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Abstract. We study the Fluctuation Theorem (FT) for entropy production in chaotic discrete-time dynamical

systems on compact metric spaces, and extend it to empirical measures, all continuous potentials, and all weak

Gibbs states. In particular, we establish the FT in the phase transition regime. These results hold under minimal

chaoticity assumptions (expansiveness and specification) and require no ergodicity conditions. They are also

valid for systems that are not necessarily invertible and involutions other than time reversal. Further extensions

involve asymptotically additive potential sequences and the corresponding weak Gibbs measures. The generality

of these results allows to view the FT as a structural facet of the thermodynamic formalism of dynamical systems.
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0 Introduction

This work concerns the mathematical theory of the so-called Fluctuation Relation (FR) and Fluctuation

Theorem (FT) in the setting of discrete-time continuous dynamical systems on compact metric spaces.

The FR is a universal property of the statistics of entropy production linked to time-reversal and the FT

refers to a related Large Deviation Principle (LDP).

The discovery of the FR goes back to numerical experiments on the probability of violation of the 2

nd

Law of Thermodynamics [ECM93] and associated theoretical works [ES94, GC95b, GC95a, Gal95]

in the early 90’s. In particular, the first formulation and mathematical proof of the FT were given

in [GC95b] in the context of Anosov diffeomorphisms of compact Riemannian manifolds. Further

steps in the mathematical development of the subject were taken in [Kur98, LS99, Mae99, Rue99].

These discoveries generated an enormous body of theoretical, numerical and experimental works

which have fundamentally altered our understanding of non-equilibrium physics, with applications

extending to chemistry and biology. For a review of these historical developments we refer the reader

to [ES02, JQQ04, Gas05, RaM07, JPRB11] and to the forthcoming review articles [CJPS18, CJN

+

18];

see also Example 0.7 below. The general mathematical structure and interpretation of the FR and FT

from a modern point of view is briefly discussed in Section 1; see [CJPS18, CJN

+

18] for additional

information.

We shall consider dynamical systems (M,'), where M is a compact metric space and ' : M ! M is a
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continuous map. This is precisely the setting in which the FR and FT were initially discovered. We shall

also assume that (M,') is chaotic in the sense that ' is expansive and satisfies Bowen’s specification

property.

1

We shall prove two sets of results. The first of them concerns the Periodic Orbits Fluctuation

Principle (POFP). The second concerns the extension of the classical Gibbs type FR and FT to weak

Gibbs measures, to which we shall refer as Gibbs Fluctuation Principle (GFP). Together they constitute

a technical and conceptual extension of the previously known results on FR and FT. For example, the

POFP holds for any continuous potential, and, more generally, for any asymptotically additive (not

necessarily continuous) potential sequence. In the case of two-sided subshifts of finite type, the GFP

holds for all Gibbs states (translation invariant or not) of any summable interaction �. The first result

is new while the second (and only in part) was known to hold for interactions � satisfying Bowen’s

regularity assumption and, in particular, admitting a unique Gibbs state; see Example 0.5 below.

In the usual sense, the FT and FR are related to time reversal and require the map ' to be invertible.

In this paper, we shall consider also involutions (other than time reversal) that do not require the

invertibility of ', and show that the FT and FR naturally extend to that case (see Section 3.2 for precise

definitions).

We now describe some of our typical results. For simplicity, we consider in the remaining part of

this introduction only the invertible case. We assume that ' is a homeomorphism, and introduce the

following notion of reversal map: we assume that there is a continuous map ✓ : M ! M such that

✓ � ✓ = IdM , '�1

= ✓ � ' � ✓, (0.1)

where IdM stands for the identity mapping on M . Although in the main text of the paper our results

are stated and proven in the general setting of the asymptotically additive thermodynamic formalism,

we shall start with the familiar additive setting before turning to that level of generality.

2

We fix an

arbitrary continuous function

3 G : M ! R, and set

SnG = G+G � '+ · · ·+G � 'n�1.

We start with the POFP. Denote by Mn the set of n-periodic points of '. Under our assumptions Mn

is non-empty, finite, invariant under ✓, and

S

nMn is dense in M . We define a family of probability

measures on M by

Pn(dy) = Z�1

n

X

x2M
n

e

S
n

G(x)�x(dy), Zn = Zn(G) =

X

x2M
n

e

S
n

G(x), (0.2)

where n � 1. Let

bPn(dy) = (Pn � ✓)(dy) = Z�1

n

X

x2M
n

e

S
n

G�✓(x)�x(dy). (0.3)

The measures

bPn and Pn are absolutely continuous with respect to each other, and the logarithm of the

corresponding density is given by

log

dPn

d

bPn

(x) = Sn�(x) for x 2 Mn,

1

See [KH95, Section 18.3.c] and Remark 2.1 below. This assumption is made only for simplicity of exposition—all our

results hold under a weaker assumption, see Section 2.1 for a precise statement.

2

We shall freely use the standard notions of the usual thermodynamic formalism [Rue04, Wal82]. For the asymptotically

additive extensions see [Bar11] and Section 2.

3

Following the usual terminology, we shall often refer to G as a potential. The adjective additive refers to the property

S

n+m

G = S

m

G+ S

n

G � 'm

of the sequence {S
n

G}.
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where we write

� = G�G � ✓

for the entropy production observable. Any weak limit point P of the sequence Pn is an equilibrium

measure for G (see Proposition 2.8). Note that if Pn
k

* P, then

bPn
k

* bP = P � ✓. The mathematical

statement of the POFP is the Large Deviation Principle (LDP) for the empirical measures and ergodic

averages of � with respect to Pn. Its interpretation, on which we shall elaborate in Section 1, quantifies

the separation between

bPn
k

and Pn
k

, as these sequences of measures approach their limits

bP and P.

Let P(M) be the set of all probability measures on M endowed with the topology of weak convergence.

The following theorem summarizes the POFP.

Theorem A. For any continuous function G : M ! R, the following assertions hold.

Large deviations. There is a lower semicontinuous function I : P(M) ! [0,+1] such that the
sequence of empirical measures

µx
n =

1

n

n�1

X

k=0

�'k

(x) (0.4)

under the law Pn satisfies the LDP with the rate function I.

Fluctuation theorem. The sequence 1

nSn� under the law Pn satisfies the LDP with a rate function I
given by the contraction of I :

I(s) = inf

⇢

I(Q) : Q 2 P(M),

Z

M
�dQ = s

�

. (0.5)

Fluctuation relations. The rate functions I and I satisfy the relations

I(bQ) = I(Q) +

Z

M
�dQ, I(�s) = I(s) + s, (0.6)

where Q 2 P(M), s 2 R are arbitrary, and bQ = Q � ✓.

