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1. Introduction

Sandwich materials are commonly used in many applications of
aerospace, marine or transportation industries, among others, due to
the attractive combination of a lightweight and strong mechanical
properties. The flexural stiffness of classical sandwiches is indeed
particularly significant, thanks to the high strength of the skins and
their distance from the middle-surface of the structure. However, the
principal weakness of such classical sandwiches turns out to be the
low mechanical proper-
In order to improve the
tion (in transverse shear
etrimental to lightness,

gthened by appropriate
odulus is concerned, the

1

simplest way to proceed comes down to add orthogonal reinforce-
ments embedded in the upper and lower skins. Among the existing
methods, such as tufting, Z-pinning and stitching [1], the patented
Napcos technology, which is based on transverse needling, allows
one to produce tailored sandwich structures in a continuous way,
while preserving a high production efficiency and a relatively
low cost.

The main objective of this study is to analyze the mechanical
behavior of such Napcos sandwich structures under through-
thickness compression. For this purpose, experimental compres-
sion tests are first performed in order to assess the significant
increase of the equivalent compressive modulus due to the
presence of reinforcements. In every instance, the experimental
effective compressive moduli are unexpectedly small and scat-
tered in comparison with the analytical predictions based on
mixture laws, as already mentioned in Guilleminot et al. [2].
These discrepancies are not due to the inadequacy of the mixture
laws which perfectly apply in such a geometric configuration, but
may rather be attributed to the imperfection-sensitive local
buckling of the cylindrical reinforcements which may lead to
collapse. Therefore, the present work aims at estimating the



corresponding critical loading in order to predict the occurrence
of buckling and further optimize the size and volume fraction of
reinforcements in relation to the compression behavior.

Due to the geometry of reinforcements, a compressive loading
in the thickness direction of such a 3D reinforced sandwich will
fatally lead to an instability phenomenon. The buckling response
of the composite material can be seen as the buckling of
reinforcements (being considered as slender beams) inside the
homogeneous core material. When the core material is neglected,
the buckling of reinforcements is governed by Euler’s theory, as
observed by Lascoup et al. [3] in the context of stitched sandwich
structures under transverse compression and out-of-plane shear.
In practice, despite a comparatively low modulus, the core
material strongly influences the critical buckling load of the
reinforcements (displaying a stabilizing effect), and the classical
Euler critical values, obtained without any core material, are
generally no more valid at all. Several analytical solutions have
already been proposed in the literature to better estimate the
critical loading for such a micro-buckling problem, which is
considered as a major collapse mode in fiber-reinforced compo-
site materials. The pioneering works date back to the sixties and
were conducted by Rosen. A very simple expression is suggested
for the buckling value, but the strong hypothesis of a uniform
shear state in the matrix material restricts its validity domain.
From this point, other simplified solutions have been deduced
among which the one from Drapier et al. [4]. These authors
considered a single unidirectional ply of a laminated composite
and calculated the buckling load using an homogenization tech-
nique and assuming a simplified strain state in both reinforce-
ments and matrix. Few authors, among which Liu et al. [5],
interested in the buckling of a sandwich structure reinforced in
the thickness direction, similar to the Napcos sandwich. In their
analytical approach, the through-thickness reinforcements are
modeled by simply supported beams and the continuous core
material is replaced by the superimposition of horizontal and
vertical elastic spring distributions. This representation is thus a
generalization of the model initially introduced by Timoshenko in
the context of the buckling of beams relying on elastic founda-
tions. None of the simplified solutions identified in the literature,
including the two previously mentioned, provides satisfactory
results from a general point of view. Some of them are in good
agreement with reference numerical (or experimental) results
provided that specific conditions are fulfilled (for instance, the
volume fraction of reinforcements is particularly low or high). As
an alternative, some authors have searched out ‘‘exact’’ solutions,
considering the core material like a continuous surrounding
medium, without any further simplification regarding the defor-
mation field. The most numerous results available in the litera-
ture concern composite materials made of long fibers and are
obtained in a 2D modeling space. Parnes and Chiskis [6] provided
such an exact solution in the context of nano-filled polymer
composites and compared their own results with the values
obtained by Rosen’s formula. Sooner, Zhang and Latour [7]
showed that the prevailing buckling mode was the so-called
shear mode, as long as the volume fraction of reinforcements is
sufficiently high, such that reinforcements interact with each
other. A closed-form solution may be obtained in a 2D framework,
whereas only a semi-analytical solution is conceivable when
considering the real 3D geometry. In Zhang and Latour [8], the
same authors derived such an approximate solution partly based
on numerical computations of a 3D unit cell made of a cylindrical
reinforcement surrounded by the matrix. They compared the
results from both 2D and 3D models and tried to define the best
2D representation of the reinforced material, in terms of geo-
metric dimensions and volume fractions, which would be capable
of displaying the same critical values as in 3D.
2

