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Abstract

We consider a new approach for the numerical approximation of stochastic
differential equations driven by white noise. The proposed method shares some
features with the stochastic collocation techniques and, in particular, it takes ad-
vantage of the assumption of smoothness of the functional to be approximated,
to achieve fast convergence. The solution to the stochastic differential equa-
tion is represented by means of Lagrange polynomials. The coefficients of the
polynomial basis are functions of time and they can be computed by solving a
system of deterministic ordinary differential equations. Numerical examples are
presented to illustrate the accuracy and the efficiency of the proposed method.

Keywords:
Stochastic differential equations, Numerical approximation, Spectral
expansion, Stochastic collocation.

1. Introduction

Stochastic differential equations (SDE) driven by a white noise are present
in a wide variety of areas. Historically, they were first used to model the motion
of Brownian particles at a microscopic level and a link between microscopic and
macroscopic quantities could be made by Einstein and Langevin at the beginning
of the 20th century. Later, the same ideas were used to model various physical
phenomena. For example, non-Newtonian fluid models have been designed by
considering the action of white noise to account for the effect of the thermal
agitation on polymer chains [18]. Then, starting in the mid seventies, there has
been an upsurge of interest in the study of SDE by the mathematical finance
community after the work of Black and Scholes [3]. Another important aspect
of stochastic problems lies in the study of the propagation of white noise into
a physical system described by partial differential equations [13, 28]. All these
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topics have in common a need for fast and accurate numerical methods to solve
their underlying SDE.

One of the most common scheme of approximation is the Euler-Maruyama
method and its closest cousin, the Milstein scheme [15]. Both are limited to a
weak order of convergence (in time) equal to 1. More important is the strong
order of convergence, which is also equal to 1 for Milsten but drops to 1/2
for Euler-Maruyama. Unfortunately, designing general numerical schemes with
higher order of convergence is not quite as easy as it is for its deterministic
Runge-Kutta counterpart [4] and different strategies have to be thought of.
One of them, called “exact sampling” consists in generating realizations of the
path for the SDE [2, 1]. This method is based on an acceptance/rejection sam-
pling algorithm. It is “exact” in the sense that the marginal distribution of
the simulated values coincides with the marginal distribution of the continuous-
time process at grid points. Nevertheless one should bear in mind that all the
methods quoted above are plagued with a slow rate of convergence typical to
Monte-Carlo simulations (proportional to 1/ VK , where K is the number of
realizations of the sample paths). Although antithetic sampling or control vari-
able techniques may be used to improve the convergence, such control variable
approaches usually remain an ad hoc art [14].

In order to remedy this shortcoming, there has recently been increasing in-
terest in considering the stochastic collocation method, or its modal counterpart
the Polynomial Chaos expansion, to compute approximate solutions of SDEs.
Since the work of Wiener in 1938 [21] and the seminal book of Ghanem and
Spanos in the 90’s [8], Polynomial Chaos (PC) based on orthonormal polyno-
mials have been very successful at solving a wide variety of random problems
involving random variables. Later, its analogous based on Lagrange polynomi-
als was popularized by the paper of Hesthaven and Xiu [25]. Quickly these two
techniques became the methods of choices for stochastic problems involving a
limited number of random variables. The interested reader might refer to the
book of Xiu [24] for an overview of the possibilities offered by the PC and the
stochastic collocation method. Building on the success of these polynomial-
based approximations, numerical experiments were carried out in an attempt to
apply the same ideas in the context of SDE driven by white noise. The least we
can say is that the transition from random variables to stochastic process is not
just a simple adaptation to existing techniques. The two main reasons are the
infinite dimensional character of random process, leading to the so-called “curse
of dimensionality” and the imperative need that the marginal distribution of the
continuous-time process be properly taken into account. When this approach is
considered, the Brownian motion is represented as a truncated Karhunen-Loeve
series expansion and the stochastic differential equation reduces to a random
differential equation [13, 28] involving a finite number of independent random
variables. It has been shown by Wong and Zakai [22] that such approxima-
tion converges to the Stratanovich SDE and therefore, It6 SDE should be first
converted into its corresponding Stratanovich equation. However, numerical
experiments have shown that such a procedure failed to handle long-time sim-
ulations and treating non-linearities may be a problem. Discussion of these



issues and possible remedies may be found in the recent book of Zhang and
Karniadakis [27].

