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Variational approaches for nonlinear elasticity show that Hill's incremental formulation for the prediction of the overall behaviour of heterogeneous materials yields estimates which are too sti and may even violate rigorous bounds. This paper aims at proposing an alternative `ane' formulation, based on a linear thermoelastic comparison medium, which could yield softer estimates. It is ®rst described for nonlinear elasticity and speci®ed by making use of Hashin±Shtrikman estimates for the linear comparison composite; the associated ane self-consistent predictions are satisfactorily compared with incremental and tangent ones for power-law creeping polycrystals. Comparison is then made with the second-order procedure (Ponte CastanÄ eda, P., 1996. Exact second-order estimates for the eective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids, 44 (6), 827±862) and some limitations of the ane method are pointed out; explicit comparisons between dierent procedures are performed for isotropic, two-phase materials. Finally, the ane formulation is extended to history-dependent behaviours; application to the self-consistent modelling of the elastoplastic behaviour of polycrystals shows that it oers an improved alternative to Hill's incremental formulation.

1 1. Introduction
Nonlinear estimates for the eective properties of heterogeneous materials were ®rst proposed for predicting the elastoplastic behaviour of polycrystals. The initial contributions of the [START_REF] Taylor | Plastic strain in metals[END_REF] type, as well as those using an elastic description of the internal interactions between the crystals [START_REF] Kroè Ner | Zur plastischen Verformung des Vielkristalls[END_REF], make no recourse to any linearisation procedure. [START_REF] Hill | Continuum micro-mechanics of elastoplastic polycrystals[END_REF] incremental formulation of the elastoplastic self-consistent scheme is based on the use of instantaneous or `tangent' (multibranched) moduli or compliances relating the stress and strain rate tensors at both the local and the global scales within a step-by-step homogenisation procedure. It is the actual starting point of a whole range of schemes using linearisation of the constitutive relations of the phases. This incremental formulation has been considered for a long time the standard for deriving nonlinear estimates, especially for `hereditary' behaviours, i.e., for those behaviours which exhibit dependence of the current response on the loading path. However, an incremental formulation is no longer necessary for non-hereditary behaviours such as steady-state creep. [START_REF] Hutchinson | Bounds and self-consistent estimates for creep of polycrystalline materials[END_REF] extended Hill's procedure to this case by using tangent creep compliances instead of elastoplastic ones. He noticed that, for power-law creep, Hill's formulation may be integrated into a `total' one making use of `secant' creep compliances. Other secant moduli or compliances have also been de®ned [START_REF] Berveiller | An extension of the self-consistent scheme to plastically-¯owing polycrystals[END_REF][START_REF] Tandon | A theory of particle-reinforced plasticity[END_REF] leading to a (classical) `secant formulation', closely related to Hill's incremental formulation.

The development of variational approaches [START_REF] Willis | The overall response of composite materials[END_REF][START_REF] Talbot | Variational principles for inhomogeneous nonlinear media[END_REF][START_REF] Castanä | The eective mechanical properties of nonlinear isotropic composites[END_REF][START_REF] Suquet | Overall potentials and extremal surfaces of power law or ideally plastic materials[END_REF] for behaviours deriving from a single potential (nonlinear elasticity or viscosity) has made it possible to compare some of these nonlinear estimates to rigorous bounds of Hashin±Shtrikman type. A general conclusion [START_REF] Gilormini | A critical evaluation of various nonlinear extensions of the self-consistent model[END_REF] is that both the incremental and the (classical) secant formulations lead to estimates that are too `sti' and can even violate these bounds in some cases. The main reason for this is that the local tangent or secant moduli, which should vary from point to point, even inside a given phase, are assumed to be piecewise uniform (i.e., uniform per phase) and de®ned at some reference stress or strain which, as a rule, is taken to be the average stress or strain per phase.

Two dierent routes have been explored in order to overcome this diculty. On the one hand, several modi®cations have been brought into the secant approach to take better into account the stress (or strain) ¯uctuations within the individual phases. A ®rst attempt was made for particulate composites by [START_REF] Qiu | A theory of plasticity for porous materials and particle-reinforced composites[END_REF]. It consists in using the average shear energy in the matrix to de®ne its eective stress. However, the result is valid only for incompressible materials. A more general theory, valid for arbitrary microstructures and independent of any assumption of phase incompressibility, has been proposed by [START_REF] Suquet | Overall properties of nonlinear composites: a modi®ed secant moduli theory and its link with Ponte CastanÄ eda's nonlinear variational procedure[END_REF] (see also [START_REF] Suquet | Eective properties of nonlinear composites[END_REF]. It is based on second-order moments in each individual phase of the linear comparison solid. The use of second-order moments has also been considered independently by [START_REF] Hu | A method of plasticity for general aligned spheroidal void of ®ber-reinforced composites[END_REF] and [START_REF] Buryachenko | The overall elastoplastic behavior of multiphase materials with isotropic components[END_REF]. Interestingly, it has been shown [START_REF] Suquet | Overall properties of nonlinear composites: a modi®ed secant moduli theory and its link with Ponte CastanÄ eda's nonlinear variational procedure[END_REF][START_REF] Castanä | Nonlinear composites[END_REF] that this secant theory based on second-order moments coincides with Ponte CastanÄ eda 's (1991) variational procedure; this property ensures that the resulting estimates do not lead to the violation of any bound. On the other hand, new linearisations have been searched for, with the objective of generating softer estimates even when using the classical reference quantities. This is the case for the `second-order procedure' proposed by Ponte CastanÄ eda (1996) which makes use of a secondorder Taylor development of the strain or stress potentials. This paper aims at proposing an alternative solution, the `ane formulation', initially suggested by [START_REF] Rougier | Self-consistent modelling of elastic-viscoplastic polycrystals[END_REF], which makes use of the stress±strain relations instead of the potentials; we will discuss both its limitations and its advantages with respect to other procedures.