In this study, the objective is to solve analytically the buckling
behavior of the Napcos sandwich under through-thickness com-
pression. A 2D model is defined with the appropriate boundary
conditions in order to derive a closed-form analytical solution.
The foam core is represented as a continuous medium whereas a
beam model is considered for the reinforcements. The skins are
not directly modeled but their presence is taken into account
through the boundary conditions applied to the reinforced foam
core. Some conventions are specially suggested in order to relate
properly the 2D designed model to the real 3D configuration.
Numerical finite element computations are then performed on a
3D unit cell of the sandwich material in order to validate the
analytical modeling. All these predictive solutions are shown to
be in good agreement with the experimental force–displacement
curves plotted from a series of compression tests. It allows one to
state that the micro-buckling of the reinforcements is the main
reason for the collapse of the sandwich structure when it is
compressed through the thickness direction.
2. Experimental data

2.1. Napcos technology

The Napcos technology is a manufacturing process of 3D
sandwich composites based on transverse needle punching. It
consists in strengthening the foam core of a sandwich structure
by adding orthogonal (or inclined) through-thickness reinforce-
ments in order to particularly enhance some of the mechanical
properties. It differs from other technologies such as stitching due
to the fact that the fibrous reinforcements here come from the
skin material, so that the facing fabrics (mats) and the foam core
make up a monolithic whole (see Fig. 1). In practical terms, a set
of needles regularly penetrates the sandwich structure on both
sides, according to the desired pattern and density, the needles
catching and carrying yarns from the facings through the core
material, as shown in Fig. 2. Once the 3D sandwich preform is
produced, it is impregnated by a liquid resin. Among the different
liquid composite molding techniques, the VARIM process
(Vacuum Assisted Resin Infusion Molding) has been retained for
its efficiency.

The creation of the fibrous reinforcements and the composite
manufacturing, associated with an experimental campaign of
measurement of geometric and material parameters, lead one to
a realistic and optimal representation of the sandwich architec-
ture and thus to a proper prediction of the effective mechanical
properties when using appropriate analytical or numerical tools.

2.2. Geometric and material data

The 3D sandwich samples which will be subsequently tested
are made up of a linearly elastic isotropic closed cell polyurethane
foam (whose density is 40 kg �m�3). Both facings are made of one
ply of chopped strand glass mat and one carbon [0,90] cross-ply
laminate. During the infusion process, use is made of an Epolam
5015 epoxy resin with 20% of 5015 hardener. The material data
are summarized in Table 1.

The skins are supposed to be isotropic, with equivalent
Young’s modulus Es and Poisson’s ratio ns. The cylindrical fibrous
reinforcements are perpendicular to the skins and viewed as
unidirectional composite columns (UDs) composed of aligned
isotropic fibers surrounded by resin (see Fig. 3). Since the
micro-buckling of fibers inside the reinforcements is out of
the scope of this paper and thus ignored in our future model,
the heterogeneous fibrous reinforcements can simply be repre-
sented by equivalent homogeneous cylinders. A preliminary



Table 1
Material properties.

Material Polyurethane

foam

Epoxy

resin

Glass

fiber

Carbon

fiber

Young’s modulus (MPa) 6.7 3281 72 400 290 000

Poisson’s ratio 0.001 0.35 0.22 0.3
homogenization step, based on advanced mixture laws [9], is then
first performed, involving the volume fraction of the fibers within
the reinforcements Vf (obtained through burn off tests) and the
material properties of both constituents (glass fibers and resin).
It gives the following equivalent properties for the transversely
isotropic through-thickness reinforcing composites (due to the
unidirectional arrangement of the fibers):

EL ¼ Ef Vf þErð1�Vf Þ

nLT ¼ nf V f þnrð1�Vf Þ

GLT ¼ Gr
Gf ð1þVf ÞþGrð1�Vf Þ

Gf ð1�Vf ÞþGrð1þVf Þ

GT ¼ Gr 1þ
Vf

Gr
Gf�Gr

þ
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Fig. 2. Napcos technology [2]: (a) transverse

Fig. 1. Napcos sandwiches: (a) sandwich with foam core partly removed to show

(c) needled facing fabric, (d) complete sample.
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where the quantities Ei, ni, Gi, ki and Ki represent Young’s moduli,
Poisson’s ratios, shear moduli, bulk moduli and transverse bulk
moduli (without longitudinal strain), respectively, and the subscripts
needling, (b) 3D sandwich representation.

the transverse composite beams, (b) inclined through-thickness reinforcements,



Fig. 3. Fiber reinforcements [2].

Table 2
Material parameters.

Panel A B C D

Reinforcements/dm2 69 138 276 415

Vf (%) 4.01 2.63 3 1.93

EL (MPa) 6052.7 5098.8 5354.6 4615

nLT 0.3448 0.3466 0.3461 0.3475

GLT (MPa) 1308.4 1275.5 1284.3 1259.2

ET (MPa) 3676.9 3558.5 3591.3 3493.4

nT 0.4228 0.4065 0.4115 0.3957

Es (MPa) 8463.3 8991.2 9181.7 8310.8

ns 0.3575 0.3616 0.3658 0.3615

Table 3
Geometric parameters.

Panel A B C D

Reinforcement radius (mm) 1.1065 1.422 1.002 1.126

Reinforcement volume fraction (%) 2.53 9 11.39 16.52

Foam thickness (mm) 20 20 20 20

Skin thickness (mm) 1.465 1.255 1.138 1.101
�f , �r , �L and �T stand for the fibers, the resin, the longitudinal
direction and the transverse direction. In order to simplify the
geometric representation, the through-thickness reinforcing compo-
sites are supposed to have a constant circular section of radius R.