Remark 0.1 The importance of periodic orbits for the study of chaotic dynamics in modern theory of

dynamical systems goes back to seminal works of Bowen [Bow70] and Manning [Man71]. In the con-

text of the FT and FR, periodic orbits played an important role in the early numerical works [ECM93].

Ruelle’s proof of the Gallavotti–Cohen fluctuation theorem for Anosov diffeomorphisms [Rue99] was

technically centered around periodic orbits. Further insights were obtained in [MV03] where, following

the general scheme of [LS99, Mae99], the pairs (Pn, bPn) and the entropy production observable � were

introduced, and the transient fluctuation relation was discussed. The work [MV03] primarily concerned

Gibbs type FT for Bowen-regular potentials G, and we shall comment further on it in Example 0.7

below.

We now turn to the GFP. We shall assume that P is a weak Gibbs measure for some potential G 2
C(M)

4

(see Definition 4.1 with Gn = SnG).

Theorem B. Let P be a weak Gibbs measure for a potential G : M ! R. Then all three assertions
formulated in Theorem A remain valid if we replace Pn with P.

4

C(M)/B(M) denotes the usual Banach space of continuous/bounded Borel real-valued functions on M .
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Remark 0.2 On the technical level the key point of Theorems A and B is the LDP for the empirical

measures (0.4), while the remaining properties are an easy consequence of it. The respective rate

functions in Theorems A and B coincide.

5

The FR for the rate function I can be derived from an

explicit formula, while the FR for I is implied by the contraction relation (0.5). For a more conceptual

derivation of the FR for I see Section 1.1.

Remark 0.3 The LDP for empirical measures {µx
n} in Theorems A and B follows from a more general

result that covers both cases and is stated and proven in Section 5. The proof of the LDP involves,

as usual, two steps: the LD upper bound, which is a simple consequence of the existence of pressure

(see Propositions 2.7 and 5.6), and the LD lower bound, which is more involved. A prototype of

our argument appeared in the proofs of Theorem 3.1 in Föllmer–Orey [FO88] and Theorem 2.1 in

Orey–Pelikan [OP88], in which the Shannon–McMillan–Breiman (SMB) theorem is used to derive

the LD lower bound for Gibbs states of Zd
spin systems. By using Markov partitions, the same result

was established for transitive Anosov diffeomorphisms on compact manifolds [OP89].

6

In our context,

the SMB theorem is naturally replaced by its dynamical systems counterpart, the Brin–Katok local

entropy formula [BK83]. The rest of our argument is related to the papers [You90, EKW94, PS05] (see

also [PS18]). Although there the Brin–Katok theorem is not used directly, the key estimates entering

Proposition 4.2 in [EKW94] and Proposition 3.1 in [PS05] are also important ingredients in the proof

of the Brin–Katok formula and can be traced back to another work of Katok [Kat80, Theorem 1.1].

Remark 0.4 As Remarks 0.2 and 0.3 indicate, on the technical level Theorems A and B are closely

related. We have separated them for historical reasons, for reasons of interpretation, and due to the

role the specification plays in the proofs. Regarding the first two points, see Example 0.7 below and

Section 1. Regarding the third one, in Theorem B, the specification is only needed to allow the use

of Proposition 2.2, whereas in Theorem A a weak form of specification is crucial also in the proof

of the lower bound of the LDP. There are alternative assumptions under which the conclusions of

Proposition 2.2 can be established. For example, Pfister and Sullivan [PS05] prove it for dynamical

systems with the so-called g-product property and apply it to �-shifts. Hence, Theorem B holds in that

setting.

Before turning to the asymptotically additive setting, we briefly discuss several prototypical additive

examples; see also Example 3.5 in Section 3.2. For the details and additional examples we refer the

reader to the accompanying review article [CJPS18].

Example 0.5 (Two-sided subshift of finite type) Let

7 A = J1, `K be a finite alphabet with discrete

metric and let ⌦ = AZ
be the product space of two-sided sequences endowed with the usual metric

⌦⇥ ⌦ 3 (x, y) 7! d(x, y) = 2

�min{j2Z+ :x
j

6=y
j

or x�j

6=y�j

}.

The shift operator ' : ⌦ ! ⌦ defined by '(x)j = xj+1

is obviously an expansive homeomorphism.

We assume that (M,') is a subshift of finite type: given an ` ⇥ ` matrix A = [Aij ] with entries

Aij 2 {0, 1} and such that all entries of the matrix Am
are strictly positive for some m � 1, one sets

M = {x = (xj)j2Z : xj 2 A, Ax
j

x
j+1 = 1 for all j 2 Z}.

5

This fact is related to the principle of regular entropic fluctuations introduced in [JPRB11]; see Section 1.5.

6

It is interesting to note that this result and the contraction principle immediately yield the Gallavotti–Cohen FT.

7

Here and in the sequel J1, `K = [1, `] \ Z.
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In this case, ' is topologically mixing and satisfies Bowen’s specification property. Let p be an

involutive permutation of A and set ✓(x)j = p(x�j). Then ✓ is a homeomorphism of ⌦ satisfying (0.1).

Thus, if in addition ✓ preserves M , then it is a reversal of (M,'). For a subshift of finite type, that is

the case whenever the adjacency matrix P associated to the map p commutes with A.

Theorem A applies to any G, and hence in situations where G exhibits phase transitions and the set

of equilibrium states for G is not a singleton. Theorem A also covers the cases where G exhibits

pathological behaviour from the phase transition point of view; see [Rue04, Section 3.17] and [Isr15,

Section V.2]. For example, if P = {P
1

, · · · ,Pn} is any finite collection of ergodic measure of the

dynamical system (M,'), then there exists a potential G whose set of ergodic equilibrium states is

precisely P . There is a dense set of G’s in C(M) with uncountably many ergodic equilibrium states.

Although such general potentials could be considered non-physical, the POFP remains valid.

Regarding Theorem B, consider a spin chain whose set of allowed configurations is M , and let

� be a summable translation-invariant interaction. We shall follow the notation of the classical

monograph [Rue04], and assume that � belongs to the Banach space B of interactions introduced in

Section 4.1 therein. We denote by K� ⇢ P(M) the set of all Gibbs states for �. Then K� is a closed

convex set and some elements of K� may not be '-invariant. The set of '-invariant elements of K�

is precisely the set of equilibrium states for the potential A� (the contribution of one lattice site to

the energy of a configuration) defined in Section 3.2 of [Rue04]. If A� satisfies Bowen’s regularity

condition (see [Bow74] and [KH95, Definition 20.2.5]), then K� is a singleton, but in general K� may

have many distinct elements. However, it is not difficult to show that any P 2 K� is a weak Gibbs

measure for the potential A� (see [EKW94, Lemma 3.2] and [CJPS18] for details), and Theorem B
applies. These results extend to ⌦ = AZd

for any d � 1.