We ®rst de®ne this ane formulation for nonlinear elasticity or viscosity (Section 2), with an application to the self-consistent scheme in view of a comparison with the incremental formulation as well as with the tangent formulation proposed by [START_REF] Molinari | A self-consistent approach of the large deformation polycrystal viscoplasticity[END_REF] for power-law creep. Next, we compare the ane formulation with the second-order procedure and we extend this comparison to other schemes, speci®cally for two-phase composites (Section 3). Finally, we apply the ane formulation to hereditary behaviours, with special emphasis on crystalline elastoplasticity for a direct comparison with Hill's formulation (Section 4).

The ane formulation for nonlinear elasticity or viscosity

Principle of the ane formulation

An incremental formulation is not required for nonlinear elasticity and viscosity. Therefore, the tangent moduli or compliances, associated with some given initial prestress or prestrain (or prestrain rate), could give, at any stage, a better description of the current local behaviour than any secant ones. We deal here with nonlinear elasticity, but all the forthcoming developments are still valid for viscous materials with e e ex denoting the strain rate. We consider a given deformed state (0) of a representative volume element O of the heterogeneous material under consideration. At this stage, let e e e 0 x and s s s 0 x be the strain and stress tensors at some point x in some phase s. The nonlinear stress±strain relations for this phase read s s s H s e e e or equivalently e e e G s s s sX Their linearised `ane' approximation at this stage (0) reads at x s s s L 0 s x:e e e t t t 0 x, or, equivalently, e e e M 0 s x:s s s Z Z Z 0 x 1 with L 0 s x dH s de e e e 0 x , t t t 0 x H s e e e 0 x À L 0 s x:e 0 x where hÁi indicates a spatial average. These equations can only be used when the strain or stress ®elds e e e 0 x or s s s 0 x are known. They have to be combined with strain or stress localisation equations for the thermoelastic problem (which do not derive, in the general case, from the knowledge of A 0 s x and B 0 s x); this results in a global set of implicit equations for e e e 0 x or s s s 0 xX

Approximation of piecewise uniformity

Such a treatment is not practical and one has, as usual, to adopt the simpli®cation of piecewise uniform moduli and prestresses (compliances and prestrains) per phase. This is done by referring these quantities to some reference strain e e e s (stress s s s s in every phase. This choice is an essential one. To make clearer the speci®c aspects of the ane approach with respect to other classical formulations, we prescribe, as do those, the reference strain (stress) to be the average per phase of the strain (stress) ®eld. The procedure is detailed for prestrains and compliances; dual results are obtained upon appropriate substitution of the relevant ®elds and variables.

Thus, at any stage, every phase s is supposed to obey the linearised constitutive equations (for clarity, the index 0 referring to the current stage is omitted):

e e e M s :s s s Z Z Z s , M s dG s ds s s s s s s , Z Z Z s G s s s s s À M s :s s s s X 4

We emphasise that the approximate ®elds e e e and s s s in Eq. ( 4) are dierent from the actual ®elds in the nonlinear composite. They will be denoted by e e e THE and s s s THE in Section 3 for clarity, but this distinction is not essential here. Notice that the average stress and strain are related by e e e s G s s s s s in each phase s, which, for typical nonlinear elastic behaviour, leads to overestimating the local, and therefore the overall stiness. Formally, Eq. ( 3) are unchanged but they now only use per phase average linear localisation tensors A s or B s , e.g.,
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s s s Ä Z Z Z, 5a Ä M s c s M s :B s , 5b Ä Z Z Z s c s Z Z Z s :B s , 5c 
B s hBi s , 5d 
with c s denoting the volume fraction of phase s and hÁi the spatial average over phase s. Additional localisation equations, relating the reference stresses s s s s , identi®ed with the per phase stress averages in the thermoelastic comparison composite, to the global stress Å s s s and the prestrains Z Z Z s are still needed: they have to be speci®ed independently, according to the chosen homogenisation scheme. Two-phase materials provide a noticeable exception since Levin's theorem [START_REF] Levin | Thermal expansion coecients of heterogeneous materials[END_REF] gives then directly

c 1 s s s 1 À B 1 : Å s s s 1 Àc 2 s s s 2 À B 2 : Å s s s M 1 À M 2 À1 : À Ä Z Z Z À h Z Z Z i Á X 6 

Hashin±Shtrikman estimates

For multiphase materials, we can adopt Hashin±Shtrikman type estimates for which the localisation equations read

s s s s I Q 0 :d d dM 0 s À1 :  Šs s s 0 Q 0 : Ä Z Z Z À Z Z Z s à 7
with I is the-fourth order unit tensor, d d dM 0 s the deviations of the local compliances with respect to those of the reference medium (say M 0 ), Å s s s 0 an auxiliary stress tensor ensuring hs s si Å s s s and Q 0 the stress Green tensor de®ned as

Q 0 i i D D D 0 x À x H dx H , x P i iX 8 
Here D D D 0 is the stress Green operator of the reference medium and i i is the representative ellipsoid associated with the assumed ellipsoidal spatial distribution [START_REF] Willis | Bounds and self-consistent estimates for the overall moduli of anisotropic composites[END_REF] of the phases. Dual variants of Eqs. ( 7) and ( 8) are derived for e e e s and the strain Green tensor P 0 upon substitution of M s , M 0 , Å s s s 0 , Å s s s, Ä Z Z Z, Z Z Z s and D D D 0 by L s , L 0 , Å e e e 0 , Å e e e, Ä t t t, t t t s and the strain Green operator G G G 0 , respectively.

Hill's compliance constraint tensor M Ã0 can be used to rewrite Eq. ( 7) as an interaction equation of an inclusion of phase s embedded in an in®nite reference medium: e e e s À Å e e e 0 ÀM Ã0 :s s s s À Å s s s 0 ,

M Ã0 À Q 0 Á À1 ÀM 0 9
with e e e s M s :s s s s Z Z Z s and Å e e e 0 M 0 : Å s s s 0 Ä Z Z Z (the dual form would involve the stiness constraint tensor L Ã0 M Ã0 À1 P 0 À1 À L 0 ).