Four different types of needle pattern have been used to create
different pile yarns (UDs) densities in the final sandwich struc-
ture. The material and geometric parameters of the four panels
under consideration are summarized in Tables 2 and 3, respec-
tively, where the subscript �s stands for the skin parameters.

2.3. Compression experiments

Compression tests between parallel plates were performed on a
material-testing machine (Zwick) mounted with a 100 kN-force cell.
The panels have been characterized in through-thickness compres-
sion following the NF T 54-602 standard. The compression speed of
the top platen was 2:2 mm �min�1. Ten samples with in-plane
dimensions 50� 50 mm2 were tested for each of the four densities
considered (see Fig. 1(d)). These dimensions are rather small but
sufficiently large yet so that all the specimens contain many
4

reinforcements, even in the case A where the volume fraction of
reinforcements is very low. Although the specimens do not include a
whole number of unit cells, which may act as representative volume
elements, the volume fraction of reinforcements in the specimens
coincides thus pretty much with the theoretical values of Table 3.

Fig. 4 displays all the stress–displacement curves obtained
from the experimental compression tests. The stress corresponds
to the pressure applied on the top platen and the displacement is
measured on the same platen in the loading direction.

For each density, the compression behavior of the composite
material can be divided into three steps:

(i) First, as soon as the two parallel plates are in full contact with
the lower and upper skins, the response curves are quasi-linear. It
allows one to derive the overall longitudinal (through-thickness)
Young’s modulus of the corresponding sandwich structures. The little
scatter of results is due to various geometric imperfections, especially
regarding the shape of reinforcements and the variability of fiber
volume fraction. It will further be shown that the buckling phenom-
enon that occurs during compression of the reinforced sandwich is
mainly responsible for the imperfection sensitivity of the results.

(ii) The buckling phenomenon results in the loss of linearity of
the stress–displacement curve and in a subsequent limit point.
The corresponding limit stress is little scattered just like the
constant slope during the initial elastic behavior, whereas the
critical displacement (and therefore the critical deformation) does
not seem to be sensitive to geometric imperfections. After reach-
ing this limit point, the post-buckling behavior is clearly identi-
fied by a strong decrease of the stress level, presumably due to the
successive failure of the reinforcements.

(iii) The stress finally tends towards a constant value, giving rise
to a plateau. The corresponding stress level is very low and appears
to be independent of the density of reinforcements. Indeed, at the
final post-buckling stage, almost all the reinforcements are broken
and the global response is governed by the foam core behavior,
which is the same in all the panels considered.
3. Analytical modeling of the compression behavior
of Napcos sandwiches

3.1. Overall through-thickness longitudinal modulus

Due to the elementary architecture of such reinforced
sandwich structures with orthogonal reinforcements, simple



Fig. 4. Experimental stress–displacement curves from compression tests: (a) panel A, (b) panel B, (c) panel C, (d) panel D.

Table 4
Comparison between analytical and experimental effective moduli in the through-

thickness direction.

Panel A B C D

Analytical effective modulus (MPa) 182.55 519.97 680.7 843.96

Experimental mean value (MPa) 132.28 226.93 287.81 459.93

Experimental standard deviation (MPa) 12 13.2 8.9 36.9

Error (%) 27.5 56.4 57.7 45.5
analytical expressions of the through-thickness Young’s modulus
can be easily derived by means of basic mixture laws. Considering
first the reinforced foam core constituted by the core material and
the cylindrical reinforcements in parallel, the Voigt upper bound
is a good estimate of the equivalent modulus in the thickness
direction:

Erc ¼ ELVfrþEcð1�VfrÞ ð2Þ

where Ec is the foam core Young’s modulus, Vfr the volume
fraction of fibrous reinforcements, and EL represents the long-
itudinal modulus of the reinforcements which has been prelimin-
ary calculated using Eq. (1). Next, the compression effective
modulus of the whole sandwich can be assessed using the Reuss
lower bound, due to the series configuration of the reinforced
foam core and the skins:

Eeff ¼
1

Vs

Es
þ1�Vs

Erc

ð3Þ

where Es and Vs stand for Young’s modulus and volume fraction
of the skins, respectively.

Let us mention that, for validation purposes, this effective
modulus Eeff has also been calculated using finite element
simulation. Contrary to the previous analytical approach, the
numerical model takes into account the Poisson effect, but for
5

all that, both methods lead to very similar numerical values (as it
will be shown later). For the sake of clarity, only the analytical
solutions are compared here with the experimental results for
each sandwich panel (the experimental moduli are defined as the
slope of the stress–strain curves in the first stage of deformation).
Table 4 displays the analytical effective moduli and the experi-
mental ones (mean values and standard deviations for the 10
specimens tested in each case) along with the relative error
between both values.

