi) =∑3
k=1 Single-scale-colorimetric-saliencyk(vi) ∗ entropyk∑3

k=1 entropyk

(8)

For more details about these visual saliency estimation
approaches, please refer to [6] and [2].

D. Fusion

1) Preliminary: Having the geometric and the RGB col-
orimetric saliency maps of a 3D colored mesh, the aim is
to fuse them to obtain a global saliency map. We use for
this purpose a part of the Dempster-Shafer Theory (DST)
[16] to combine the two saliency maps considered as two
independent sources. Dempster-Shafer Theory is based on
the theory of probabilities that considers an upper and lower
bounds. In the DST model, a discernment framerwork denoted
as Θ representing all possible hypotheses of a problem has to
be defined. All subsets of the Θ are included into a power
set labelled as 2Θ. Then a mass function m is defined and
represents the belief allowed to the different states of the
system. This function is defined from 2Ω in [0, 1] as:∑

A⊆Ω

m(A) = 1 and m(∅) = 0 (9)

where m(A) represents a belief mass to A. Subsets having
non-zero m(A) are called focal elements.

Given M mass functions m1,m2, ...,mM representing the
information provided by M independent sources, these can be
combined according to Demptser’s rule:

(m1 ⊕ ...⊕mM )(A) =
1

1−K
∑

A∩...∩AM=A

M∏
i=1

mi(Ai) (10)

where Ai ∈ 2Ω, 1 ≤ i ≤ M and K represents the conflict
factor defined as:

K =
∑

A∩...∩AM=∅

M∏
i=1

mi(Ai) (11)

K is also known as the coefficient of discrepancy between
the sources. The higher the value of K, the more incoherent
the combination is.

One of the interesting implicit features of the DST is that the
contribution of every subset is considered as single hypothesis.
This simulates the reasoning logic of humans. Also, the DST
fusion is characterized by its flexibility and its unsupervised
aspect.

2) Problem formulation: In our case the framework dis-
cernment Θ is represented by the set of vertices V of the
mesh. We define a subset of all the hypotheses as a fusion
element. Hence, each vertex of the surface mesh is a single
fusion element. We denote ε the set of all fusion elements
where ε = {v1, ..., vN} where N is the number of vertices of



the mesh.
As the saliency maps, we have obtained, associate a scalar
representing the degree of saliency to each vertex, this degree
can be considered as a probability of being salient for each
element. Therefore, we consider the two saliency maps Si
(geometric and colorimetric) as two different sources in our
DST model and use them to define the mass function mi as:
mi(e) = Si(e), e ∈ ε where e represents a fusion element
and 1 ≤ i ≤ 2.

Finally, a probability value representing the global saliency
degree of an element fusion is obtained by Eq. 10 with K
fixed to 0.01.

IV. GREYC 3D COLORED MESH DATABASE

There is no available colored 3D mesh database in the litera-
ture that one may use to evaluate saliency detection algorithms
that take into account colorimetric features. Therefore, we have
constructed a colored mesh database using the NextEngine
3D color laser scanner. This latter is provided with a rotating
plate and permits to acquire both geometric and colorimetric
features of the 3D object. 15 object of different colors, textures
and geometries were scanned leading to a reference corpus of
3D colored meshes. In addition, the database was enriched
by applying several distorsions to the reference 3D colored
meshes. These distorted meshes are useful to evaluate the
robustness and stability of a proposed approach detecting
saliency. All the 3D meshes used in this paper belong to the
Greyc 3D colored mesh database. For more details about the
scanned objects, the process of acquisition and the used dis-
torsions, please refer to [17]. The database can be downloaded
from https://nouri.users.greyc.fr/ColoredMeshDatabase.html .

V. GLOBAL SALIENCY RESULTS

A. Global saliency based on the RGB color space

Figure 1 presents a comparison between the geometric
saliency map, the RGB colorimetric saliency map and the
global saliency map of two 3D colored meshes. We can
easily notice that there is a real difference between the
three saliency maps. For the Dinosaur 3D mesh, the RGB
colorimetric saliency map highlights details that haven’t been
detected in the geometric saliency map and vice versa (like the
degraded colors on the back of the dinosaur or its forehead).
Otherwise, the global saliency map combines the geometric
and colorimetric features to better highlight the salient regions.
This is visible at the level of the forehead which was judged
as moderately salient on the geometric saliency map and
as salient on the colorimetric map. However, on the global
saliency map, the forehead is judged very salient because of
the combination of the two saliencies. The same remarks can
be made for the sides above the eyes, the long neck and the
paw of the dinosaur.