When the self-consistent scheme is used, the reference medium is the searched homogeneous equivalent medium: exponents 0 for P, Q, d d dL s and d d dM s must be changed to SC and L 0 , M 0 into Ä L SC and Ä M SC X Note that Å s s s 0 (respectively Å e e e 0 is then equal to Å s s s (respectively Å e e e and B SC s and M ÃSC are linked by the relation:

B SC s À M s M ÃSC Á À1 : À Ä M SC M ÃSC Á X 10 
The ane formulation can be applied to these estimates by solving the implicit set of nonlinear equations ( 4), ( 5) and ( 7) for the unknown quantities s s s s (or from their dual expressions for e e e s ). This can be performed numerically by the use of a (modi®ed) ®xed-point iterative procedure: for a given macroscopic stress Å s s s, we start at step (k ) with initial values s s s k s obtained at step k À 1 (for k = 1, we set s s s 1 s Å s s s, Vs), from which we derive M k s and Z Z Z k s by Eq. ( 4) and Ä Z Z Z k and Ä M k by Eq. ( 5). Then Eq. ( 7) gives s s s k1 s as solution of the nonlinear equation

s s s k1 s I Q 0k :d d dM 0k s À1 : n Å s s s k 0 Q 0k : h Ä Z Z Z k À G s s s s k1 s M k s :s s s k1 s io 11
where s s s k1 s has been used instead of s s s k s in the last two terms for accelerated convergence (this refers to a `nonlinear inclusion' embedded in the in®nite matrix de®ned by M 0 and Ä Z Z Z k subjected to Å s s s k 0 at in®nity). The procedure is repeated until convergence is attained for the s s s s X For the self-consistent scheme, the computation of Ä M SC requires an additional iterative loop within each of the above steps.

Comparison of the ane and tangent formulations

The ane formulation makes use of the same linearisation scheme of the local constitutive equations as the one which was originally proposed for the selfconsistent modelling of power-law creep of polycrystals, within a ®nite strain framework, by [START_REF] Molinari | A self-consistent approach of the large deformation polycrystal viscoplasticity[END_REF] and then extended somewhat by [START_REF] Lebensohn | A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys[END_REF]. In this section, we ®rst emphasise the main dierences between this formulation, restricted to small strains, hereafter referred to as the `tangent formulation' for reasons given in the sequel, and the ane formulation. An illustrative example is then used to compare the predictions of the ane, the tangent and the incremental formulations. Throughout this section e e e will refer to the strain rate.

Analysis of the tangent formulation

The ane and tangent formulations dier from each other in the way they tackle the localisation problem. The overall linearised constitutive equations have the same form (5) but the tangent eective compliances Ä M TAN and prestrain Ä Z Z Z TAN obey

Ä M TAN d Ä G TAN d Å s s s Å s s s, Ä Z Z Z TAN Ä G TAN Å s s s À Ä M TAN : Å s s s, 12 
instead of Eqs. (5b) and (5c). Here Ä G TAN Å s s s is a `tangent' estimate for the overall strain response. Such a treatment requires the stress dependence of this function to be known a priori. That is why the tangent formulation has been restricted to power-law creep with the same exponent n throughout the material, a case for which the authors have argued, after [START_REF] Hutchinson | Bounds and self-consistent estimates for creep of polycrystalline materials[END_REF], that Ä G TAN Å s s s obeys the same power-law dependence. Let us adopt the same restriction for comparison; the local strain e e e s and prestrain Z Z Z s in each phase s then satisfy: e e e s mM s :s s s s , 13a

Z Z Z s m À 1M s :s s s s , 0 `m 1 n `1X 13b 
The same relations hold at the macroscopic level for the tangent approach:

Å e e e m Ä M TAN : Å s s s s , 14a Ä Z Z Z TAN m À 1 Ä M TAN : Å s s sX 14b 
Let us ®rst show that the ane and tangent procedures do not coincide by proving that Eq. ( 14b) is not obeyed by Ä Z Z Z AFF and Ä M AFF X From Eqs. (5c) and (13b), we have

Ä Z Z Z AFF s c s t B s :Z Z Z s m À 1 s c s t B s :M s :s s s s 15
where t B is transposed from BX From the classical thermoelastic relation between the macroscopic and local elastic strains and t B, for their ane analogues we have:

Ä M AFF : Å s s s h t B:M:s s s i s c s t B:M s :s s s s X 16 
Since, due to the intraphase heterogeneity, we have in general t B:M s :s s s s T t B s :M s :s s s s , Vs, 17

we conclude from Eqs. ( 15) and (17

) that Ä Z Z Z AFF T m À 1 Ä M AFF : Å s s s, in contrast with
Eq. ( 14). Thus, the ane formulation does not reduce to the tangent one which does not comply with the general framework of homogenised linear thermoelasticity.

An important dierence can be pointed out between the tangent and ane treatments of the self-consistent scheme. Hill's expression (9), can be preferred to the more explicit form ( 7), but it has to be used simultaneously with the actual linearised constitutive equations which refer to a tangent description. On the other hand, according to the tangent approach, Hill's equation for phase s, applied to the self-consistent scheme, is combined with the relations e e e s mM s :s s s s Å e e e m Ä M TAN : Å s s s 18

which express a secant-like formulation. Consequently (see [START_REF] Lebensohn | A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys[END_REF], Eqs. ( 9) and ( 18) can be combined to give

s s s s b b b TAN s : Å s s s, b b b TAN s À mM s M ÃTAN Á À1 : À mM TAN M ÃTAN Á X 19 
Referring to Eq. ( 10), this quasi-stress localisation tensor b b b TAN s combines a `secant' description of the local and global behaviours with a tangent analysis of the inclusion/matrix interaction. This inconsistency is likely to be responsible for the odd behaviour of the tangent method at large n values where its predictions tend towards the lower Reuss-type bound (see hereafter). The same comment can be made for the initial version of the tangent model [START_REF] Molinari | A self-consistent approach of the large deformation polycrystal viscoplasticity[END_REF] too, which used an isotropic approximation of the overall compliance tensor Ä M TAN X

Steady creep of fcc polycrystals

The ane formulation is applied next to the self-consistent modelling of the steady creep of polycrystals for comparison with both the tangent and the incremental predictions. This polycrystal is an aggregate of perfectly bonded crystals which dier only by their lattice orientation. In each single crystal, the creep deformation is only due to glide on slip systems a, with the unit normal to the slip plane n a and the unit slip direction m a X The orientation tensor R a which relates the resolved shear stress to the stress tensor by t a R a :s s s is