As mentioned above, the analytical predictions for the effec-
tive modulus largely overestimate the experimental values. In
light of all those observations, the determination of the buckling
features of such reinforced sandwich structures under compres-
sion becomes relevant to improve their design. Through the



evaluation of the critical loading, the bifurcation mode, and
possibly the post-buckling behavior, it will be shown that the
micro-buckling phenomenon is first responsible for the failure of
the sandwich panels under such loading conditions.
3.2. Analytical study of the buckling of a reinforced sandwich under

through-thickness compression

The main objective of this study is to find an analytical
solution for the critical loading as well as the buckling mode of
a reinforced sandwich under through-thickness compression,
which will be compared to experimental results and observations,
in order to validate the hypothesis according to which the
collapse is mainly due to buckling and post-buckling. The critical
loading complements all the effective moduli of the composite
material that have already been analytically expressed, for
dimensioning purposes.
3.2.1. Problem definition

Several assumptions must be made in order to be able to
derive a closed-form expression for the critical value. First, a 2D
simpler representation of the sandwich structure is preferred.
The skins are then supposed to be stiff enough so that they do not
deform during the compression experiment and do not influence
the buckling behavior of the whole structure. Fig. 5 represents
the model finally considered. The skins have been removed and
will be replaced by proper boundary conditions. This unit cell
(with two half-reinforcements and a foam block) is supposed to
represent the global sandwich once the proper periodic boundary
conditions are prescribed. This model is not capable of providing
the so-called transverse buckling mode, as found by Parnes and
Chiskis [6] in another context, due to the periodicity conditions.
Only the shear buckling mode, which has shown to be predomi-
nant in previous studies [7], will be investigated in the sequel,
according to the experimental observations.

The width (2t) of the composite reinforcements is chosen in
such a way that their second moment-to-area ratio in the 2D
model is equal to the one of the real cylindrical reinforcements in
the 3D material (t¼ R

ffiffiffi
3
p

=2). The same critical loading is thus
obtained in both 2D and 3D configurations in the absence of foam,
since the buckling load of a beam-like structure is governed by its
bending rigidity. The width (2H) of the foam block is then defined
in agreement with the volume fraction of reinforcements
(H¼ tð1�VfrÞ=Vfr). Unlike the conclusions in Zhang and Latour
[8], this particular choice will be proven to give satisfactory
results. Finally, the global thickness (2L) is the real foam thickness
measured experimentally.

The reinforcements (UDs) are assumed to behave like Euler–
Bernoulli beams. Due to the entanglement of the fibers into the
rigid skins, clamped boundary conditions are retained for the
reinforcements instead of simply supported ones as supposed by
Liu et al. [5]. Whereas the foam core is modeled by two horizontal
Fig. 5. 2D model for the analytical prediction of the buckling behavior.
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and vertical spring distributions in the latter reference, it is
considered here as a 2D continuous solid.

The homogeneous and isotropic foam core is supposed to be
linearly elastic (with Young’s modulus Ec and Poisson’s ratio nc).
As for the transversely isotropic fibrous reinforcements, due to
the kinematic hypotheses, only the longitudinal modulus EL will
be involved in the sequel among all the elastic moduli defined in
Eq. (1), so that the material can also be considered as isotropic.

Lastly, the unit cell is subjected to a compressive displacement
in the thickness direction (like in experiment), which leads to
buckling. The critical displacement and the associated bifurcation
mode will be derived from a 3D framework: the theory is
developed using a total Lagrangian formulation where the differ-
ent components of the model are initially seen as 3D bodies
[10–12].
3.2.2. Theoretical formulation

The critical loading lcr and the bifurcation mode X of a 3D
body are obtained by solving the following bifurcation equation:

8 dU,

Z
O
r

TdU : KðlcrÞ : rX dO¼ 0 ð4Þ

where O is the volume of the 3D body in the reference config-
uration and dU stands for the variation of the displacement field
in the body.

The fourth-order nominal tangent elastic tensor K can be
written as follows:

K¼
@P
@F
¼ F �

@R
@E
� FT
þðI � RÞT ¼ F �D � FT

þðI � RÞT ð5Þ

In the above equation, E denotes the Green strain tensor and R
the second Kirchhoff stress tensor (symmetric). F is the deforma-
tion gradient and P¼ F � R the first Kirchhoff stress tensor (non-
symmetric). I represents the fourth-order unit tensor (Iijkl ¼ dildkj)
and the superscript T the transposition of a second-order tensor
and the major transposition of a fourth-order tensor
(ðAT
Þijkl ¼ Aklij), respectively. The fourth-order material tangent

elastic tensor D of an isotropic material can be defined by its
components in an orthonormal basis Dijkl ¼Ldijdklþmðdikdjlþ

dildkjÞ, where dij is the Kronecker symbol, and L and m are the
Lamé constants. Use is also made of Young’s modulus E,
Poisson’s ratio n and the shear modulus G related to L and m by
the standard relations L¼ En=ð1þnÞð1�2nÞ and m¼ G¼ E=2ð1þnÞ.

We shall now derive more explicit expressions of the above
tensors by exploiting the uniaxial stress state in the body. The
uniform compressive displacement applied on the unit cell leads
to compressive stresses in the reinforcements as well as in the
foam core. Due to the respective moduli of the two materials, the
uniaxial stresses in the pre-critical state are far larger in the
reinforcements than in the foam, so that they will be neglected in
the core material.