Here, we propose a radically new approach that shares some features with
the stochastic collocation method (SCM). In its simplest form, the SCM was
successful in representing a random variable (r.v.) Y of unknown distribution
(not necessary Gaussian) as a function of a r.v. X of known distributions
(Gaussian, uniform, exponential...) under the form

Y:Zﬁwwm, (1)

where {L;(z)}1<i<n form a Lagrange polynomial basis and {y; }1<;<, are n real
numbers. If a functional relationship of the form Y = f(X) exists, then the
coefficients y; are simply f(z;) and equation (1) is the projection of f onto
a Lagrange polynomial basis. If f is sufficiently regular and the collocations
points {z; }1<i<n are carefully chosen, one can observe spectral convergence to
the exact solution [10, 11]. In this paper, following the same idea, we seek to
express an unknown process (Y3);e[0,r] (not necessary Gaussian) as a function
of a known process (G¢)ieo,r] (Wiener, Ornstein-Uhlenbeck...) under the form

Y=Y ui(t)Li(Gy), for te[0,T],
i=1

where {L;(x) }1<i<n still form a Lagrange polynomial basis but now, {y;(t) }1<i<n
are n deterministic functions of time. Similarly to the SCM, macroscopic quan-
tities (mean, variance, autocorrelation function...) can easily be computed from
the coeflicients of such representation as long as the probability density function
of Gy is known. In doing so, there is no need to discretize the process under
the form of a finite number of independent random variables and the curse of
dimensionality is no longer a problem. Another benefit of this approach is that
it does not require a Monte-Carlo simulation to compute macroscopic quanti-
ties. We will use such representation for the numerical solution to SDE and
the coeflicients y;(t) will be shown to be the solution of a system of ordinary
differential equations. In this paper, we assume that (G¢)icjo,1) is a Gaussian
process of the form

@:AMMM, @)

where (Wy)sepo,r) is @ Wiener process and k : [0,7] — R is a real function
computed in tandem with y;(t).

This paper is organized as follows. In section 2, we describe the basic ideas of
the stochastic collocation method when applied to random variables problems.
In an effort to make the paper self-contained, we also restate some classical
results of polynomial approximation theory and quadrature rules. Then, we
explain how the stochastic collocation method can be adapted in the context of
random processes. Section 3 describes the type of SDEs addressed in this paper.



Based on It6’s lemma, in section 4 we derive an ordinary differential equation
for the functions y;(t). Section 5 offers simple worked out examples when the
coefficients y;(t) and the function k(t) can be computed explicitly. We then
move on to more complex numerical examples, followed by some conclusions.

2. The stochastic collocation method (SCM)

2.1. Polynomial approximation and quadrature rules

The two main ingredients of the SCM (interpolating polynomials and quadra-
ture rule) are borrowed from the deterministic community and we start to recall
some of their main features. Let P, denote the linear space of polynomials of
degree at most n. Given (n + 1) distinct points xg, z1, ..., 2, and (n + 1) corre-
sponding values o, y1, --., Yn, there exists a unique polynomial @) € P, such that
Q(x;) = y;. Lagrange provides an elegant way of constructing such polynomials
under the form

where

Lie) =[] ==, i=0,.n (3)

=0 Ty — Xy
J#i
form a polynomial basis of degree n.
Let f € C"*1(I) such that f(x;) = y; and I is the smallest interval con-
taining all the points x;. Following standard results in numerical analysis, the
interpolating error satisfies

(n+1) n+l
Ve el, f(z) — Qx) = W H(x — ),

where £, € I. From this equality, we see that the quality of the approximation
not only depends on the regularity of f but also on the choice of the points x;.
This can be made more precise using the following theorem, see [10, 11].

Theorem 2.1. Assume that f is a continuous function on the interval I =
[—1,1] and Q is a n th-order interpolating polynomial of f based on grid points
x;, then

If = Qllo <X+ M) If — Q"o
where Q* is the best n th-order interpolating polynomial of f and

A =
2, (Z' )

18 called the Lebesgue constant.



This theorem shows that for a continuous function, the Lebesgue constant,
and thus the quality of the approximation, only depends on the choice of the
points x;. Unfortunately, designing optimal set of points is not a trivial task
and for numerical simulations, one is often led to choose points that correspond
to quadrature rules since they usually exhibit good approximating properties.
We recall that a quadrature rule approximates an integral as a weighted sum as

follows
n

[ F@eris =3 wif @), (4)
I i=0

where w; are the quadrature weight and x; are the quadrature points. The
positive function p typically corresponds to a probability density of support
—z%/2

I. For example, if p(x) = \/276 and I = R, then the corresponding
™

cubature rule is called Gauss-Hermite quadrature [9]. It can be shown that
Gauss quadrature rules (4) are exact when f is a polynomial of degree less
or equal to (2n — 1). For the construction of general cubature rules, one can
consult [7, 5, 6, 19], for example. Equipped with those two ingredients, we can
now move on to the stochastic collocation method.

2.2. The SCM applied to random variables

Denote by (2, F,P) the probability space, where as usual € is the set of
all possible outcomes, F is a o-algebra over €2, and P is a function F — [0, 1]
that gives a probability measure on F. Consider an R-valued random variable
X of support I C R that describes input uncertainties. We assume that the
probability law of X is known and that it is defined by a probability density
function p(z), x € I. Let Y = f(X) be a random model described by a function
f I — R. The beauty of the SCM resides in the interpolation points that
are chosen to coincide with the quadrature points of (4). Given the set of
collocation points {z;}o<i<n, the function f can be evaluated at those points
and approximated as

fla) =Y fli)Li(x).
=0

The quality of the approximation solely depends on the regularity of f and the
choice of the collocation points. It is independent of the nature of the input
argument x, should it be a real variable, a random variable or a stochastic
process. In the case of random variables, we can write the approximation

n

Y = f(X) =) fla)Li(X). (5)

=0

Macroscopic quantities such as the mean or the variance can be computed di-
rectly from (5) without having to resort to Monte-Carlo simulations. In addition,
using the property of Lagrange polynomials L;(z;) = d;; (J;; is the Kronecker



delta) together with (4) and (5), it is easy to show that the formulas for the
mean and the variance simplify to

E(Y) = Y wif(@:) (©

and

var(Y) ~ 3 wif(zi)® —E(Y)? (7)
1=0

In the next subsection, we will see how these ideas can be applied in a similar
way in the context of stochastic processes.