Example 0.6 (Uniformly hyperbolic systems) Let ⌦ be a compact connected Riemannian manifold

and ' : ⌦ ! ⌦ a C1

-diffeomorphism. Let M ⇢ ⌦ be a locally maximal invariant hyperbolic set such

that '|M is transitive. Then the map ' is an expansive homeomorphism of M satisfying Bowen’s

specification property. Hence Theorems A and B hold for (M,'); see [Bow75, PP90].

Example 0.7 (Anosov diffeomorphisms) Continuing with the previous example, if M = ⌦, then

(⌦,') is a transitive Anosov system. This is the original setting in which the first FR and FT were

proven.

We denote by D(x) = | det'0
(x)| the Jacobian of ' at x and set

Ds/u
(x) = | det('0

(x)|
E

s/u

x

)|,

where E
s/u
x denotes the stable/unstable tangent subspace at x 2 M . The C1

-regularity of ' implies

that the maps

x 7! D(x), x 7! Ds/u
(x), (0.7)

are continuous. The potential

G(x) = � logDu
(x) (0.8)

is of particular importance [ER85, EP86], and in the context of FR its relevance goes back to the

pioneering work [ECM93]. As a special case of Example 0.6, Theorem A holds for this G and any

continuous reversal ✓. Theorem B holds for any weak Gibbs measure for G.

If ' is C1+↵
for some ↵ > 0, then the maps (0.7) are Hölder continuous and the potential G has

a unique equilibrium state, the SRB probability measure P
srb

. In this case, denoting by P
vol

the
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normalized Riemannian volume measure on M , the empirical measures (0.4) converge weakly to P
srb

for P
vol

-a.e. x 2 M . The measure P
srb

enjoys very strong ergodic properties and, in particular, is

weak Gibbs for G, and Theorem B applies to P
srb

. In this case, the LDP part of Theorem B goes back

to [OP89]. Since P
vol

is also a weak Gibbs measure for G,

8

Theorem B applies to P
vol

as well.

Example 0.8 (Anosov diffeomorphims: historical perspective) The original formulation of the Gal-

lavotti–Cohen FT [GC95b, GC95a] concerns C1+↵
transitive Anosov diffeomorphisms with the

additional assumption that the reversal map ✓ is C1

. The entropy production observable is taken to be

the phase space contraction rate

e�(x) = � logD(x), (0.9)

and the LDP concerns the time averages n�1Sn(e�). Since ✓ is C1

, the tangent map ✓0(x) provides an

isomorphism between E
s/u
x and E

u/s
✓(x), and

logDu � ✓ = � logDs � '�1. (0.10)

As observed in [MV03], this relation gives that for some C > 0, all x 2 M and all n,

|Sne�(x)� Sn�(x)| < C,

where � = G�G � ✓ with G given by (0.8). Hence, under the assumptions of [GC95b, GC95a], the

Gallavotti–Cohen FT and the FT of Theorem B are identical statements.

The assumption that ✓ is C1

is essential for the Gallavotti–Cohen FT. Porta [Por10] has exhibited

examples of C!
Anosov diffeomorphisms on the torus T2

which admit continuous but not differentiable

reversals, and for which the Gallavotti–Cohen FT fails in the sense that the LDP rate function for the

averages n�1Sn(e�) does not satisfy the second relation in (0.6). For his examples Porta also identifies

the entropy production observable � = G�G� ✓ noticing that the LDP holds for it with a rate function

satisfying the FR (0.6).

Porta’s observation was a rediscovery of an important insight of Maes and Verbitskiy. Returning to our

general setting (M,'), in [MV03] the entropy production observable � = G � G � ✓ is introduced

for an arbitrary potential G, and the Gibbs FR and FT were established for the averages n�1Sn(�)
assuming that G satisfies the Bowen regularity condition. In this case P is again the unique equilibrium

measure for G and enjoys very strong ergodic properties. The proofs of [MV03] are further simplified

in [JPRB11]; see Section 1.3 below.

We now turn to the asymptotically additive setting.

Definition 0.9 A sequence of functions G = {Gn}n�1

⇢ B(M) is called asymptotically additive if
there is a sequence {G(k)}k�1

⇢ C(M) such that

lim

k!1
lim sup

n!1
n�1

�

�Gn � SnG
(k)
�

�

1 = 0. (0.11)

The set of all asymptotically additive sequences of functions on M is denoted by A(M), and a family
{G(k)}k�1

⇢ C(M) satisfying (0.11) is called an approximating sequence

9 for G.

8

This follows from the Volume Lemma; see [Bow75, Lemma 4.7] and [KH95, Lemma 20.4.2].

9

Note that G

n

is not required to be continuous, but G

(k)
is. The notion of asymptotically additive potential was first

introduced in [FH10], and there G

n

is required to be continuous (see Section 6 for a detailed discussion of this point).
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Except in Section 5.3, the elements of A(M) will play the role of potentials, and hence we shall often

refer to them as asymptotically additive potential sequences.

Remark 0.10 An obvious example of an asymptotically additive potential sequence is G = {SnG},

where G 2 C(M). We shall refer to this special case as additive. Some other conditions, which either

imply asymptotic additivity or are equivalent to it, are given in Theorem 6.1. There, we prove in

particular that if G = {SnG} (with G 2 B(M)) satisfies the tempered variation condition (which is

weaker than the continuity of G), then G is asymptotically additive. The tempered variation condition,

which to the best of our knowledge goes back to [Kes01] (see also [Bar06]), holds in particular if G
satisfies the bounded variation condition of [Rue92]. Another class of examples is given by weakly
almost additive potentials,

10

which are characterized by the following property: there is a sequence

{Cn}n�1

⇢ R such that limn!1 n�1Cn = 0 and

�Cm +Gm +Gn � 'm  Gm+n  Cm +Gm +Gn � 'm, m, n � 0. (0.12)

If a family G ⇢ C(M) is weakly almost additive, then it is asymptotically additive with G(k)
= k�1Gk;

see Lemma 6.2.

Remark 0.11 Note that A(M) is a vector space and that

kGk⇤ := lim sup

n!1
n�1kGnk1 (0.13)

defines a seminorm on A(M), which in turn gives a natural equivalence relation: G ⇠ G0
iff kG�G0k⇤ =

0 (finiteness of (0.13) follows immediately from (0.11)). As mentioned in [FH10, Remark A.6 (ii)]

(see also the beginning of Section 3.2 in [BV15]), equivalent potential sequences share many important

properties and, in particular, have the same approximating sequences. Furthermore, if V, V 0 2 C(M)

are such that V 0
= V + U � U � ' for some U 2 C(M), then {SnV } ⇠ {SnV

0}, so that this

concept of equivalence generalizes the standard notion of equivalence for potentials. Moreover, by the

definition of asymptotic additivity, for all G 2 A(M) we have limk!1 kG � {SnG
(k)}k⇤ = 0, so that

the additive potential sequences are dense in the quotient space A(M)/⇠. Finally, we note that in each

equivalence class there exists an asymptotically additive potential sequence that consists of continuous
functions (see Remark 6.5).