On one hand, the reinforcements are subjected to a nominal
axial compressive stress PXX ¼�Po0 in their longitudinal direc-
tion, so that the first Kirchhoff stress tensor P is expressed in the
orthonormal basis ðeX ,eY ,eZÞ as

P¼�PeX � eX ¼

�P 0 0

0 0 0

0 0 0

2
64

3
75 ðP40Þ ð6Þ

Let us make the assumption that the pre-critical deformations
are small, which is usually satisfied in practice:

JrUJ51 ð7Þ

Thus, the stress tensor R writes

R¼ F�1
�P�P ð8Þ



The nominal tangent elastic tensor in Eq. (5) becomes then

K�
@R
@E
þðI � RÞT ¼D�Pei � eX � eX � ei ð9Þ

which is independent of the spatial coordinates (the implicit
summation convention on repeated indices is used with
i¼ X,Y ,Z).

Furthermore, when dealing with 1D models like beams, ad hoc
assumptions are usually added in order to enforce some specific
stress state in the body. Namely, the transverse normal material
stresses are assumed to be zero: SYY ¼SZZ ¼ 0. Taking into
account these assumptions leads one to replace tensor D with
the reduced tensor C defined as

Cijkl ¼Dijklþ
DijYY ðDYYZZDZZkl�DZZZZDYYklÞþDijZZðDZZYY DYYkl�DYYYY DZZklÞ

DYYYY DZZZZ�DYYZZDZZYY

ði,jÞa ðY ,YÞ,ðZ,ZÞ, ðk,lÞaðY ,YÞ,ðZ,ZÞ ð10Þ

It can be readily checked that tensor C has the major and both
minor symmetries. In the sequel, we only need the following
reduced moduli (and their equivalents obtained by major or
minor symmetries):

CXXXX ¼ E, CXYXY ¼ CXZXZ ¼ CYZYZ ¼ G ð11Þ

where only E¼ EL will explicitly appear in the final bifurcation
equation.

On the other hand, as the existing initial stresses in the foam at
the critical point have numerically shown to produce no signifi-
cant effect on the buckling behavior, they are not introduced
in our model, for simplicity purposes. Therefore, the nominal
tangent elastic tensor in this case simply writes

K�
@R
@E
¼D ð12Þ

The 2D model is supposed to reproduce the behavior of a panel
with lateral dimensions much larger than thickness, so that the
plane strain hypothesis is adopted. Thus, tensor D has no need to
be reduced and only the plane components will be used in the
sequel:

DXXXX ¼DYYYY ¼Lcþ2mc , DXXYY ¼Lc , DXYXY ¼ mc ð13Þ

and their equivalents obtained by major or minor symmetries.
Eventually, the bifurcation equation (4) of the unit cell writes

8 dUfr ,dUc ,

Z
Ofr

r
TdUfr : ðC�Pcrei � eX � eX � eiÞ : rXfr dOfr

þ

Z
Oc

r
TdUc : D : rXc dOc ¼ 0 ð14Þ

The compressive stress (P40) is related to the enforced
displacement l40 (which will act as the bifurcation parameter)
by the following relation:

P¼
ELl
2L

ð15Þ

and Ufr , Uc , Xfr and Xc represent the displacement field and
bifurcation mode components, respectively, relative to the fibrous
reinforcements (with indice �fr) and the foam core (with indice �c).

Let us now consider the bending problem of a reinforcement in
the XY-plane. The Euler–Bernoulli beam theory is employed, as
transverse shear effects may be negligible in practice. The Euler–
Bernoulli kinematics is defined by two scalar displacement fields
UðXÞ and VðXÞ, respectively the axial and transverse displace-
ments of the centroid axis of the beam. When the beam buckles
from the straight position (the fundamental solution) to a bent
shape, the expressions for the bifurcation mode Xfr and the
displacement variation dUfr are both chosen according to the
7

Euler–Bernoulli kinematics:

Xfr ¼

U fr�YVfr ,X ,

Vfr ,

0,

�������
dUfr ¼

dUfr�YdVfr ,X

dVfr

0

�������
ð16Þ

The same fields can be used for both half-reinforcements in the
unit cell, due to the enforced periodicity conditions, so that the
two half-beams can be identified as a single entire beam.

On the other side, the bifurcation mode Xc and the displace-
ment variation dUc in the foam core are classically expressed in
the orthonormal basis ðeX ,eY ,eZÞ:

Xc ¼

Uc ,

Vc ,

0,

�������
dUc ¼

dUc

dVc

0

�������
ð17Þ

The global bifurcation equation then writes

8 dUfr ,dVfr ,dUc ,dVc ,

Z
Ofr

ELðU fr ,X�YVfr ,XXÞðdUfr ,X�YdVfr ,XXÞ
�

�
ELlcr

2L
ðU fr ,X�YVfr ,XXÞðdUfr ,X�YdVfr ,XXÞ�

ELlcr

2L
Vfr ,XdVfr ,X

�
dOfr

þ

Z
Oc

ðDXXXXUc ,XdUc ,XþDXXYYVc ,YdUc ,XþDYYXXUc ,XdVc ,YþDYYYYVc ,YdVc ,Y

þDXYXYVc ,XdUc ,YþDXYYXUc ,YdUc ,YþDYXXYVc ,XdVc ,XþDYXYXUc ,YdVc ,XÞ dOc ¼ 0

ð18Þ

where Y stands for the Y-coordinate of a current point relative to
the centroid axis of the corresponding zone.