2.8. The SCM applied to stochastic processes

Let (G¢)efo,7) be a Gaussian stochastic process defined on a filtered proba-
bility space (2, F,P, (F¢)ie[o,r1). We further assume that for all fixed ¢ € [0, T,
Gy is a zero mean r.v. with variance o2(¢). Let f(t,z) : [0,7] x R — R be a
real function and (Y3)e[0,7] be a stochastic process (not necessarily Gaussian)
defined by the functional relationship

Y: = f(t,Gy), t €[0,T].

Applying the same reasoning as before, for any fixed instant of time ¢ € [0, 77,
Y; can be approximated as

Yo = f(t.G) =) filt)Li(Gy), (8)
=0

where the Lagrange polynomials are defined by (3) together with (n+1) distinct
points {z; }o<i<n- It can be easily seen that the coefficients f;(t) are obtained
by the evaluation of f(t,z;). The probability density function of G; writes

1 22
pe,(t, @) = Voo &P <—2U(t)2>

and therefore the computation of the mean and the variance of Y; will require
quadrature rules for integrals of the form

/ 9(t,x)pg, (t, z)dz,
R

for some real functions g : [0,7] x R — R. Denoting by (w;,i)o<i<n the
Gauss-Hermite quadrature points and weights associated to a standard normal
distribution, then a simple change of variable reveals that (w;, o (t)z;)o<i<n are
the points and weights associated to the density pg, (t,z). The most natural



way to transcribe the SCM to random process would then be to consider time-
dependent Lagrange polynomials of the form

n

H _zmo®r o
i (t)x; — o(t)x;’

;él

By so doing, we would obtain formulas similar to (6)-(7) for the mean and

the variance of Y; i.e.
t) =~ Z%‘f(ﬁ o(t)zi),
i=0

and

var(Y:) Zwl ft,o(t)x;) —IE(Yt)Q.

Although this choice of collocation point seems the most natural one, nu-
merical results for the resolution of SDE using such representation were disap-
pointing in terms of convergence and stability. This is because we need a set of
interpolating points that are also capable of accurately representing derivatives
of a function and not only the function itself. Accordingly, in this paper, we
have used the Chebyshev nodes defined on the interval [a, b] by

a+b+bfacos 2141 0 )
P = ™ 1= s n
T 2 2(n+1)" ) o

to construct the Lagrange basis. Such basis offers good convergence properties
since this set of points gives a near optimal Lebesgue constant [20]. However,
the formulas for the mean and the variance of Y; do not simplify and we give
their new expressions in the sequel.

Let (@;, Z;)o<i<m denote cubature points and nodes for some general quadra-
ture rule, for any fixed ¢ € [0, 7]

/ gt x)d ~ Y " @ig(t, 7). (10)
R i=0
Then, assuming an approximation of Y; under the form (8), we have
n
E(Y:) = / (Z fk(t)Lk(ﬂf)> pa, (t, x)dz,
R \j—

> @il Li(@)pe, (t,T), (11)

i=0 k=0

E(Y?)

12



and similarly

var(Y;) = /}R<ka )Ly (z >pct(t,x)dx—JE(yt>2)

k=0

m

2
var(Yy) =~ sz <Z fe(®) L (T ) pa, (t,T;) — E(Y:)2. (12)

For stochastic processes, the computation of the autocorrelation function
E(Y;Ys), (t,s) € [0,T]? is also of particular importance. This requires the
knowledge of the joint density of the vector (G, Gs) for t # s. It is given in the
following lemma :

Lemma 2.2. Let (Gt)iepo,1) be a centered Gaussian process under the form (2).
For fized t, s into [0, T] with s > t, the vector (G, Gs) is a centered Gaussian vec-
, , o(t)? 0(02) 2 /t 2
tor of covariance matriz I'(t,s) = , where o(t)* = k*(u)du.
f o) = (2 010 @y = [ #
Furthermore, the joint density of the vector (G, Gs) takes the form

~1
1 ——————(0(s)%2?+o (1) (v ~22v))
2det(T(t, 5))

P(G.,a.)(t s, 2, y) = m ;
with det(T'(t,5)) = o (t)?(0(s)? — o(t)?).