R a 1 2 n a m a m a n a 20
where denotes a tensorial product. Note that m a and Àm a are taken to be associated with two dierent systems so that t a is always nonnegative. Though the ane approach could be applied to any shear stress±shear strain rate relations, including dissimilar relations for dierent sets of slip systems, attention is restricted, for comparison with the tangent predictions, to power-law creep with the same exponent for all systems: g a g a 0 t a at a 0 n with g a the shear strain rate on system a, g a 0 a reference shear rate and t a 0 a (positive) reference shear stress. The relation between the local creep strain rate e e e and stress s s s in phase s, which refers to a set of grains with the same lattice orientation, reads e e e a g a s s sR a a g a 0 R a :s s s t a

0 3 n R a G s s 21
and can be linearised about the reference stress s s s s according to Eq. ( 4) with

M s n a g a 0 t a 0 R a :s s s s t a 0 3 nÀ1 R a R a , Z Z Z s 1 À nG s s s s s X 22
The linear self-consistent scheme with spherical symmetry is used to model an untextured fcc polycrystal. The ane estimate of the overall response Å e e e to a prescribed stress Å s s s is derived from Eqs. ( 5) and ( 22), combined with the localisation equations ( 7). Hill's constraint tensor M ÃSC can be used as well, which leads to estimates for s s s s through the resolution of the following set of equations: e e e s À Å e e e ÀM ÃSC :s s s s À Å s s s,

M ÃSC À Q ÃSC Á À1 À Ä M SC Ä M SC s c s M s :B SC s , B SC s I Q SC :d d dM SC s À1 X 23 
These equations can also be used in order to derive both the incremental predictions, upon substitution of the tangent compliances M s by the anisotropic secant ones mM s , and the tangent ones, upon substitution of the stress localisation tensors B SC as given by Eq. ( 19). Thus the ane, tangent and incremental estimates can be determined with the same numerical procedure, adapted from the one proposed by [START_REF] Molinari | A self-consistent approach of the large deformation polycrystal viscoplasticity[END_REF].

Glide is assumed to occur on the twelve octahedral slip systems and shear strain rates to obey a power-law with homogeneous reference shear strain rates g 0 and shear stresses t 0 throughout the polycrystal. For a tensile prescribed overall stress, the relation between the equivalent overall stress " s eq and strain rate " e eq reads [START_REF] Hutchinson | Bounds and self-consistent estimates for creep of polycrystalline materials[END_REF]) " e eq g 0 " s eq a s0 n so that the reference stress s0 governs the tensile overall creep response of the polycrystal. Due to the transverse isotropy of the creep compliance tensor and to incompressibility, Q SC can be derived straightforwardly [START_REF] Hutchinson | Bounds and self-consistent estimates for creep of polycrystalline materials[END_REF]. Classically, we take advantage of symmetries to reduce averages on one standard triangle and proceed with increasing values of n. Corresponding ane, tangent and incremental estimates of s0 as well as upper Voigt±Taylor and lower Reuss bounds are reported in Fig. 1. As pointed out by [START_REF] Hutchinson | Bounds and self-consistent estimates for creep of polycrystalline materials[END_REF], Hill's incremental estimate tends towards the Voigt±Taylor upper bound while, as expected, the ane prediction is signi®cantly softer and is likely to tend towards some intermediate value between the Voigt and Reuss bounds (additional evidence for this will be found in Fig. 2 for two-phase materials). The tangent estimate softens as n increases, which enhances the intracrystalline heterogeneity, and deviates from the ane one tending towards the Reuss bound. The overall behaviour derives also from a strain wÅ e e e or a stress ũ Å s s s potential, which are Legendre transforms of each other as well, and are given by: wÅ e e e inf where uÅ e e e (or Å s s s is the set of compatible strain (or statically admissible stress) ®elds with average Å e e e (or Å s s s); k s is the characteristic function of phase s. The question of the existence of such eective potentials from which the stress± strain relation predicted by the ane procedure would derive can be appropriately addressed through the comparison between the ane procedure and the secondorder procedure recently proposed by Ponte CastanÄ eda (1996), which, by construction, derives from a potential. A related question is the equivalence of the prescribed strain approach and the dual approach of a prescribed overall stress.

The second-order procedure

We provide here a simpli®ed description of this procedure and refer to Ponte CastanÄ eda (1996) and Ponte CastanÄ eda and Suquet (1998) for more details. It is based on a second-order Taylor expansion of the strain potential in each phase s about some reference strain e e e s , to be speci®ed later: where s s s s dw s de e e e e e s is the stress associated to the reference strain and L s d 2 w s de e ede e e e e e s is the tangent modulus at the same reference strain. Such an expansion for the local potential is equivalent to a ®rst-order expansion similar to Eq. ( 1) for the stress± strain relation, when H s dw s de e e X Combining Eqs. ( 25) and ( 26) provides an estimate wSOE for the eective potential wÅ e e e of the composite: where, as in Eq. (1), t t t s s s s s À L s :e e e s X The last minimisation is a problem for a linear thermoelastic comparison composite with the phase distribution of the nonlinear composite and with homogeneous local moduli L s and prestresses t t t s in each phase s. Its solution takes the form [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF]:

PÅ e e e 1 2 Å e e e: Ä L:Å e e e t t t:Å e e e f, 29

where the eective moduli Ä L and the eective prestress t t t are computed according to the dual expression of Eq. ( 5) with help of some linear localisation tensors A s relevant to the microstructure f is the elastic energy at vanishing overall strain, related to internal strain incompatibilities). The macroscopic stress is computed by taking the derivative of wÅ e e e with respect to Å e e eX One can check that where Å s s s THE Ä L:" e e e t t t is the macroscopic stress in the thermoelastic comparison composite. The above expressions provide an estimate for the eective strain potential and the eective stress related to the macroscopic strain Å e e e for any choice of reference strains e e e s X An appropriate choice is to prescribe, as in Section 2.2, the reference strains to be equal to the average strains in every phase of the linear thermoelastic comparison composite subjected to the same overall strain: Vs, e e e s he e ei s X This prescription leads to a simpler expression of the estimate of the overall nonlinear potential (Ponte CastanÄ eda and [START_REF] Castanä | Nonlinear composites[END_REF]: The second-order procedure can also be applied in the dual situation of a prescribed stress and leads to estimates for the eective stress potential and the corresponding macroscopic strain. Second-order Taylor expansions of the local stress potential about some reference stresses s s s s s , when plugged into Eq. ( 25), provide an estimate for the eective stress potential involving the stress potential of some linear thermoelastic comparison composite:

wSOE Å e e e
ũSOE Å s s s
where, as previously, e e e s s du s ds s s s s s s s and M s d 2 u s ds s sds s s s s s s s , Z Z Z s e e e s s À M s :s s s s s and Ä M and Ä Z Z Z are the eective compliances and prestrains of this comparison composite g is its complementary energy at vanishing overall stress, related to residual stresses). The overall strain is obtained by derivation with respect to Å s s s:

Å e e e SOE Å e e e THE 1 2

s c s O s : ds s s s s d Å s s s ! :: À s s s À s s s s s Á À s s s À s s s s s Á s 34
where Å e e e THE Ä M: Å s s s Ä Z Z Z is the macroscopic stress in the thermoelastic comparison composite and with O s d 3 u s ds s sds s sds s s s s s s s X The reference stresses are the average stresses in the phases in the thermoelastic comparison composite: s s s s s hs s s s i s X

Comparison between ane and second-order procedures

The linear thermoelastic comparison composite referred to by the ane and the second-order procedure for a given prescribed strain Å e e e are identical. Both approaches dier only by the way the overall stress is computed. While in the ane procedure it is identi®ed to the overall stress in the comparison composite according to Å s s s AFF Å s s s THE , it is given by Eq. ( 31) in the second-order procedure. Both results are dierent because of the additional term in Eq. ( 31 The second moment he e e e e ei s of local strains is generally larger than he e ei s he e ei s (in the sense of quadratic forms) because of the strain heterogeneity within the phases in the comparison composite. Exceptions correspond to materials with a phase distribution such that the local ®elds in the comparison composite are uniform in all phases exhibiting a nonlinear behaviour (i.e., N s T 0): examples of such materials are laminates and matrix-inclusion composites with a linear matrix and nonlinear ellipsoidal inclusions at low volume fraction. This intraphase heterogeneity is also the reason for which the ane estimate does generally not derive from an eective potential. Note also that, because of the additional term in Eq. ( 31), it does not make sense, for the second-order procedure, to identify the local stresses in the comparison composite to the local stresses in the nonlinear composite.

The question of the existence or not of a duality gap can be addressed in the following way: if Å s s sÅ e e e is the macroscopic stress due to the prescribed strain Å e e e according to some scheme, does the strain due to this stress according to the dual version of the same scheme coincide with Å e e e? The answer is yes for the ane procedure. This can be made clear by noting that the stresses s s s s dw s de e e e e e s related to the reference strains which solve the equations governing the ane procedure for the prescribed strain Å e e e solve the equations that characterise the reference stresses in the dual approach for a prescribed stress Å s s s AFF Å e e e Å s s s THE Å e e eX This is mostly because L s e e e s and M s s s s s are inverse of each other. But these stresses s s s s in general do not solve the corresponding equations for an overall stress Å s s s SOE Å e e eX The reference stresses in the dual second-order approach for a prescribed stress Å s s s SOE Å e e e are thus dierent from s s s s and that is why they were referred to in the previous section using the exponent s: there are two dierent second-order estimates, the ®rst one, based on the strain potential expansion, being generally more appropriate than the second one for the type of nonlinearities exhibited by ductile composites.

At this stage it is worth mentioning that there might be some other nonstandard, more appropriate choices of reference strains or stresses, for both the ane and the second-order procedure. In particular, the prescription

Vs

e e e À e e e s :Ns:e e e À e e e s s 0 36 ensuring that Å s s s SOE Å s s s AFF Å s s s THE , would guarantee the existence of an overall potential for the ane procedure and would suppress the duality gap in the second order one. Unfortunately, such a de®nition leads to a dead end in the case of power-law type materials, such that w s le e e l m1 w s e e e, Vl b 0X For such materials the reference strains are homogeneous functions of degree one of the overall strain so that L s Å e e e is homogeneous of degree m À 1 and, by Euler's formula, N s : This proves that both second-order estimates are always weaker than the ane one for power-law type materials, regardless of the de®nition used for the reference strains or stresses; equality can only be achieved in materials exhibiting uniform local ®elds in the nonlinear phases, as those mentioned above.

Weakly inhomogeneous composites

Exact second-order expansion

The composites considered in this section have a small contrast. More speci®cally the energy w s of the phases diers from the energy w 0 of a homogeneous nonlinear reference medium by a small quantity measured by a small parameter t:w s e e e w 0 e e e tdw s e e eX The following notations related to the homogeneous reference medium and to the perturbation will be useful in the sequel An asymptotic expansion with respect to the contrast for the exact ®elds e e e and s s s in the nonlinear composite and for the exact eective energy has been given by [START_REF] Suquet | Small-contrast perturbation expansions for the eective properties of nonlinear composites[END_REF]. This expansion to second-order for the energy reads

wÅ e e e w 0 Å e e e t h dw iÅ e e e À t 2 2 hÇ e e e 0 :L 0 :Ç e e e 0 i O t 3 40

where Ç e e e 0 is the solution of the following linear `thermoelastic' problem Ç s s s 0 x L 0 :Ç e e e 0 x s k s xt t t s , div Ç s s s 0 0, hÇ e e e 0 i 0X 41

The expansion to second-order in the contrast of the exact eective stress±strain relation for the nonlinear composite derives from Eq. ( 40 

The ane method for small contrast

The predictions of the second-order and ane estimates, both for the local ®elds and for the eective constitutive law, can be expanded to second order in the contrast. Regarding the local ®elds, the Taylor expansion of the ®elds s s s THE and e e e THE in the linear thermoelastic comparison medium can be obtained for small contrast t by considering the successive derivatives with respect to t of the systems of equations in the thermoelastic comparison composite satis®ed by s s s 41). The terms of order 2 are obtained by taking the second derivative with respect to t of the system of equations satis®ed by s s s THE , e e e THE at t 0X It is found that the ®elds È e e e THE 0 and È s s s THE 0 do not coincide with the exact second-order terms in the expansion of the actual ®elds in the nonlinear composite. Therefore, the approximate ®elds s s s THE , e e e THE coincide with the actual ®elds s s s, e e e in the nonlinear composite up to order 1 in the contrast, but not to higher order in general.