First, integrating over the cross-section of the beam, then
integrating by parts with respect to X and Y, and eliminating
negligible higher-order terms (presupposing that lcr 5L) yields
four local partial differential equations for the components U fr ,
Vfr , Uc and Vc of the eigenmode:

2ELtU fr ,XXþmcðUc ,YþVc ,XÞ9Y ¼ �H�mcðUc ,YþVc ,XÞ9Y ¼ H ¼ 0 ðaÞ

2ELt3

3
Vfr ,XXXXþ

ELtlcr

L
V fr ,XXþLcUc ,X9Y ¼ H�LcUc ,X9Y ¼ �H

þðLcþ2mcÞVc ,Y 9Y ¼ H�ðLcþ2mcÞVc ,Y 9Y ¼ �H

�tmcðUc ,XYþVc ,XXÞ9Y ¼ �H�tmcðUc ,XYþVc ,XXÞ9Y ¼ H ¼ 0 ðbÞ

ðLcþ2mcÞUc ,XXþmcUc ,YYþðLcþmcÞVc ,XY ¼ 0 ðcÞ

ðLcþ2mcÞVc ,YYþmcVc ,XXþðLcþmcÞUc ,XY ¼ 0 ðdÞ ð19Þ

The last two Eqs. (19c) and (19d) identify with classical local
equilibrium equations of the foam block in a 2D framework.
Similarly, the first two Eqs. (19a) and (19b) look like the classical
buckling differential equations of a beam, but include new
quantities characterizing the influence of stresses at the interface
between reinforcements and foam during the buckling phenom-
enon. Let us mention that these additional terms are here
naturally obtained through integrations by parts performed in
the foam block.

At this stage, one has to specify the boundary conditions in
order to solve the previous system. First, connecting conditions
for the displacement fields (bifurcation mode) must be satisfied
at the interfaces between the foam core and reinforcements,
namely:

8XA ��L,L½,

U fr�tVfr ,X�Uc9Y ¼ �H ¼ 0

U frþtV fr ,X�Uc9Y ¼ H ¼ 0

Vfr�Vc9Y ¼ �H ¼ 0

Vfr�Vc9Y ¼ H ¼ 0

ð20Þ

The two ends of the reinforcements are clamped in the rigid skins.
Due to the possible relative translation of the skins, only guided
boundary conditions are retained for both ends and lead to the
following kinematical constraints: Vfr ,Xð�LÞ ¼ Vfr ,XðLÞ ¼ 0. Taking into

account dVfr ,Xð�LÞ ¼ dVfr ,XðLÞ ¼ 0 in the bifurcation equation (18)



leads one, after integration by parts, to the remaining stress boundary
conditions at the ends X ¼�L and X ¼ L : 2ELtU fr ,Xð7LÞ ¼ 0

and ð2ELt3=3ÞVfr ,XXXð7LÞþðELtlcr=LÞVfr ,Xð7LÞ�tmcðUc ,Y ð7L,�HÞþ

Vc ,Xð7L,�HÞÞ�tmcðUc ,Y ð7L,HÞþVc ,Xð7L,HÞÞ ¼ 0. Some additional

kinematical constraints must be enforced in order to prevent the unit
cell from possible rigid modes. For this purpose, the displacement of
the mid-point (X ¼ 0) of the reinforcements is assumed to be null:
U frð0Þ ¼ V frð0Þ ¼ 0.

The last boundary conditions refer to the interfaces between
the foam core and the skins which are not represented in the
present model. The skins are supposed to be sufficiently rigid so
that both modal displacements can be considered as constant
along the interfaces, and the corresponding displacement bound-
ary conditions thus write

8YA ��H,H½,

Uc9X ¼ �L ¼ U fr9X ¼ �L

Uc9X ¼ L ¼ U fr9X ¼ L

Vc9X ¼ �L ¼ Vfr9X ¼ �L

Vc9X ¼ L ¼ Vfr9X ¼ L

ð21Þ

To make possible the analytical resolution of the problem, the
last two equations will be sooner replaced by the corresponding
stress boundary conditions (as if these two edges were free in the
Y-direction):

mcðUc ,YþVc ,XÞ9X ¼ �L ¼ 0

mcðUc ,YþVc ,XÞ9X ¼ L ¼ 0 ð22Þ

This alternative will allow us to derive a closed-form solution
with a very good accuracy, since reinforcements are not too
distant from each other.
3.2.3. Solution procedure

The bifurcation mode of a single Euler–Bernoulli beam under
axial compression with the boundary conditions defined above
takes the following form:

U ¼ 0

V ¼ sin
pX

2L

8<
: ð23Þ

Considering that the foam all around the reinforcements does
not affect the buckling mode components of the beam, the
following assumptions are made:

U fr ¼ 0

Vfrpsin
pX

2L

8<
: ð24Þ

which are consistent with the corresponding boundary
conditions.