Proof 2.3. Let (G¢)cpo,1] be the process given by (2). For s >t, we have
¢
)6 (a2 Do
Gs 1 1) \Gs—Gy / () AW,

t
/ k(u)dW,
The vector Og is a centered Gaussian vector, since its component
k(u)dW,

t
, . , G\ .
are independent centered Gaussian random variables. Therefore (Gt> s a cen-
S

tered Gaussian vector as a linear transformation of a centered Gaussian vector.
Using Ito isometry we have

var(Gy) = <</k dW)) /k )2du = o(1)*.

For s > t, using the independence of Gy and Gs—Gy and the fact that B(G,) =
we obtain

E(G:Gs) = E(Gi(Gs — Gy) + E(GY) = E(G}) = o(t)?,



which gives the components of the covariance matriz. The expression of the
joint density arises directly from this result.

Using the approximation (8) and the quadrature rule (10), for any fixed s
and t into [0, 7], and assuming s > t, we have

B = [ (3 AL ) (3 A1) | e (5., p)dndy
R? \r=o 1=0

E(Y,Y) =) Y 3> @i fult) fils) Le(@) Li(@; v, c. (8 5. 7, T5) - (13)

i=0 j=0 k=0 =0

In the numerical section, means, variances and autocorrelation functions of
considered processes will be evaluated with formulas (11),(12), and (13).

3. Itd stochastic differential equation

In this paper, we are interested in the numerical solution to SDEs involving
a random white noise term dWW; that write under the standard form

{ dX; = a(t,Xt)dt + b(t,Xt)th, t>0 (14)

Xi—0 = Xo ’

where, as usual, (W;).e[o,r) denotes Brownian motion on a filtered probability
space (9, F, P, (F¢)iefo,17), Xo is Fo-measurable and a(t,z) : [0,7] xR — R and
b(t,x) : [0,T] x R — R are two deterministic functions. Equation (14) should
be interpreted as its equivalent integral form
t t
X, = Xo + / a(s, Xo)ds + [ bls, X.)d W,
0 0

where the first integral on the right-hand side is a Riemann integral and the sec-
ond integral is considered as an It6 integral, see [17]. We assume that standard
conditions are satisfied to ensure a unique strong solution to equation (14) i.e.

e The initial condition satisfies E(X3) < oo and is independent of (W;)ejo,7]
e Forallt € [0,7] and z,y € R, a(t,x) and b(t, z) are continuous

e Forallt € [0,T] and z,y € R, a(t, z) and b(¢, z) satisfy Lipschitz condition
with respect to the second variable

la(t, ) — a(t,y)| + [b(t, z) = b(t,y)| < K |z —y|

In the numerical section, we will consider SDE of the form (14) that satisfy
the above conditions.



4. Description of the proposed method

We now seek an approximate solution to (14) under the form
Xo=f(t,Ge) =Y _ fi(t)Li(Gy), (15)
=0

where {L;(z)}o<i<n are the Lagrange polynomials defined by (3) and f is some
(unknown) smooth function. (Gy)sepo,r] is a Gaussian process that we assume
to be of the form

Gtz/o k(s)dW, (16)

where & : [0,T] — R is a continuous real function such that k(0) # 0. The value
of k£(0) is unimportant and we take arbitrary k(0) = 1. In case k(0) # 1, we use
the ratio k(s)/k(0) to define the stochastic process Gy in (16) instead of k(s).
Such representation covers a large variety of Gaussian processes: for exam-
ple, the Wiener process for k(s) = 1, the Ornstein-Uhlenbeck process for k(s) =

e’ with 6 a real parameter, the Brownian bridge process for k(s) =

a—s
(0 < s < ) with « a real positive parameter...
Using It6 isometry, the standard deviation o(t) of Gy can be shown to be

o(t) = /O k(s)2ds. (17)

The unknown of the problem are the (n+1) coefficients f;(t) of equation (15)
together with the function k(s) of equation (16). Once those quantities have
been computed, the zero mean Gaussian process (G't)se[o,7) is fully specified, and
the process (X¢):eo, 1) is also completely represented by its approximation (15).
It is then possible to compute macroscopic quantities with equations (11),(12)
and (13). The following theorem specifies the expression of f;(t) and k(t).

Theorem 4.1. Let consider the Ito stochastic differential equation (14) and let
assume that its exact solution can be expressed as an explicit function f(t,Gy)
with (Gt)sepo,1) @ Gaussian process defined by (16) and f : [0, T| xR — R a func-
tion whose second oder derivatives are continuous. Then f satisfies following
system of partial differential equations for all (t,x) in [0,T] x R :

At = att, 1,2)) - 5 2D hi (1)
(19
oL (1, 0)k(6) = (4, 7(0,2)

Proof 4.2. f being assumed to have second oder derivatives continuous, Ité
lemma can be applied to obtain

of of 192§

10



In addition, from equation (16), we have
dGy = k(t)dW,

and
dGdGy = k(t)Qthth = k(t)th

Replacing those expressions into (19), we get

_ (91
dXt — (&f(t,Gt) +

k(t)? 0% f of
5 (t Gt)) dt + k(1) 5 (1, G)d W

Identifying this equation with (14) after substituting X; by f(t, Gy), the following
functional relationship should hold for all (t,z) € [0,T] x R :

a(t, f(t,x)) = %(t,x) + k(;) %(tw)
(20)
bt £ (0,2) = k(D) 02 (1)

Differentiating the second equation in (20) with respect to x and replacing k(t)g (t,z)
x
by b(t, f(t,x)), we have

ob(t, f(t,x))
or

And replacing anew the above second order derivative into the first equation of
the system (20), we obtain the equivalent system (18).

x b(t, f(t,x)) = k(t)Q%(tx).