Remark 0.12 To the best of our knowledge, the first extension of the classical thermodynamic for-

malism of Ruelle and Walters [Rue04, Wal82] beyond the additive setting goes back to the work of

Falconer [Fal88]. This and later extensions were principally motivated by the multifractal analysis

of certain classes of self-similar sets, and in this context the subject has developed rapidly; see for

example [CFH08, FH10, ZZC11, Bar11, VZ15, IY17] and references therein.

It is likely that the subject will continue to flourish with an expanding number of applications that

cannot be reached with classical theory; see Example 0.14 below and recent works [BJPP17, BCJP18]

for applications to theory of repeated quantum measurement processes.

Theorems A and B extend to asymptotically additive potential sequences with the following notational

changes. Given G = {Gn} 2 A(M), one defines a sequence of probability measures on M by the

relations (cf. (0.2))

Pn(dy) = Z�1

n

X

x2M
n

e

G
n

(x)�x(dy), Zn = Zn(G) =
X

x2M
n

e

G
n

(x). (0.14)

10

In the literature, the special case where C

n

= C is often called almost additive, and we shall use this convention in the

sequel; see [Bar11].
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The time-reversal operation is now defined as ✓n = ✓ � 'n�1

. Let us set

bPn(dy) = (Pn � ✓n)(dy) = Z�1

n

X

x2M
n

e

G
n

�✓�'n�1
(x)�x(dy) (0.15)

and remark that this relation coincides with (0.3) in the case of additive potentials. We also note that

log

dPn

d

bPn

(x) = �n(x) for x 2 Mn,

where we write

�n = Gn �Gn � ✓n (0.16)

for the entropy production in time n. Accordingly, the ergodic averages n�1Sn� are now replaced by

n�1�n. With the above notational changes Theorems A and B hold for any G 2 A(M). Starting with

Section 2 we shall work exclusively in the asymptotically additive setting.

Example 0.13 (Boundary terms in spin chains) Consider the spin chains discussed in Example 0.5

in the case where M is the full two-sided shift (i.e., when Aij = 1 for all i, j). The measures Pn of

Theorem A can be interpreted as Gibbs measures on finite-size systems, since to each configuration

of a system of n spins, one can associate an orbit of period n in M and vice versa. The case

Gn = SnA� then corresponds to periodic boundary conditions, while arbitrary boundary conditions

lead to asymptotically additive sequences of the kind Gn = SnA� + gn, where the boundary term gn
satisfies limn!1 n�1kgnk1 = 0.

Example 0.14 (Matrix product potentials) Perhaps the best known examples of asymptotically ad-

ditive potential sequences arise through matrix products. Let M : M ! MN (C) be a continuous map

such that kM(x)M('(x)) · · ·M('n�1

(x))k 6= 0 for all n � 1 and x 2 M (here MN is the vector

space of complex N ⇥N matrices). The potential sequences of the form

Gn(x) = log kM(x)M('(x)) · · ·M('n�1

(x))k (0.17)

arise in multifractal analysis of self-similar sets, see for example [FO03, Fen03, OST05, Fen09, Bar11].

Sequences of this type also describe the statistics of some important classes of repeated quantum

measurement processes [BJPP17, BCJP18]. Except in trivial cases, the sequence {Gn} is not additive.

Note that the upper almost additivity

Gn+m  C +Gm +Gn � 'm
(0.18)

always holds with a constant C that depends only on the choice of the matrix norm on MN (C)
appearing in (0.17). If the matrix entries of M(x) are strictly positive for all x 2 M , or if N = 2 and

M satisfies the cone condition of [BG06]

11

(in the context of nonconformal repellers), then one can

show that

�C +Gm +Gn � 'm  Gn+m (0.19)

for some C > 0, so that the sequence {Gn} is almost additive. In many interesting examples, however,

(0.19) fails, but G remains asymptotically additive and hence our results apply. When the potential

defined in (0.17) is not asymptotically additive, it can exhibit a very singular behaviour from the

thermodynamic formalism point of view.

12

For reasons of space we postpone the discussion of the last

point to the forthcoming articles [CJPS17, BCJP18].

11

This type of condition can be traced back to [Rue79]. See also [Bar11, Definition 11.2.1]

12

In some cases, this singularity is dictated by the number theoretic properties of the entries of M(x); see [BCJP18] for a

discussion.
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Example 0.15 Let (M,') and ✓ be as in Example 0.5, and let P be any fully-supported invariant

measure on M . For all n � 1, define Gn 2 C(M) by Gn(x) = logP{y 2 M : yi = xi, i = 1, . . . , n},

where x = (x
1

, x
2

, . . . ). Then, if G = {Gn} is asymptotically additive, the measure P is weak

Gibbs with respect to G, and hence Theorem B applies. In this setup, (0.12) is interpreted as “weak

dependence.” In particular, all invariant quasi-Bernoulli measures (i.e., satisfying (0.18) and (0.19)) on

M are weak Gibbs with respect to an asymptotically additive potential.

We finish with the following general remarks.

Remark 0.16 To summarize, the contribution of our paper is two-fold. Firstly, to the best of our

knowledge, the POFP has not appeared previously in the literature and provides rather general for-

mulation and proof of the FT and FR in the context of chaotic dynamical systems on compact metric

spaces. Furthermore, the GFP extends the FT and FR of [MV03] to weak Gibbs measures (which do

not even need to be invariant). In particular, this extends the validity of the FT and FR to the phase

transition regime, as illustrated in Example 0.5. Both results hold for any asymptotically additive

potential sequence. Secondly, the FR for the rate function of empirical measures (the first relation

in (0.6)) is new and we plan to investigate it further in other models of relevance to non-equilibrium

statistical mechanics. Let us mention, however, that in the context of Markov jump processes, the FR

for trajectories and the related LDP contraction were previously discussed in [BC15, Section 5].

Remark 0.17 To the best of our knowledge, the FT and FR in the phase transition regime have not

been previously discussed in the physics and mathematics literature, apart from stochastic lattice

gases; see [BDG

+

06, BDG

+

15]. On the other hand, a considerable amount of efforts in the dynamical

systems community over the last two decades has been devoted to the extension of multifractal analysis

to the phase transition regime; for instance, see [Mak98, FO03, Tes06]. Given the link between

multifractal analysis and large deviations theory [DK01, Kes01], the two research directions are related,

and this connection remains to be investigated in the future.