Concerning the foam displacement field, a separation of vari-
ables is performed and the following forms are presupposed,
according to Eq. (24):

Uc ¼ aðYÞcos
pX

2L

Vc ¼ bðYÞsin
pX

2L

8>><
>>:

ð25Þ

where aðYÞ and bðYÞ are unknown functions to be determined.
Solving the two equilibrium equations in the foam block (19c)

and (19d), together with the four connecting conditions (20),
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leads to the following bifurcation mode:

U fr ¼ 0

V fr ¼ K1 cosh
pH

2L
þK2H sinh

pH

2L

� �
sin

pX

2L

Uc ¼ K3 sinh
pY

2L
þK2Y cosh

pY

2L

� �
cos

pX

2L

Vc ¼ K1 cosh
pY

2L
þK2Y sinh

pY

2L

� �
sin

pX

2L

8>>>>>>>>>><
>>>>>>>>>>:

ð26Þ

with

K1 ¼ 2LpH cosh
pH

2L
þð4L2

ð3�4ncÞ�tHp2Þ sinh
pH

2L

K2 ¼ tp2 cosh
pH

2L
�2Lp sinh

pH

2L

K3 ¼ 2LpðHþ3t�4tncÞ cosh
pH

2L
�tHp2 sinh

pH

2L
ð27Þ

The remaining boundary conditions and the first local equa-
tion (19a) are automatically verified. Finally, Eq. (19b) can be
solved and leads to the critical displacement:

lcr ¼ ð½24L2Ecð4L2
þt2p2Þðnc�1Þ� cosh2 pH

2L
þ½2ELt3p3Lð4n2

c þnc�3Þ

þ48L3Ectpð2nc�1Þ� cosh
pH

2L
sinh

pH

2L
þ96L4Ecð1�ncÞ�ELt3p4Hð1þncÞ

�24L2EctHp2Þ= 6ELtLpð1þncÞ 2Lð4nc�3Þ cosh
pH

2L
sinh

pH

2L
�pH

� �� �

ð28Þ
4. Numerical and experimental validation

4.1. Numerical computation of the critical displacement, bifurcation

mode and post-buckling behavior

Three-dimensional numerical finite element computations
have been performed in order to validate the previous analytical
solution. First, a linearized buckling analysis is carried out. An
hexagonal arrangement of the reinforcements has been retained,
according to the experimental patterns. Thus, the overall mechan-
ical response of the composite reinforced foam core (and conse-
quently of the sandwich) is transversely isotropic. A 3D unit cell is
only considered, for efficiency purposes, but here including the
skins and the full material properties of the transversely isotropic
reinforcements. The geometry of the plane-parallel unit cell and
the associated finite element mesh (made up of 20-noded
hexahedral elements) are depicted in Fig. 6. Periodic boundary
conditions are enforced on the lateral faces of the unit cell in both
directions, what makes the buckling behavior similar to that of an
infinite sandwich plate. Lastly, the bottom and top faces of the
sandwich cell are, respectively, subjected to zero and non-zero
(negative) displacement boundary conditions in the through-
thickness direction, in order to compress the composite and give
rise to the expected buckling phenomenon.

In order to better compare experimental and modeling results,
incremental post-buckling calculations are carried out. It will
allow us to recover first the initial pre-buckling stiffnesses in the
through-thickness direction, re-estimate the critical buckling
displacements and further analyze the post-buckling behavior.
A little defect is added to the model (a small concentrated load
along one axis of the sandwich plane) in order to trigger the
buckling and post-buckling phenomena.

Secondarily, 2D finite element linearized buckling analyses
have also been performed (including the skins as well) in order to
evaluate the relative influence of different hypotheses (2D repre-
sentation, boundary conditions) on the critical value.



Fig. 7. Comparison between analytical, numerical and experimental effective

moduli in the through-thickness direction.

Table 5
Comparison between analytical, 2D and 3D numerical critical displacements.

Panel A B C D

Analytical solution (mm) 0.2658 0.354 0.2298 0.2532

2D FE model (mm) 0.53578 0.38989 0.24204 0.25659

3D FE model (mm) 0.55887 0.40541 0.25773 0.27366

Fig. 6. Model for the 3D finite element computations: (a) 3D unit cell, (b) global mesh.
4.2. Comparison between analytical solutions and numerical/

experimental results

First, for each panel, the initial slope of the numerical stress–
strain curves obtained during the incremental simulations are
compared to both analytical effective moduli and experimental
corresponding mean values (see Fig. 7). As expected, the numer-
ical moduli only differ a little from the analytical ones, due to the
Poisson effect. It corroborates the idea that experimental moduli
are far less than predicted theoretical values.