Regarding the eective constitutive relation, the prediction of the second-order procedure for the energy (and therefore for the constitutive relations) is known [START_REF] Castanä | Exact second-order estimates for the eective mechanical properties of nonlinear composite materials[END_REF] to be exact to second-order in the contrast. Therefore, it also coincides with Eq. ( 43). The expansion to second-order in the contrast of the prediction of the ane procedure can be performed either by taking the spatial average of the expansion (44) for s s s THE to second-order or by using the expansion ( 44) for e e e THE to ®rst-order and the relations ( 35) and ( 43). The ®nal result reads The ane procedure is therefore not exact to second order in the contrast, except when the ®rst order correction Ç e e e 0 of the strain ®eld is constant in each phase.

Application to porous materials

Nonlinear porous materials should exhibit a nonlinear answer under pure hydrostatic load, even when the nonlinear matrix is incompressible. On the contrary, the ane estimate for such materials exhibits a linear dependence of the volume change on the hydrostatic pressure at a ®xed, possibly non-vanishing, macroscopic deviatoric load. Such a limitation is in fact common to all nonlinear extensions that assume, explicitly or not, that the average stress of a given phase is related to the average strain by the local constitutive law of this phase: he e ei s du s ds s s hs s si s 46

and make use of some linearisation of the local constitutive law about the average strain or stress in each phase. This is the case for the classical incremental procedure, the classical secant schemes and the tangent model, in their anisotropic as well as isotropic variants, and the present ane procedure; but it is neither the case for the variational estimates (or the modi®ed secant procedure) nor the second-order estimate.

The reason for this limitation can be made clear as follows. Consider a porous materials with a pore volume fraction c subjected to the overall stress Å s s s À " pi " s, where " p is the pressure and " s the deviatoric stress. The stress in the pores being zero, the average stress in the matrix is 1 1Àc À " pi " sX If Eq. ( 46) holds and if the matrix is incompressible, the average strain in the matrix M is given by

he e ei M du M ds s s 1 1 À c " s 47 
and does not depend on the overall pressure. The average deformation of the pores depends on which model is used to describe the porous material. But all the above-mentioned models make use of some linear porous comparison material, the matrix of which having the secant, tangent or ane properties of the nonlinear matrix at the stress 1 1Àc " s, which again does not depend on the overall pressure. As a consequence, the deformation of the pores at ®xed " s will depend linearly on the pressure and so will the overall strain.

The true nonlinear behaviour of such materials is due to the heterogeneity of the local stress ®eld in the matrix which locally might be deviatoric even under pure overall hydrostatic stress and thus involve the constitutive nonlinearities. Such intraphase heterogeneities are overlooked by models that deal only with per phase average quantities, which are therefore unable to describe the nonlinear answer of such materials under hydrostatic load.

Two-phase isotropic incompressible composites

We conclude this section with a comparison between the ane and secondorder procedures and several other schemes, for a two-phase composite made of incompressible isotropic power-law type phases, with local potentials w s e e e s s e 0 m 1 e eq e 0 m1 48

for purely deviatoric strain w s e e e I when tr e e e T 0 to enforce incompressibility). Here, e 0 is a reference strain and s s characterises the stiness of the phase s. The deviatoric stress and the restriction to purely deviatoric strains of the tensor of tangent moduli at some traceless reference strain e e e s are: where m tgt s e eq s ms s 3e 0 e eq e 0 mÀ1 is the tangent modulus, m sct s e eq s nm tgt s e eq s is the secant modulus, E s 2 3 e e e s e eq s e e e s e eq s is the projector on the `direction of the reference strain' and F s K À E s , K is the projector on purely deviatoric tensors.

The comparison is carried out for matrix-inclusion type composites with isotropically distributed spherical inclusions at low volume fraction, so that the classical Hashin±Shtrikman estimate built with the matrix as reference medium is an appropriate model for the description of the thermoelastic comparison composite. The relations given in Section 2 lead to the following system of equations characterising the deviatoric reference strains e e e 1 and e e e 2 for a given load Å e e e: The constraint tensor L Ã 1 related to L 1 of the form (49) has orthotropic symmetry and its full computation is in general a dicult task which has to be performed numerically. But when e e e 1 is a (traceless) uniaxial tension or a pure shear, it can be given the following expression [START_REF] Nebozhyn | The second-order procedure: corrected results for isotropic, two-phase composites[END_REF])

L Ã 1 2 1 n 2Cm, y À 1 m tgt 1 E 1 G 1 51
where G 1 satis®es G 1 :E 1 E 1 :G 1 0 and C is the coecient introduced by Suquet and Ponte CastanÄ eda (1993), which depends on m and the angle y related to the third invariant of the tensor e e e 1 y 0 and y pa6 correspond to uniaxial tension and pure shear, respectively). Furthermore, for these speci®c values of y, it can be shown that the reference strains are proportional to the macroscopic strain, so that the system (50) can be simpli®ed into a system of scalar equations characterising the equivalent strains e eq 1 and e eq 2 , which is easy to solve numerically. The ane estimate for the overall stress is then obtained by averaging the stresses in the phases while the second order estimate (strain energy expansion) is computed according to Eq. (32); the dual variant of Eq. ( 32) leads to the eective complementary energy according to the stress energy expansion-based secondorder procedure. A macroscopic reference stress Ä s s s such that " s eq s" e eq ae 0 m (for the ane procedure) or "

wÅ e e e se 0 m1 " e eq ae 0 m1 (for the second-order procedure) can then be identi®ed.