For the Horse 3D mesh, this one contains many colors
and contrasts. Hence, the colorimetric saliency map detects
the majority of the salient regions. The Global Saliency map
completes the latter at the level of regions that have strong

geometric fluctuations by adding salient regions highlighted
on the geometric saliency map. This is visible at the level of
the knees, the nose and the mouth of the mesh Horse.

We don’t provide any comparison with state-of-the-art
saliency methods insofar that there is currently no other view-
independent approach that estimates the colorimetric or global
saliency of a 3D colored mesh.

Evidently, an objective comparison between the obtained
saliency results and a ground truth obtained from an eye
tracker process will be more relevant. However, no ground
truth associated to the colorimetric saliency of 3D colored
meshes exists. This constitutes one aspect of our future work.
Therefore, to complete our analysis of the proposed approach,
we propose two applications of our Global Saliency model
that attest its precision and relevance.

(a) Original 3D
colored mesh

(b) Geometric
saliency map

(c) Colorimetric
RGB saliency
map

(d) Global
saliency map

(e) Original 3D
colored mesh

(f) Geometric
saliency map

(g) Colorimetric
RGB saliency map

(h) Global saliency
map

(i) Colormap

Fig. 1. Comparison between the global saliency map, the geometric saliency
map and the RGB colorimetric saliency map.

B. Global saliency based on different colors spaces

It’s not trivial to choose the adequate color space to use
while treating colors, mainly when we are dealing with a
specific application. We present in figure 2 the global saliency
results where the associated colorimetric saliency maps are
computed in the following color spaces: RGB, L*a*b, YUV,
YCbCr, HSV and XYZ. We can notice that the global saliency
results are somehow similar. There is no considerable differ-
ence between the obtained global saliency maps. Therefore,
for complexity computation, we choose to compute visual
colorimetric saliency in the RGB colorspace.

VI. APPLICATIONS OF THE GLOBAL VISUAL SALIENCY

For optimization purposes, the technologic advances relative
to applications that need interactions with humans and partic-
ularly with their vision are increasingly taken into account



(a) Global saliency
based RGB saliency

(b) Global saliency
based YUV saliency

(c) Global saliency
based L*a*b saliency

(d) Global saliency
based YCbCr
saliency

(e) Global saliency
based XYZ
saliency

Fig. 2. Comparison between the global saliency maps where the colorimetric
saliency maps are computed in different colors spaces.

the limitations of the HVS. Selective visual attention repre-
sents an important mechanism in our perception. Its permits
an important time saving while visualizing the surrounding
environnement with the selection of potentially interesting
informations while ignoring the rest. Therefore, saliency maps
that can predict the regions on which the visual attention of
the human observers will be focalized are the key for many
applications. In this section, we present two applications that
integrate our proposed global saliency map. These applications
respond to the automatic optimal viewpoint selection and to
the adaptive denoising of 3D colored meshes problems.

A. Optimal viewpoint selection of 3D colored meshes

The goal of the optimal viewpoint selection is to automati-
cally select the most interesting viewpoint showing the max-
imum informations to the human observer. Few approaches
have been proposed in the state-of-the-art that select the best
viewpoint directly from the 3D structure [7] [1] [2] (this takes
into account the depth and relief of the 3D model in contrary
to 2D projections [18]). However all proposed approaches
use only geometric saliency for the optimal selection of
the viewpoint. We propose in this paper an extension of
our previous viewpoint selecting approach [2] to 3D colored
meshes. The principal criteria of this approach is to distinguish
the viewpoint having the maximal global visual saliency. To
do so, we begin by computing the global saliency map of a 3D
mesh M and select the viewpoint maximizing the global visual
saliency along the x axis by sampling uniformly a sphere
encompassing the 3D mesh. Let vp the viewpoint on the x
axis and surface(vp) the set of vertices visibles from vp. The
saliency of this surface is defined by Saliencyx−axis(vp) =∑
v∈surface(vp)Global − Saliency −map(v).