For each density, the critical displacement has been then
determined in an analytical way (Eq. (28)), and by means of
numerical calculations (2D and 3D linearized buckling analyses).
All these results are summarized in Table 5 and displayed in
Fig. 8. The critical values predicted by the 2D and 3D numerical
analyses are very similar for all the density range (with a relative
error less than 6%). This result validates the hypotheses retained
when defining a 2D model equivalent to the real 3D geometry.
Moreover, the present analytical solution is shown to be in good
accordance with numerical results, at least for the three higher
9

densities of reinforcements (panels B, C and D). In these three
cases, the agreement is better (less than 12% of error) than it is
with most of other estimations of the critical value in the
literature. For example, Rosen’s formula, initially dedicated to
the micro-buckling of fiber-reinforced composite materials, is not
suitable in this context, except perhaps for the most dilute case
(panel A) where it gives a better result than ours. Modified
expressions of Rosen’s formula, such as the one derived by
Drapier et al. [4], are most likely to agree with numerical results,
even if the related hypotheses (simplified expressions of the
deformation field in the foam core) are not properly justified
and cannot comply with most of the boundary and continuity
conditions. Lastly, the general solution obtained by Liu et al. [5]
for sandwich beams with pin-reinforced foam cores is difficult to
compare with our own solution, since there are many differences
between the two approaches (in [5], the pins are simply sup-
ported instead of clamped, it is not clear whether the unit cell is
designed in 2D or 3D, and the definition of the foundation
modulus is not straightforward). The main difference between
our analytical solution and the 2D finite element model lies in the
consideration of the skins in the latter. Approximated boundary
conditions have been retained in the analytical approach, that do
not match the real conditions in the presence of skins, in order to
simplify the analytical resolution and make possible the achieve-
ment of a closed-form expression for the critical displacement.
Considering the numerical values in Table 5, this choice of
boundary conditions is not so detrimental, as soon as the volume
fraction of reinforcements is about 10% or higher. On the contrary,
with the smallest density (panel A), a large discrepancy is noticed
between the analytical and numerical predictions, what points
out the limitations of the present analytical model. When fibrous



reinforcements are much less numerous and very distant from
each other, the skin effect becomes more and more apparent in
the bifurcation mode shape and thus in the critical displacement
value.

Further, the post-buckling behavior is investigated through the
comparison between the numerical stress–displacement curves
and the experimental ones (Fig. 9). In the first stage of deforma-
tion, the difference between theoretical and experimental initial
stiffnesses is clearly emphasized. It is due to unavoidable imper-
fections related to the Napcos manufacturing process. Then, the
analytical critical displacements are compared to the stress–
displacement curves. The analytical solution seems to coincide
fairly well with the points in both numerical and experimental
Fig. 8. Critical displacements obtained from analytical and numerical (2D/3D)

analyses.

Fig. 9. Comparison between numerical and experimental stress–displ
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curves corresponding to the loss of linearity, except for the very
small density (panel A) for the reasons discussed above. For each
panel, these points have almost always the same abscissa (dis-
placement), whatever the experimental curve considered. In the
post-buckling range, the numerical curve always overestimates
the experimental ones. No limit point is observed numerically (as
if to say the post-buckling behavior is stable) whereas all the
experimental curves display a snap-through phenomenon. These
limit points and the subsequent great decrease of the stress level
are certainly due to secondary effects, such as the successive
failure of fibers and reinforcements during the post-buckling
stage.

Finally, Figs. 10 and 11 display the bifurcation modes obtained
by both 2D and 3D linearized buckling analyses and the post-
buckled shape observed experimentally. The identical deforma-
tion shapes, obtained from both numerical and experimental
points of view, confirm the predominance of the micro-buckling
phenomenon in the mechanical behavior of such sandwiches
under through-thickness compression.
5. Conclusions

The Napcos technology is a patented process that transver-
sally strengthens the foam core of a sandwich structure with fiber
yarns taken from facings. In this study, we investigated the
potential of such a reinforced sandwich in its through-thickness
compression behavior. The main issue is the large discrepancy
observed between the analytical predictions of the effective
moduli using classical mixture laws and the experimental
responses, due to many imperfections. The objective of the
present work was to demonstrate that micro-buckling is mainly
acement curves: (a) panel A, (b) panel B, (c) panel C, (d) panel D.



Fig. 10. Numerical bifurcation modes: (a) 2D model, (b) 3D model.

Fig. 11. Post-buckled deformation shape during experimental compression test.
responsible for the collapse of such sandwich structures under
through-thickness compression. An analytical closed-form solu-
tion for the critical displacement has been proposed, deriving
from a 3D bifurcation analysis. A 2D model was defined, for
simplicity purposes, only considering a unit cell of the reinforced
11
foam core (due to the material periodicity), with appropriate
boundary conditions to consider the influence of the skins.
The reinforcements were assumed to behave like Euler–Bernoulli
beams whereas the foam core was modeled as a 2D continuous
solid, without considering any simplified deformation field.
The 2D and 3D finite element models of a unit cell have also
been developed, for validation purposes. It will further allow
to generalize the buckling analysis to other configurations (for
instance, other distributions and/or orientations of the through-
thickness reinforcements) where an analytical solution is no more
available. The 2D and 3D models are related in such a way that
the second moment-to-area ratio of the beams and the volume
fraction of the reinforcements remain unchanged.

Experimental compression tests have been performed for four
different sandwich panels (with various densities of reinforce-
ments). Comparisons between analytical/numerical predictions
and experiments were discussed and clearly showed the accuracy
of the present analytical model. The closed-form expression of the
critical displacement is shown to be suitable to properly predict
the micro-buckling behavior of such sandwiches, as long as the
volume fraction of reinforcements is sufficiently high, say greater
than 10%. The local buckling of the reinforced sandwiches is thus
proved to be the initial reason for the collapse in through-
thickness compression.
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