The results are plotted in Fig. 2 as a function of the nonlinearity for a composite with 15% inclusions three times stier than the matrix and are compared to the predictions of the incremental, secant and variational estimates Note that the bounds, the variational and the secant estimates, which are not sensitive to the third invariant of the load, are identical on both plots. 18 as well as to the Voigt, Reuss and upper Hashin±Shtrikman variational bounds. It turns out that the ane estimate is the softest among all those dealing with phaseaveraged quantities; in particular, it improves substantially on the incremental procedure which is de®nitely too sti at high nonlinearities. Unlike the classical or modi®ed (i.e., variational) secant estimates, it is sensitive to the third invariant, as expected.

However, the ane estimate is stier than the variational one, over the whole range of nonlinearities in the case of tension as well as for m b 0X1 for shear. Since the variational estimate is an upper bound for the eective nonlinear properties for the class of microstructures that can be described by the linear Hashin±Shtrikman estimates at any contrast of the phases, it is suspected that the ane estimate is still too sti. Furthermore, there are situations where the ane estimate violates the variational Hashin±Shtrikman upper bound, which is valid for any microstructure with an isotropic distribution of the phases.

This occurs, in particular, for the case of small contrast and high nonlinearity. Indeed the small-contrast expansions ( 43) and ( 45) can be given explicit expressions in the present situation. Assuming overall isotropy for the composite, the eective stress-strain relation can be conveniently expressed in terms of the above-de®ned reference stress sX The exact expansion (43) simpli®es to

sSOE hsi À Cm, y s 2 À hsi 2 s 0 O t 3 X 52
The expansion to second-order (45) of the ane method is made explicit by using the relations hÇ e e e 0 i s ÀL Ã 0 L 0 À1 :t t t s together with the expression (51) of the constraint tensor L Ã 0 (valid at least when y 0 and y pa6). The result is

sAFF hsi À 2m m 1 1 À m À 1 m 1 Cm, y Cm, y s 2 À hsi 2 s 0 O t 3 53
and is dierent from the exact expression (52), except in the linear case m 1).

In particular, when m tends to 0, mCm, y tends to 0 and the prediction of the ane procedure tends (to second-order) to the Voigt upper bound sV hsiX 4. Extension of ths se ane formulation to rate-dependent and rate-independent elastoplasticity

Principle

The ane formulation has been presented in Section 2 for nonlinear elasticity or viscosity for the sake of clarity. It can be extended to constitutive behaviours which exhibit a dependence of the current response on the loading path. Actually, a ®rst draft of the ane method was originally proposed [START_REF] Rougier | Self-consistent modelling of elastic-viscoplastic polycrystals[END_REF] for rate-dependent elastoplasticity and we refer to [START_REF] Masson | Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials[END_REF] for its fully developed version. In this section, after a brief description of the general way to deal with hereditary behaviours, rate-independent elastoplasticity will be focused on, with special emphasis on the self-consistent scheme in view of comparison with the incremental formulation. Here, e e e and g g g again denote strains and shear strains and their rates are Ç e e e and Ç g g gX The main diculty is the need to account for the previous local and global responses at times tt when deriving the current response at tX Let Å e e et be the prescribed macroscopic loading path, assumed to be zero for t0; we are searching for the macroscopic stress response Å s s stX According to the ane procedure, the resolution of an implicit set of equations for the local variables e e e s t or s s s s t is required. In addition, due to the considered hereditary behaviour, the knowledge of e e e s t or s s s s t, Vtt is also required: these quantities must have been determined through a similar implicit treatment, involving at any time t a speci®c linear comparison composite as de®ned at that time. Note that, in turn, each of these auxiliary problems at any intermediate time requires the knowledge of the local variables at all previous times. This results in a multiply implicit set of simultaneous equations which can only be solved numerically.

For rate-dependent elastoplasticity, it has been proposed [START_REF] Masson | Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials[END_REF] to discretise the time interval 0, t into intermediate times y i , i 1, N and to determine the behaviour of the linear (thermoviscoelastic) comparison composite and the associated local variables by proceeding through increasing times y i , so as to use at each step the results obtained at previous steps. Despite the apparent similarity, this treatment is quite dierent from an incremental one which would not use the same linear comparison composite. The same dierence will be stressed for rate-independent elastoplasticity for which a slightly modi®ed method has to be proposed to deal with the speci®c situation of multibranched constitutive equations.

Rate-independent elastoplasticity of crystalline materials

We consider an elastoplastic polycrystal whose crystals obey the Schmid law with a limited number of de®nite crystallographic slip systems aX The local strain rate is decomposed into its elastic and plastic parts:

Ç e e e Ç
e e e e Ç e e e p S: Ç s s s a g a R a , 54

with S the elastic compliance, R a the orientation tensor (20) of system a and g a the associated nonnegative plastic shear strain rate (see Section 2.4.2). A slip system a in phase s is potentially active when its resolved shear stress R a :s s s s reaches the critical value t a c ; it is active when, in addition, its rate R a : Ç s s s s equals the critical resolved shear stress rate t a c , obeying the strain-hardening equation t a c b H ab g b X 55

For simplicity, the hardening matrix H ab is assumed to be symmetric, positive de®nite and constant (otherwise it would have to be linearised as well) so that the local (elastoplastic) tangent moduli take the form [START_REF] Hutchinson | Elastic±plastic behaviour of polycrystalline metals and composites[END_REF]:

L s C s : I À ab D ab R a R b :C s 3 56
where the summation is restricted to the active systems, with C s the elastic moduli and D a matrix with components D ab H ab R a :C s :R b À1 X The shear rate on active systems reads

g a b D ab R b :C s :Ç e e e s X 57 
The tangent moduli L s , which have diagonal symmetry, depend on the current combination of active systems and are then multibranched. The intermediate times y i are de®ned as those times at which any new slip system in any phase of the polycrystal becomes active or inactive, an occurrence we call an event. Between two such consecutive events, the tangent moduli are, according to Eq. ( 56), constant throughout the polycrystal and the local constitutive equations may be linearised in the usual ane way: s s s L s :e e e t t t s , with L s given by Eq. ( 56) and t t t s s s s s À L s :e e e s X The new diculty of having to look at any time for the next event is somewhat balanced by an easier, stepwise explicit, solution procedure. On the other hand, the assumption of piecewise uniformity of the linear comparison medium is likely to be still cruder than it would be for smoother constitutive behaviour since, in the actual polycrystal, any new event occurring at some point makes the local instantaneous moduli change abruptly.