We now seek an approximate solution to the system (18) together with
given initial conditions that will be specified a bit further in the sequel. The
approximate solution is assumed to take the form

n

f(t,x) = fi(t)Li(x) (21)

=0

and the expression of f;(t) = f(t, z;) is obtained as the solution to an ordinary
differential equation, as stated in the following theorem.

Theorem 4.3. Assume that an approzimation of f writes under the form (21).
Then the coefficients f;(t) with i = 0,..,n satisfy the following system of decou-
pled ordinary differential equations

710 = 2D 1) % bt £i() + alt, £i(1))

fi(0) = £(0, z)

11



We obtain the initial conditions f(0,z;) by solving the following differential
equation :

D 0.2) = b0, 0.2))
2 (23)
f(0,0) = Xo

. of
: a—x(t,x) # 0, then the

Furthermore, assuming that for all (t,x) in [0,T] x R
function k(t) of equation (16) is given by

b(t. 3 fit)Lila)
k(t) — b(tvf(tvx)) ~ < =0 > (24)

o (1, 3 Fi(OL)
X i=0

Proof 4.4. Following the standard collocation method, we replace the approzi-
mation of f (21) into equation (18)

n

i=0
n n
R UEER (5 oICRE)
i=0 i=0
We then impose the equations to be satisfied at collocations points x; and use
the property of Lagrange polynomial L;(x;) = &;; to end up with :

FL(8) = alt, fi6)) = 5 5o (6 £:(0) % bt £(1)

S ()L (2 25
b(t,i;)fz(t)Ll( )) (25)
;)fi(t)L;(w)

The differential equation for f;(t) should be provided with initial conditions
1i(0) = f(0,2;). The initial conditions to the SDE (14) cannot be directly
used since it only provides Xo = f(0,0). However, the value of f(0,x;) can
be obtained by considering the second equation of the system (20) and setting
t = 0. Since k(0) = 1, this leads to the differential equation (23) that can be
solved to get the value of f(0,x;) for i =0,.,n.

k(t) =

Remark 4.5. The second equation of (18) gives an a-posteriori criterion to
check whether the hypothesis (16) is valid. Indeed, if
_b(t f(t )
bt = g

%(tv :C)

s a function of x, then the considered SDE has a solution that cannot be ez-
pressed as on explicit function of Gy defined by (16).

12

Zfil(t)Li(x) =a <t7Zfi(t)Li(33)> - %% (@Zfi(t)Li(%")) xb (@Zfi(ﬂ%(@)



5. Worked out examples

Before moving on to more complex numerical examples, we apply the pro-
posed method to some classical SDE for which explicit calculations can be per-
formed by hand.

5.1. The geometric Brownian motion
As a first example, we consider the geometric Brownian motion process which
satisfies the following SDE :

Xi=o = Xo ’

where p and p are some real parameters. An analytic solutions can be found
for this classical SDE and it writes, for t > 0 :

2
X; = Xpexp <<u — /)2) t+ th> . (27)
The real functions a(t, ) and b(t, z) are define on Rt x R by
a(t,z) = ux
b(t,z) = px
The differential equation (23) to be solved for the initial conditions of (22) is

Y 0,.2) = ps(0,2)

£(0,0) = Xo

Its solution is f(0,2) = Xoexp (pzr) and therefore, the initial conditions of the
differential equation for the coefficients f;(t) will be

fi(0) = f(0,zi) = Xo exp(pi).
Ob(t, x)

Since = p, the differential equation for f;(¢) with ¢ = 0,..,n simplifies

to
2

0 = (-5 ) £
fi(0) = Xo exp (pz:)

2
We now have all the elements available to compute the function k(¢) that will
specify the process (Gt)icjo, 7). Replacing f(t) by its expression in the second
equation of (25), we get after simplifications

2
and its solution is f;(t) = Xgexp(pz;) exp ((u - p)t).

n

p>° filOLix)  p 3o explpri)Li(a)
K(t) = = = .
> AL 3 explpr) Lifa)

13



At this point, this fraction cannot be further simplified. However, we can
recognize the projection of the real function x — exp(pz) onto a Lagrange basis
at the numerator and the projection of the derivative of the same function at
the denominator. Therefore, we have

K(t) p 2, explpri)Li(r) _ pexp(pr) _ pexp(px)

= (ep(pn)) ~ pexplpn)

?

exp(pxi) L ()
=0

As a conclusion, the expression of the process (G;) simplifies to

t t
e :/ k(s)dW, :/ AW, = W,
0 0

which is nothing other than a Wiener process. Therefore, an approximate solu-
tion to (26) can write

2 n
X, = Xooxp (= 5)t) 3 explpe) L(1i), (28)

Comparing the exact solution (27) with the approximate one (28), we notice that
n
the term Y exp(px;)L;(Wy) is the projection of the real function z — exp(px)
i=0

onto a Lagrange basis evaluted at x = W;.