Remark 0.18 Although the conceptual emphasis of this paper has been on the FT and FR for entropy

production generated by a reversal operation, the LDP parts of Theorems A and B are of independent

interest and have wider applicability; see [CJPS17] for a more general approach than the one adopted

here, and [BCJP18] for some concrete applications in the context of repeated quantum measurement

processes.

The paper is organized as follows. Section 1 is a continuation of the introduction where we review the

general mathematical structure and interpretation of the FR and FT from a modern point of view. In

Section 2 we collect preliminaries needed for the formulations and proofs of our results, including

an overview of the asymptotically additive thermodynamic formalism. Section 3 is devoted to the

POFP and Section 4 to the GFP. Our main technical results regarding the LDP are stated and proven in

Section 5. Finally, in Section 6 we discuss some properties and characterizations of asymptotically

additive potential sequences.

This work is accompanied by a review article [CJPS18] where the reader can find additional information

and examples regarding the FT and FR.
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1 Prologue: what is the Fluctuation Theorem?

1.1 Transient fluctuation relations

Our starting point is a family of probability spaces (⌦n,Fn,Pn) indexed by a parameter n 2 N.

Each of these spaces is equipped with a measurable involution ⇥n : ⌦n ! ⌦n called reversal (the

mapping ⇥n is its own inverse). In many cases of interest the probability space (⌦n,Fn,Pn) describes

the space-time statistics of the physical system under consideration over the finite time interval [0, n],
and the map ⇥n is related to time-reversal.

Let us set

bPn = Pn �⇥n and impose the following hypothesis:

(R) Regularity. The measures bPn and Pn are equivalent.

Under Assumption (R), one defines

�n = log

dPn

d

bPn

. (1.1)

This is a real-valued random variable on ⌦n, and we denote by Pn its law under Pn. The very definition

of �n implies a number of simple, yet important properties.

Relative entropy. The relative entropy

13

of Pn with respect to

bPn is given by the relation

Ent(Pn | bPn) ⌘
Z

⌦

n

log

✓

dPn

d

bPn

◆

dPn =

Z

⌦

n

�ndPn =

Z

R
s Pn(ds).

Since this quantity is non-negative, we obtain

Z

R
s Pn(ds) � 0, (1.2)

which in the physics literature is sometimes called Jarzynski’s inequality. This inequality asserts that

under the law Pn, positive values of �n are favored.

Rényi entropy. Rényi’s relative ↵-entropy of

bPn with respect to Pn is defined by

Ent↵(Pn | bPn) ⌘ log

Z

⌦

n

 

d

bPn

dPn

!↵

dPn = log

Z

⌦

n

e

�↵�
n

dPn = log

Z

R
e

�↵sPn(ds) ⌘ en(↵).

13

Also called Kullback–Leibler divergence.
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The function R 3 ↵ 7! en(↵) 2]�1,+1] is convex and lower semicontinuous. It vanishes at ↵ = 0

and ↵ = 1, so that en(↵) is non-positive and finite on [0, 1], and non-negative outside [0, 1]. It admits

an analytic continuation to the strip {z 2 C : 0 < Re z < 1} which is continuous on its closure.

Expressing the relation en(1) = 0 in terms of Pn, we derive

Z

R
e

�sPn(ds) = 1. (1.3)

In the physics literature this relation is sometimes called Jarzynski’s identity.

Proposition 1.1 In the above setting, the following two relations hold:

en(↵) = en(1� ↵) for ↵ 2 R, (1.4)

dPn

d

bPn

(s) = e

s for s 2 R, (1.5)

where bPn is the image of Pn under the reflection #(s) = �s.

Remark 1.2 Relations (1.4) and (1.5) are in fact equivalent: the validity of one of them implies the

other. We shall refer to them as the transient FR. It refines (and implies) the conclusion of the Jarzynski

inequality (1.2) and its basic appeal is its universal form. In applications to non-equilibrium physics,

the transient FR is a fingerprint of time-reversal symmetry breaking and emergence of the 2

nd

Law of

Thermodynamics.

Proof of Proposition 1.1. Relation (1.4) is a simple consequence of a symmetry property of Rényi’s

entropy:

en(1� ↵) = Ent

1�↵(Pn | bPn) = Ent↵(
bPn |Pn) = log

Z

⌦

n

e

↵�
n

d

bPn

= log

Z

⌦

n

e

↵�
n

�⇥
n

d(

bPn �⇥n) = log

Z

⌦

n

e

�↵�
n

dPn = en(↵),

where we used the elementary relation �n �⇥n = ��n.

To prove (1.5), we exponentiate (1.4) and rewrite the result in terms of Pn:

Z

R
e

�↵sPn(ds) =

Z

R
e

�(1�↵)sPn(ds) =

Z

R
e

�↵s
(e

s
bPn)(ds).

Using now the analyticity of the function en(z) in the open strip 0 < Re z < 1, its continuity in

the closed strip 0  Re z  1, and the fact that the characteristic function uniquely defines the

corresponding measure, we deduce that Pn(ds) and (e

s
bPn)(ds) coincide. This is equivalent to (1.5). 2

1.2 Fluctuation Theorem and Fluctuation Relation

Definition 1.3 We shall say that the Fluctuation Theorem holds for the family (⌦n,Fn,Pn,⇥n) if
there is a lower semicontinuous function I : R ! [0,+1] such that, for any Borel set � ⇢ R,

� inf

s2
.
�

I(s)  lim inf

n!1
n�1

logPn{n�1�n 2 �}

 lim sup

n!1
n�1

logPn{n�1�n 2 �}  � inf

s2�
I(s),

(1.6)
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where
.
�/� denotes the interior/closure of �.

Let us note that Pn{n�1�n 2 �} = Pn(n�), so that (1.6) can be rewritten as

� inf

s2
.
�

I(s)  lim inf

n!1
n�1

logPn(n�)  lim sup

n!1
n�1

logPn(n�)  � inf

s2�
I(s). (1.7)

The following result shows that the transient FR implies a symmetry relation for the rate function in

the FT.

Proposition 1.4 Suppose that the FT holds for a family (⌦n,Fn,Pn,⇥n). Then the corresponding
rate function I satisfies the relation

I(�s) = I(s) + s for s 2 R. (1.8)

Proof. In view of (1.5), for any Borel set � ⇢ R we have

Pn(�)  e

sup�Pn(��).

Replacing � with n� and using (1.7) we see that

� inf

s2
.
�

I(s)  lim inf

n!1
n�1

logPn(n�)  lim sup

n!1
n�1

log

�

en sup�Pn(�n�)
�

 sup�� inf

s2�
I(�s).