Hence, the optimal viewpoint along the x axis is defined by
vpx = max(saliencyx−axis) where vpi represents the dif-
ferent viewpoints along the x axis. From vpx, we proceed

similarly for selecting the optimal view point vpy along the
y axis. Once we have obtained vpy , we search for the final
optimal viewpoint using a gradient-descent along four axis at
the same time: x,xy,(y−45◦) and (y+45◦). Figure 3 presents
a comparison between optimal viewpoints selected on a basis
of a geometric saliency map and optimal viewpoints guided by
a global saliency map. We can notice that optimal viewpoints
selected with the use of our proposed global saliency map are
more informative than the original viewpoints. These optimal
viewpoints respond well to the criterion of the maximization
of saliency and correspond to the most ”natural” or likely
views. However, the viewpoints selected with the use of the
geometric saliency map don’t expose the interesting features of
the surface mesh. These generated viewpoints based-geometric
saliency aren’t natural for human observers.

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Fig. 3. Comparison between optimal viewpoints based-geometric saliency
and optimal viewpoints based-global saliency. Images (a) and (f) refer to the
original viewpoints of the two colored 3D meshes. Images (b) and (g) present
their geometric saliency maps and images (c) and (h) their global saliency
maps. Images (d) and (i) present the viewpoints based on geometric-based
saliency of the two colored meshes. The viewpoints based on global saliency
are presented in images (e) and (j).

B. Adaptive smoothing and denoising

In the field of mesh processing, smoothing and denoising
play a significative role for noise reduction. Unfortunately, this
process is usually accompanied with a loss of details that alter



(a) (b) NMSE=0.06 (c) NMSE=0.032

(d) NMSE=0.02

Fig. 4. Comparison between the results of the smoothing proposed in [19]
and our adaptative smoothing based global saliency : (a) Noised Horse 3D
colored mesh, (b) the denoising result of [19] and (c) our denoising result.

the visual rendering of the colored mesh. We propose in this
section a modification of the diffusion process proposed in
[19] operating an isotropic smoothing defined as:{

f (0) = f

f (t+1)(u) =
∑

v∼u w(u,v)f(t)(v)∑
v∼u w(u,v)

∀u ∈ V
(12)

where f is a function associating a set of RGB color vectors
ci to vertices of the mesh M f : G→ c ⊂ R3 and w(u, v) is
the edge weight between the two vertices u and v.

In order to preserve details and salient features of the surface
mesh while the smoothing process, we propose to modify the
diffusion process of [19] with a global saliency weight as:

{
f (0) = f0

f (t+1)(u) =
∑

v∼u w(u,v)f(t)(v)GS(u)GS(v)∑
v∼u w(u,v)

∀u ∈ V
(13)

where GS(u), GS(v) represent the global saliency of the
vertices u and v. w(u, v) is a colorimetric similarity defined
as w(u, v) = exp

(
||c(v)−c(u)||22
σc(u)σc(v)

)
where σc(v) = max

v∼u
(||cu − cv||2). Figure 4 presents the

results of denoising of a colored mesh affected by high
Gaussian noise on its colors. We can notice that the result of
denoising associated to our approach is of better visual quality
compared to the results of [19]. The integration of global
saliency has permitted to preserve the colorimetric details (like
the contrast around the blue belt figure and the draws on the
casing of horse). The low NMSE (Normalized Mean Square
Error) confirms the good result associated to our approach in
comparison to the approach of [19].

VII. CONCLUSION

We have proposed an innovant approach for the estimation
of global saliency that takes into account both geometric and

colorimetric features of a 3D colored mesh. This is done
by combining two multi-scale saliency maps: geometric and
RGB colorimetric maps. The global saliency map generated
by our approach detects more salient regions in comparison
to a purely geometric or colorimetric map since it takes
into account both geometric and colorimetric features of the
considered colored mesh. We have evaluated the precision and
the contribution of our approach in two saliency-based applica-
tions and the results have showed the benefit of our proposed
global saliency map. Future works will aim at constructing
a ground truth saliency for an objective comparison of the
proposed approach.
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[17] A. Nouri, C. Charrier, and O. Lézoray, “Greyc colored mesh database,”
Greyc Laboratory, https://tel.archives-ouvertes.fr/GREYC-IMAGE/hal-
01441721v1, Tech. Rep., 2017.

[18] I. Howard, in Seeing in depth. University of Toronto Press, 2002.
[19] A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regu-

larization on weighted graphs: a framework for image and manifold
processing,” IEEE transactions on Image Processing, vol. 17, no. 7, pp.
1047–1060, 2008.