5.2. The Ornstein-Uhlenbeck process

As a second example, we consider the Ornstein-Uhlenbeck process which
satisfies the following SDE:

{ dX, = 0(s — X3)dt + pdWi, t> 0
Xi—o = Xo ’

where 6, ;1 and p are some real parameters. The analytic solutions for this SDE
writes, for ¢t > 0

t
X, = X0679t +,LL(1 . 679t) +p676t/ eodes (29)
0

The real functions a(t,x) and b(t, z) are define on RT x R by

{ ate) =00
b(t,.’t) =p ’

and the differential equation (23) to be solved for the initial conditions of (22)

reduces to of
{ 2 (0,2)=p

f(0,0) = Xo

14



Its solution writes f(0,x) = px + X, which gives initial conditions
fZ(O) = f(O,SCZ) = px; + Xo.

ob(t, x)
ox

Since for all (t,z) in RT x R we have = 0, the differential equation for

fi(t) with ¢ = 0,..,n comes down to

{ fi(t) =0 (n— fi(t))
fZ(O) = px; + XO

and its solution is f;(t) = u + (Xo + px; — p) exp(—6t). As before, we compute
the function k(t) by replacing f;(¢) by its expression in the second equation of
(25)

Bt = :
':Zo (u+ (Xo + pz; — p)e=%) Li(x)
o

m+uwww4ﬂ§mmwmf%§mmu$

The denominator of the above expression can be simplified by using two prop-
erties of Lagrange’s polynomials, i.e. for all z in R,

Z Li(z)=0  and ZmlL;(m) =1
i=0 =0

leading to

_ P et

The same properties can also be used to simplify the approximate solution of
the SDE as follows :

Xt = Z (/j, —+ (X() —+ pL; — p)efgt) LZ(Gt)
=0
= Xoe "+ p(l—e )+ pe ¥ Z z;Li(Gy),
=0
— Xoefot +,u(1 _ efet) +P€70th7

where in the last equation, we have used the additional property: for all x
n

in R, Y x;L;(z) = x. Then, the proposed numerical method applied to the
i=0

Ornstein-Uhlenbeck SDE gives the solution

X, = Xoe % + p(1 — e %) + pe~ G,

15



with . .
Gt:/ k(s)dWS:/ 5 dw,.
0 0

This is precisely the exact solution of the SDE (see equation (29)). This
comes as no surprise, since the exact solution can be expressed as a degree one
polynomial function of G; when G, takes the form (16) with k(s) = e%*.

6. Numerical examples

In this section, we tackle two SDEs and we explain how each step of the
proposed method can be numerically addressed.

6.1. SDE with known analytical solution

As a first numerical example, we consider the following SDE:

1
dXt = §(tanh(Xt))3dt + c th, t>0

o
osh(Xy)
X:i—o = arcsinh(1)

of known analytical solution (see [15, 16])

t
X; = arcsinh <et/2 <1 +/ eS/QdI/VS)> . (30)
0

We start by computing (n+1) Chebyshev collocation points (see (9)) {z; }o<i<n
in the interval [a,b] = [—6, 6] (the choice of this interval will be justified in the
sequel). The next step is to solve the ordinary differential equation (23) twice:
once in the interval [0, 6] to get the values of f(0,z;) when x; € [0,6] and once
in the interval [—6,0] to get the values of f(0,z;) when z; € [—6,0]. We have
to proceed that way since the initial condition to this differential equation is
given at x = 0. For the equations considered in this paper, the choice of the nu-
merical solver was found to be of little importance (4th order Kunge-Kutta for
example) since high accuracies could be obtained with mild computing efforts.
The (n+ 1) ordinary differentials equations (22) are then solved numerically to
get an approximate solution of f;(t) at points t; € [0, T]. Notice that they all
take the same form but have different initial conditions. Here again, a standard
ODE solver may be used. The function of time k(t) that serves to define the
process (G¢)iecjo,r) can be evaluated with equation (24) at all discrete points #;
in time and at all collocation points x; as follows:

k(tl) — nb(tlvfz(tl))
> fit) Li(zy)

=0

If the exact solution to the SDE can be expressed as an explicit function of
the Gaussian process defined by (16) this expression should be independent of
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xj. This gives an a-posteriori criterion for establishing whether the considered
SDE can be processed with our numerical method.

The computation of the mean and the variance of X; requires an evaluation
of the standard deviation o (t) of G¢. According to (17) and after a simple change
of variable, this is done by evaluating the function (for all points ¢; € [0,T7])

U(tl) = tl/o k(tlS)QdS.