Taking � =]a� ✏, a+ ✏[ with ✏ > 0, we derive

inf

|s+a|<2✏
I(s)  inf

|s+a|✏
I(s)  a+ ✏+ inf

|s�a|<✏
I(s). (1.9)

Since the function I is lower semicontinuous, we have I(a) = lim✏#0 inf |s�a|<✏ I(s). Passing to the

limit in (1.9) as ✏ # 0, we obtain

I(�a)  a+ I(a)

for any a 2 R. Replacing a by �a and comparing the two inequalities, we arrive at (1.8). 2

1.3 Entropic pressure

Suppose that the Fluctuation Theorem (Definition 1.3) holds. Then under very general conditions

Varadhan’s lemma implies that the limit

e(↵) = lim

n!1
n�1en(↵) (1.10)

exists for all ↵ 2 R and that

e(↵) = � inf

s2R

�

s↵+ I(s)
�

= sup

s2R

�

�s↵� I(s)
�

. (1.11)

The function e(↵) is called the entropic pressure of the family (⌦n,Fn,Pn,⇥n). Elementary arguments

show that:

(a) the function e(↵) is convex and lower semicontinuous;
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(b) it is non-positive on [0, 1] and non-negative outside [0, 1], with a global minimum at ↵ = 1/2;

(c) it satisfies the relations e(0) = e(1) = 0 and

e(↵) = e(1� ↵) for all ↵ 2 R. (1.12)

If the rate function I(s) is convex (which is the case in the setting of this paper), then inverting the

Legendre transform (1.11) gives

14

I(s) = � inf

↵2R

�

s↵+ e(↵)
�

= sup

↵2R

�

s↵� e(�↵)
�

. (1.13)

The above discussion can be turned around. Suppose that limit (1.10) exists and that e(↵) is differen-

tiable on R. Then the Gärtner–Ellis theorem (see Section 2.3 in [DZ00]) implies that the Fluctuation

Theorem holds with the convex lower semicontinuous rate function I given by (1.13). This gives a

technical route to prove the Fluctuation Theorem. Since the seminal work [LS99] this route has been

dominant in mathematical approaches to the FT.

Returning to the dynamical system (M,'), the above route yields a quick proof of Theorem A if the

potentials G and G � ✓ are Bowen-regular. We follow [JPRB11]. By a classical result of Bowen, the

limit

e(↵) = lim

n!1

1

n
log

Z

M
n

e�↵Sn

(�)
dPn

exists for all ↵ 2 R and is equal to the topological pressure of the potential (1 � ↵)G + ↵G � ✓;

see also Theorem 2.7 in Section 2.4. By another classical result of Bowen [Bow75], the potential

(1 � ↵)G + ↵G � ✓ has unique equilibrium state for all ↵, and [Wal82, Theorem 9.15] shows that

e(↵) is differentiable on R. Thus, the Gärtner–Ellis theorem applies and gives the FT and the second

FR in (0.6). Assuming that the vector space of all Bowen-regular potentials in dense in C(M) (for

instance, this is the case in Examples 0.5–0.7 of the introduction), Kifer’s theorem [Kif90] implies that

the LDP part of Theorem A holds. In this case the first FR in (0.6) follows from a computation given

in Section 3.2. The same proof applies verbatim to Theorem B, and in particular recovers the results of

[MV03].

The novelty of Theorems A and B is that they hold for potentials G for which the entropic pressure

is not necessarily differentiable, hence in the phase transition regime. In this case the proof follows

a different strategy: one first proves the LDP for empirical measures, and then uses the contraction

principle to prove the FT. Another novelty is that these results also extend to asymptotically additive

potential sequences.

1.4 What does the Fluctuation Theorem mean?

Returning to the level of generality of Sections 1.1 and 1.2, the interpretation of the rate function I
in the FT is given in terms of hypothesis testing error exponents of the family {(Pn, bPn)}. These

exponents describe the rate of separation between measures Pn and

bPn as n ! 1. If the elements

of N are instances of time and ⇥n is related to time-reversal, these exponents quantify the emergence

of the arrow of time and can be viewed as a fine form of the second law of thermodynamics. Let us

recall the definition of three exponents relevant to our study and state some results without proofs,

which can be found in [JOPS12, CJN

+

18].

14

If I is not convex on R, the same relations holds if I is replaced by its convex envelope.
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Stein error exponent. Given � 2]0, 1[, we set

s�(Pn, bPn) = inf

�

bPn(�) : � 2 Fn, bPn(�
c
)  �

 

. (1.14)

The following result establishes a link between the large n asymptotics of s�(Pn, bPn) and the weak

law of large numbers.

Proposition 1.5 Suppose that n�1�n converges in probability15 to a deterministic limit ep. Then

lim

n!1
n�1

log s�(Pn, bPn) = �ep for any � 2]0, 1[. (1.15)

Moreover, the above limit coincides with the following (equal) quantities:

s = inf

n

lim inf

n!1
n�1

log

bPn(�n) : �n 2 Fn, lim

n!1
Pn(�

c
n) = 0

o

,

s = inf

n

lim sup

n!1
n�1

log

bPn(�n) : �n 2 Fn, lim

n!1
Pn(�

c
n) = 0

o

.

If in addition the entropic pressure e(↵) is differentiable at ↵ = 0, then

lim

n!1
n�1

Ent(Pn|bPn) = ep = �e0(0).

Recall that, for two probability measures P and Q on a measurable space (⌦,F), the total variation
distance is given by

kP�Qk
var

= sup

�2F
|P(�)�Q(�)| = 1�

Z

⌦

(� ^ 1)dQ,

where the second relation holds if P is absolutely continuous with respect to Q, and � stands for the

corresponding density.

Chernoff error exponents. The lower and upper Chernoff exponents are defined by

c = lim inf

n!1
n�1

log

�

1� kPn � bPnkvar
�

, c = lim sup

n!1
n�1

log

�

1� kPn � bPnkvar
�

. (1.16)

The following result provides a sufficient condition for these two quantities to be equal and expresses

them in terms of the entropic pressure.

Proposition 1.6 Suppose that the FT holds with the rate function (1.13). Then the upper and lower
Chernoff exponents coincide, and

c = c = e(1/2). (1.17)

Let us note that e(1/2) = �I(0). Thus, if I(0) > 0, then the measures Pn and

bPn concentrate on

the complementary subsets {�n > 0} and {�n < 0}, respectively, and separate with an exponential

rate �I(0):

lim

n!1
n�1

logPn{�n < 0} = lim

n!1
n�1

log

bPn{�n > 0} = �I(0).