The solution scheme we propose to predict the overall stress response at time t to a prescribed strain path Å e e et, tt, is the following:

. assume temporarily that at time t the instant y N when the nearest previous event occurred is known as well as the average stress and strain tensors s s s sN and e e e sN at t y N for all the phases and the slip amounts g a N on all the slip systems; . determine all the slip systems which are potentially active at t y N throughout the polycrystal. From that, consider all the possible combinations of active systems in the polycrystal, each of them de®ning for the polycrystal a tentative branch; . for each trial branch (i ), determine the local moduli L i s by Eq. ( 56) and prestress t t t i s s s s sN À L i s :e e e sN from s s s sN and e e e sN : these quantities remain constant as long as no new event occurs and they allow us to de®ne the corresponding linear (thermoelastic) comparison composite and its overall characteristics Ä L i and t t t i ; by use of the associated localisation equations, derive updated local average strain (and then stress) tensors from the prescribed macroscopic strain, which yield the evolution of both the resolved and the critical shear stresses on all the slip systems (through Eqs. ( 55) and ( 57)) and then, by zeroing all the quantities t ai c À t ai , the time y i N1 of the occurrence of the next nearest event;

. the consistency of the trial branch (i ) can then be checked, i.e., the satisfaction at time y i N1 of the plastic criterion for the systems which had been considered as active as well as inactive at time y N X This can be done by starting, for the active systems, from the whole set of potentially active systems at y N and by successively suppressing any one, or two, or more systems and applying the same procedure as before until consistency is satis®ed. When reached, it yields the expected response Å s s st as well as the local states at y i N1 ; . since y N , s s s sN , e e e sN and g a N are not known, proceed by increasing intermediate times from t 0 and follow the above procedure from y 1 to y N , so as to use at each intermediate time y i the initial quantities which have been derived before.

Comments and illustration

The ane treatment must be clearly distinguished from the incremental one. This can be checked for the self-consistent scheme by comparing the localisation equations at two successive times y i and y i1 X From the dual variant of Eq. ( 7), speci®ed for the self-consistent scheme, we can write with simpli®ed notations: e e e s y i A i s :

h " e e ey i P i : t t t i À t t t i where the exponent (i ) refers to the comparison composite at time y i X Similar relations can be written at time y i1 but involve another comparison composite. When y i1 is suciently close to y i , the variation D D De e e s y i of the local strain is De s y i IA i s :D" e e ey i D i A s :" e e ey i D i  A s :P:t t t À t t t s à 59

where D i X X i1 À X i X This expression, which is a transcription of the time derivative of the linear thermoelastic localisation equation, takes into account the modi®cation of the comparison medium associated with the next event. In the same situation, Hill's incremental expression reduces to De e e s y i A i s :D" ey i X So, even with equal A i s values, the localisation equations are dierent. For example, the ®rst step of a tensile response is elastic, so that the stress and strain per phase averages and the initial time y 1 are the same for both formulations: the ®rst branch is identical beyond y 1 , with identical resulting tangent moduli and strain localisation tensors, but the local strain rates will slightly dier and the overall estimates will gradually deviate from each other. Fig. 3 provides an illustration of this dierence: the tensile stress±strain curves of an untextured fcc polycrystal without intracrystalline hardening as predicted from the incremental [START_REF] Hutchinson | Elastic±plastic behaviour of polycrystalline metals and composites[END_REF] and ane formulations of the self-consistent scheme are compared. Again the ane treatment yields softer predictions than Hill's one.

Conclusion

The ane formulation oers an improved alternative to Hill's incremental (as well as to the tangent) formulation to estimate the eective properties of nonlinear heterogeneous materials for both hereditary and non-hereditary constitutive behaviours and without restrictions on the speci®c form of the constitutive equations. However, it has been shown to display de®nite limitations which are likely to originate from the identi®cation of the reference strain or stress tensors with the per phase average ones. When compared with the second-order procedure, which relies on the same assumption, it turns out that, except for the duality gap, the second-order description based on potentials oers marked advantages for nonlinear elasticity and viscoplasticity; on the other hand, the direct stress-strain approach of the ane formulation makes it possible to explore the ®eld of hereditary constitutive behaviours, both for rate-dependent and rateindependent elastoplasticity.

There are still open questions mainly pertaining to the choice of the `best' thermoelastic comparison composite and of possibly improved reference stresses or strains. There is a need to improve both the classical ane and second-order estimates, regarding the existence of an overall potential, the resolution of the duality gap, the consistency to small contrast expansion and variational bounds and the response of porous materials.
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 1 Fig. 1. Evolution of the normalised reference stress s0 at 0 of an untextured fcc polycrystal with the strain-rate sensitivity m 1anX Predictions of the ane (AFF), incremental (INC) and tangent (TAN) procedures combined with the self-consistent linear estimate, as well as Voigt and Reuss bounds are plotted for uniaxial tension.
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 2 Fig. 2. Reference stress of a two-phase, incompressible, power-law type, matrix-inclusions composite, with 15% inclusions and a contrast of 3, as a function of the nonlinearity m. Predictions of the ane (AFF), second-order (SOE and SOE (u )), variational (VAR), incremental (INC), and secant (SEC) procedures combined with the Hashin±Shtrikman linear estimate, as well as rigourous Voigt, Reuss and upper Hashin±Shtrikman variational bounds are plotted, for uniaxial tension (a) and pure shear (b).Note that the bounds, the variational and the secant estimates, which are not sensitive to the third
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 3 Fig.3. Tensile stress-plastic strain curves of an untextured fcc polycrystal according to the incremental and ane versions of the self-consistent scheme (isotropic elasticity with Young's modulus E y and Poisson's ratio n 1a3; non-hardening single crystals with t c t 0 ).
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AFF :Å e e e m À 1 s e e e À e e e s :Ls:e e e À e e e s s 37 which is negative because L s is positive de®nite and m1X The dual result is:
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