The above integral is computed with Fejér quadrature rule [5] based on the
roots of Chebychev polynomials of first kind. The probability density function
of Gy at instants of time ¢; € [0,T] is then given by

1 “20(t))?

t,r) = ——¢
pa.(t,7) 2mo(ty)

and it is possible to compute the mean, the variance and the autocorrelation
function of the process (Xi):cpo,r) with formulas (11), (12) and (13), respec-
tively. The integrals on R are truncated to the interval [—6, 6] and they are also
evaluated with Fejér quadrature rules. The truncation of the integrals do not
affect the accuracy of the method due to the fast decay of pg, (t;, ) with respect
to |z|. In this example we can make this assertion more precise, since o(t) can
be computed explicitly:

o(t) = /0 (e=5/2)2ds = /1 — e L. (31)

For all ¢t > 0, the maximum value of o(¢) is one, so for all t > 0, if |z| > 6,

T2 22 62

L "20(t)? I -5 L =5 . -9

0< —=e (t) S e 2 S = 2=6x1070
The interval of time for the simulations is chosen to be [0,7] = [0,4] and the
time step for representing the results are At = ¢;,1 —t; = 1072, Notice that for
this method, it is irrelevant to study the weak or strong convergence in time.
Indeed, the differential equations (22) and (23) can be solved up to machine’s
precision with standard ODE solvers and the major part of the error comes
from the interpolating error of Lagrange’s polynomials. What we consider as an
“exact” mean or an “exact” variance of X; can be numerically computed from
the solution (30) using high precision quadrature rules. We start by rewriting

(30) as

X; = arcsinh (et/Q 1+ Gt)) ,

with (G¢)efo,r) @ Gaussian process defined by

t
Gy = / e 5 2dW,.
0

17



Then for any ¢ € [0,T] the probability density function of Gy is

72

1 20(t)2
T) = e , T €R,
PG, (z) 2mo(t)

with o(t) given by (31). Denoting by ux,(t) and 0%, (t) the exact mean and
variance of X;, we have

/ arcsinh (et/z (1+ x)) pa, (z)dx
R

/R (arcsinh (et/2 (1+ a:)))2pct (z)dx — (px, (t))2 (33)

px, () = (32)

7%, (1)

Such integrals are evaluated after truncating their support to [—10, 10] and using
Fejér quadrature rule with 10% quadrature points. The values obtained will be
considered as “exact” values for px,(t) and ox,(t) in the sequel.

Let mean®®?“! and mean®?"°% be two vectors containing the values of the
exact mean and the approximated mean at times {¢; }1<i<400. The relative error
on the mean is defined as

exact approx ||

|lmean — mean

; (34)

Emean = ||meanezact ||

where the norms above are the Euclidean norms. The relative error on the
variance is defined in a similar way. Table 1 shows such errors for different levels
of discretization when the number of collocations points vary from n 4+ 1 = 40
up to n + 1 = 180.

n+1 40 60 80 100
Emean | 6.82x 1073 | 3.24 x 1073 | 6.96 x 10~* | 3.17 x 10~*
Evar | 2.82x 1072 | 1.54 x 1072 | 3.40 x 1073 | 1.46 x 1073
n+1 120 140 160 180
Emean | 9.01 x 1072 | 3.05 x 107° | 6.26 x 107° | 1.13 x 10~°
Coar | 450 x 107% [ 1.40 x 107 [ 3.17 x 107° | 5.88 x 1076

Table 1: Errors on the mean and the variance of X; defined by equation (34)

We can see the high rate of convergence of the proposed method. We do not
provide CPU times since it only takes a few second to run for the coarse level
of discretization and up to a few minutes for the finest level of discretisation. A
sample trajectory is represented on Figure 1 for the exact process X; given by

X, = arcsinh (et/Z 1+ Gt)) , (35)
and its approximation given by
X =Y fit)Li(Gy). (36)

=0
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3.5

Exact trajectory
Approximate trajectory

Sample trajectory

o 0.5 1 1.5 2 2.5 3 3.5 4
time

Figure 1: Sample trajectory for X; computed from equation (35) (exact) and from its approx-
imation equation (36)

For that, a sample path for the process (G¢)ico,7) needs to be generated
from one trajectory of a Wiener process (W;):cjo,7) [12] as follows:

Gtz+1 = Gtz + eitl/2 (Wt1+1 - Wtz) )
for the path of the exact solution; and
Gt1+1 = th + k(tl) (th+1 - th) )

for the path of the approximated solution. We see that the two trajectories are
almost indistinguishable (here n 4+ 1 = 80). For the same level of discretization,
we also represent the mean and the variance (exact and approximate) on Figures
2 and 3, respectively. Here again, the two curves match perfectly well. Finally,
Figure 4 shows the autocorrelation function of (X¢).e[, 77, as computed by (13)
for (s,t) € [0,4] x [0,4].