15

For instance, if the FT holds and the corresponding rate function I vanishes at a unique point s0 2 R, then (1.15) holds

with ep = s0.
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Hoeffding error exponent. Given # 2 R, we define

h# = inf

n

lim inf

n!1
n�1

log

bPn(�n) : �n 2 Fn, lim sup

n!1
n�1

logPn(�
c
n) < �#

o

,

h# = inf

n

lim sup

n!1
n�1

log

bPn(�n) : �n 2 Fn, lim sup

n!1
n�1

logPn(�
c
n) < �#

o

,

h# = inf

n

lim

n!1
n�1

log

bPn(�n) : �n 2 Fn, lim sup

n!1
n�1

logPn(�
c
n) < �#

o

,

where the infimum in the last relation is taken over all families {�n} for which the limit exists.

As functions of #, h#, h#, and h# are non-decreasing and non-positive on [0,+1[, and are equal

to �1 on ]�1, 0[. Moreover, the inequalities h#  h#  h#  0 hold for # � 0.

Proposition 1.7 Suppose that the FT holds with the rate function (1.13). Then, for # 2 R, we have

h# = h# = h# = inf

↵2[0,1[

#↵+ e(↵)

1� ↵
.

1.5 Interpretation of Theorems A and B

The FT part of Theorem A fits directly into the mathematical framework and interpretation of the FT

discussed in Section 1.4 with ⌦n = Mn, Pn defined by (0.2), and ⇥n = ✓ � 'n�1

.

The above interpretation does not apply to the setup of Theorem B. The FT part of Theorem B is related

to the principle of regular entropic fluctuations of [JPRB11] adapted to the setting of this paper, and

provides a uniformity counterpart to the FT of Theorem A which is both of conceptual and practical

(numerical, experimental) importance. Here we shall briefly comment on this point, referring the reader

to [CJPS18, CJN

+

18] for additional discussion.

Let Pn be as in Theorem A. For each fixed m � 0, since the function � is bounded, the random

variables (n+m)

�1Sn+m� and n�1Sn� are exponentially equivalent under the law Pn+m as n ! 1,

and the theorem implies that for any Borel set � ⇢ R,

� inf

s2
.
�

I(s)  lim inf

n!1
n�1

logPn+m

�

n�1Sn� 2 �

 

 lim sup

n!1
n�1

logPn+m

�

n�1Sn� 2 �

 

 � inf

s2�
I(s).

(1.18)

If along some subsequence Pm
k

* P, a natural question is whether (1.18) holds with Pn+m replaced

with P. Theorem B gives a positive answer if P is a weak Gibbs measure with the same potential G as

in the sequence Pn, and further asserts that this is the only requirement for P; neither weak convergence

nor invariance of P play a role. Such level of uniformity is a somewhat surprising strengthening of the

principle of regular entropic fluctuations in the setting of chaotic dynamical systems on compact metric

spaces.

1.6 Outlook

The general mathematical framework and interpretation of the FT presented in this section are rooted

in pioneering works on the subject [ECM93, ES94, GC95b, GC95a, LS99, Mae99]. As formulated

here, they were developed in special cases in [JOPS12, BJPP17], and in full generality in [CJN

+

18].
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When additional mathematical/physical structure is available, one can say more. For example, for open

stochastic or Hamiltonian systems which carry energy fluxes generated by temperature differentials,

the entropy production observable coincides with thermodynamic entropy production; see [JPRB11,

JPS17, CJPS18]. For the chaotic dynamical systems (M,') considered in this paper, Theorems A
and B show that the FT is a structural feature of the thermodynamic formalism. Relaxing the chaoticity

assumptions (expansiveness and specification) brings forward a number of important open problems

that remain to be discussed in the future.

2 Preliminaries

2.1 A class of continuous dynamical systems

Let M be a compact metric space with metric d and Borel �-algebra B(M). We recall that C(M)

(respectively, B(M)) denotes the Banach space of continuous (bounded measurable) functions f :

M ! R with the norm kfk1 = supx2M |f(x)|. The set P(M) of Borel probability measures on M is

endowed with the topology of weak convergence (denoted *) and the corresponding Borel �-algebra.

Given V 2 C(M) and Q 2 P(M), we denote by hV,Qi the integral of V with respect to Q. In the

following, we shall always assume:

(C) ' : M ! M is a continuous map.

On occasions, we shall strengthen the above standing assumption to

(H) ' : M ! M is a homeomorphism.

In the sequel we shall always explicitly mention when Condition (H) is assumed. The reversal operation

as defined in the introduction makes sense only if (H) holds. The transformations that lead to the FR

and FT for general continuous maps are defined in Section 3.2.

The set of '-invariant elements of P(M) is denoted by P'(M), and the set of '-ergodic measures by

E'(M). The topological entropy of ' is denoted by h
Top

('). The Kolmogorov–Sinai entropy of '
with respect to Q 2 P'(M) is denoted by h'(Q).

The orbit of a point x 2 M is defined as {'k
(x)}k2Z+ . An orbit is said to be n-periodic if 'n

(x) = x,

and we denote by Mn the set of fixed points of 'n
.

For I = Jl,mK ⇢ Z
+

, we denote orbit segments by

'I
(x) = {'k

(x)}k2I ,

and call specification a finite family of such segments

⇠ = {'I
i

(xi)}i2J1,nK.

The integers n and L(⇠) = max{|k � k0| : k, k0 2 [i2J1,nKIi} are called the rank and the length of ⇠
respectively. The specification ⇠ is N -separated whenever d(Ii, Ij) = mink

i

2I
i

,k
j

2I
j

|ki � kj | � N
for all distinct i, j 2 J1, nK. It is ✏-shadowed by x 2 M whenever

max

i2J1,nK
max

k2I
i

d('k
(x),'k

(xi)) < ✏.
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Given x 2 M , n � 0, and ✏ > 0, the Bowen ball is defined by

Bn(x, ✏) = {y 2 M : d('k
(y),'k

(x)) < ✏ for 0  k  n� 1}.

Many variants of the specification property appear in the literature; see [KLO16] for a review. We shall

make use of the following two forms:

(WPS) ' has the weak periodic specification property if for any � > 0 there is a sequence of

integers {m�(n)}n�n0 such that 0  m�(n) < n for n � n
0

, lim�#0 limn!1 n�1m�(n) = 0,

and for any x 2 M and n � n
0

, we have Mn \Bn�m
�

(n)(x, �) 6= ?.

(S) ' has the specification property if for any � > 0 there is N(�) � 1 such that any N(�)-separated

specification ⇠ = {'I
i

(xi)}i2J1,nK is �-shadowed by some x 2 M .

Remark 2.1 We shall also refer to Bowen’s specification property [Bow74] as the property (S) with

the additional constraint that x 2 ML(⇠)+N(�). Bowen’s specification obviously implies both (WPS)
and (S).

The weak periodic specification property is well suited for the LDP of Theorem A. Together with

expansiveness (see Definition 2.6 below), it is also sufficient to justify a large part of the thermodynamic

formalism involved in the proof of this result. It is not needed for Theorem B.