6.2. SDE without known analytical solution
As a second numerical example, we consider the following SDE

_1 2 27& 2
dXt74(Xt+\/1+Xt) (3+ m) dt+(Xt+m)th, /

Xt:() = O

for which no solution can be derived analytically. This SDE is particularly
challenging for Euler-like numerical methods, due to the variance of the solution
that grows extremely fast with respect to t. As a consequence, the Monte-Carlo
simulations to compute the mean and the variance of X; requires a very large
number of trajectories to get a converged solution. At first, we limit the interval
of study to [0,7] = [0, 1] to be able to compare our numerical method with the
Milstein scheme with a time step At = 1072,

19
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2.2

"Exact mean"
Approximate mean

Mean

o 0.5 1 1.5 2 2.5 3 3.5 4
time

Figure 2: “Exact” and approximate mean of X; computed with equation (32) and equation
(11) respectively

3.5 T T
"Exact Variance"
3 Approximate variance
2.5F b
g 2F B
e
=
S
> 1.5+ i
1L i
0.5 A
o . . . . . . .
o 0.5 1 1.5 2 2.5 3 3.5 4

time

Figure 3: “Exact” and approximate variance of X; computed with equation (33) and equation
(12) respectively

The mean and the variance are then obtained with a 10° samples Monte-
Carlo simulation. The Milstein scheme has a weak and a strong order of con-
vergence in time equal to 1 and it writes :

1 ob 9
X = Xy, + alty, Xe ) At + b(t, Xo) ) AW + 5b(tl, th)%(tl, Xy,) (AW? — At)
Xto =0

with AW = Wy, — Wy,. Figure 5 and Figure 6 show the mean and the
variance of X; for our method with n + 1 = 60 collocation points and for the
Milstein/Monte-Carlo simulation. We can see a good match of the two curves for
times ¢ < 0.6 but it quickly deteriorates for the Milstein scheme as we advance
in time.

We now study the convergence of our scheme for long time simulations by
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E(XtXs)

Figure 4: Autocorrelation function of X; computed with equation (13)

3.5
Monte—Carlo (Milstein)
3r stochastic collocation 7
///
25 / E
~
2} / -
=
(33
(<3
1S
1.5 B
1k ,
0.5 B
o L
o 0.2 0.4 0.6 0.8 1

time

Figure 5: Comparison of the mean of X; computed with our stochastic collocation method
and with a Milstein scheme

taking [0, 7] = [0, 8] and for three levels of discretization: n+1 = 40; n+1 = 80
and n 4+ 1 = 120. The plots of Figures 7 and 8 show the good convergence of
the mean and the variance as we increase the degree of Lagrange’s polynomials.
For this example, we’'ve observed numerically that k(¢) = 1 and therefore the

21



800 - Monte-Carlo (Milstein) B
stochastic collocation |

600
|

@

8

3
T

Variance

2
]
3
T
~_

@

8

S
T

n
8
3

3
3
T

o
o
°
o
N
o
@
o
=
o
o
o
S
o
3
o
3
o
©

Figure 6: Comparison of the variance of X; computed with our stochastic collocation method
and with a Milstein scheme

solution is a function of Gy = W,. However, this function cannot be analytically
computed. Finally, Figure 9 shows the autocorrelation function of X; for (s,t) €
[0,1] % [0,1). We have limited the interval for (s,t) to [0,1] x [0, 1] otherwise,
the plot would be a flat land with an upsurge for the highest values of s and ¢.

x 10

12

Mean
[0)]
‘

Figure 7: Mean of X for different degrees of Lagrange’s polynomials
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Figure 8: Variance of X; for different degrees of Lagrange’s polynomials

600

Figure 9: Autocorrelation function of X; computed with equation (13)

Conclusion

7.

A new class of high order numerical method for the solution to SDEs is
proposed in this paper. It mainly relies on two standard mathematical and nu-

However, it

merical ingredients: polynomial interpolation and cubature rules.
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is based on a new paradigm: the white noise is no longer discretized under the
form of a truncated Karhunen-Loeve series, as in Polynomial chaos expansions,
and the stochastic process (X).e[o, 77 is no longer expressed as a finite number of
independent random variables. Instead, (X¢)¢cjo,7] (not necessarily Gaussian)
is directly sought as a polynomial function of a Gaussian process (G¢).eo,1)
and the coefficients of the expansion are obtained by solving ordinary differen-
tial equations (ODE). The macroscopic quantities (mean, variance,...) can be
computed directly from the coefficients of the decomposition. Thus, two major
drawbacks of competing methods can be avoided: the curse of dimensionality
for Polynomial chaos expansions and the resort to Monte-Carlo simulations,
with slow convergence, for Euler-like or exact sampling techniques. Assuming
that the ODEs can be solved with high degree of accuracy, then the error of our
method mainly comes from the interpolation error.

Several examples were studied to illustrate the efficiency and the accuracy
of the proposed method. First considering the Ornstein-Uhlenbeck and the geo-
metric Brownian motion SDEs, hands calculations have shown that our method
leads to an approximate solution that is the projection of the exact solution
onto a Lagrange polynomial basis. Then, more complex SDEs were numerically
solved, showing the high rate of convergence and the efficiency of our approach.

Extension of the method to stochastic processes (Gt)ie[o,r) that are not
necessarily Gaussian would allow to tackle a wider class of SDEs. This is the
subject of our ongoing research.
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