The specification Property (S) is involved in the proof of both Theorems A and B. However, it is only

needed to ensure the conclusion of the following proposition (see Theorem B in [EKW94], whose

proof given for case (H) extends without change to any continuous '). If the conclusion of the latter

can be obtained by a different argument, then Property (S) is not needed at all.

Proposition 2.2 Suppose that ' satisfies Condition (S). Then, the set E'(M) of ergodic measures is
entropy-dense in P'(M), i.e., for any P 2 P'(M) there exists a sequence {Pm} ⇢ E'(M) such that

Pm * P, h'(Pm) ! h'(P) as m ! 1.

2.2 Asymptotic additivity

In this section we establish two technical results about asymptotically additive potential sequences. The

first result is related to [FH10, Proposition A.1 (1) and Lemma A.4]. See also [BV15, Proposition 3.2].

Lemma 2.3 For all P 2 P'(M) and G 2 A(M), the limit

G(P) = lim

n!1
n�1hGn,Pi (2.1)

exists and is finite. Moreover, for any approximating sequence {G(k)} of G we have

G(P) = lim

k!1
hG(k),Pi. (2.2)

The convergence in (2.1) and (2.2) is uniform in P 2 P'(M), and the real-valued function P 7! G(P)
is continuous on the space P'(M) endowed with the weak topology.
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Proof. For all k,m, n and all P 2 P'(M) we have

�

�

�

�

1

n
hGn,Pi �

1

m
hGm,Pi

�

�

�

�


�

�

�

�

1

n
hGn,Pi � hG(k),Pi

�

�

�

�

+

�

�

�

�

1

m
hGm,Pi � hG(k),Pi

�

�

�

�

 1

n

�

�

�

Gn � SnG
(k)
�

�

�

1
+

1

m

�

�

�

Gm � SmG(k)
�

�

�

1
.

(2.3)

In view of (0.11), we conclude that {n�1hGn,Pi} is a Cauchy sequence and hence the limit (2.1)

exists and is finite. Letting m ! 1 in (2.3) and using again (0.11), we conclude that the limit in (2.1)

is uniform in P 2 P'(M). Since

sup

P2P
'

�

�

�

�

1

n
hGn,Pi � hG(k),Pi

�

�

�

�

 1

n

�

�

�

Gn � SnG
(k)
�

�

�

1
,

the uniform convergence in (2.1) and relation (0.11) give that the convergence in (2.2) is also uniform

in P 2 P'(M). This last uniform convergence and the continuity of P 7! hG(k),Pi yield the continuity

of P 7! G(P). 2

The second result concerns the variations of G 2 A(M).

Lemma 2.4 For any G = {Gn} 2 A(M),16

lim

�#0
lim sup

n!1
sup

x2M
sup

y,z2B
n

(x,�)

1

n

�

�Gn(y)�Gn(z)
�

�

= 0. (2.4)

Moreover, if m�(n) satisfies lim�#0 lim supn!1
1

nm�(n) = 0, then

lim

�#0
lim sup

n!1

1

n
kGn�m

�

(n) �Gnk1 = 0, (2.5)

lim

�#0
lim sup

n!1
sup

x2M
sup

y,z2B
n�m

�

(n)(x,�)

1

n

�

�Gn(y)�Gn(z)
�

�

= 0. (2.6)

Proof. We first prove (2.4). Let {G(k)} ⇢ C(M) be an approximating sequence for G. Let ✏ > 0,

and fix k large enough so that n�1

�

�Gn � Sn(G
(k)

)

�

�

1 < ✏ for all n � N(k). Let � > 0 be such that

|G(k)
(x

1

)�G(k)
(x

2

)| < ✏ for d(x
1

, x
2

) < 2�. Then, for all n � N(k), x 2 M , and y, z 2 Bn(x, �),
we have

�

�Gn(y)�Gn(z)
�

�  2n✏+
�

�SnG
(k)

(y)� SnG
(k)

(z)
�

�  3n✏.

Since ✏ > 0 is arbitrary, this establishes (2.4).

To prove (2.5), fix ✏ > 0 and k,N large enough so that kSnG
(k) �Gnk1  n✏ for n � N . Then, for

any fixed � > 0, we have for all n large enough that n�m�(n) � N , and hence that

kGn�m �Gnk1  kGn�m � Sn�mG(k)k1 + kSn�mG(k) � SnG
(k)k1 + kSnG

(k) �Gnk1
 (n�m)✏+ kSn�mG(k) � SnG

(k)k1 + n✏  2n✏+m kG(k)k1,

16

We note that (2.4) is proved in [ZZC11, Lemma 2.1].
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where m = m�(n). Using the condition on m�(n), this gives

lim

�#0
lim sup

n!1

1

n
kGn�m

�

(n) �Gnk1  2✏.

Since ✏ > 0 is arbitrary, we obtain (2.5).

Finally, to prove (2.6), we observe that for each x 2 M and y, z 2 Bn�m(x, �),
�

�Gn(y)�Gn(z)
�

�  2kGn�m �Gnk1 +

�

�Gn�m(y)�Gn�m(z)
�

�.

The required relation (2.6) follows now from (2.4), (2.5), and the condition on m�(n). 2

2.3 Topological pressure

We now introduce a notion of topological pressure associated with ' which generalizes the usual

concept of topological pressure to asymptotically additive potential sequences. Given ✏ > 0 and an

integer n � 1, a finite set E ⇢ M is called (✏, n)-separated if y /2 Bn(x, ✏) for any distinct x, y 2 E,

and (✏, n)-spanning if {Bn(x, ✏)}x2E covers M . For G = {Gn} 2 A(M), ✏ > 0, and n � 1 we

define

S(G, ✏, n) = inf

⇢

X

x2E
eGn

(x)
: E is (✏, n)-spanning

�

, (2.7)

N(G, ✏, n) = sup

⇢

X

x2E
eGn

(x)
: E is (✏, n)-separated

�

. (2.8)

We shall show that

lim

✏#0
lim sup

n!1

1

n
logS(G, ✏, n) = lim

✏#0
lim inf

n!1

1

n
logS(G, ✏, n), (2.9)

lim

✏#0
lim sup

n!1

1

n
logN(G, ✏, n) = lim

✏#0
lim inf

n!1

1

n
logN(G, ✏, n). (2.10)

Moreover, these two quantities coincide and their common value, which we denote by p'(G), will

be called the topological pressure of ' with respect to G. This result is of course well known in the

additive case G = {Sn(G)} when G 2 C(M), and we shall write

p0'(G) := p'({SnG}).

Besides existence, we shall also establish some basic properties of p'. They will be proven by

approximation arguments, starting from the corresponding well-known results in the additive case.

Proposition 2.5 (1) The relations (2.9) and (2.10) hold and the respective quantities coincide. More-
over, the map

A(M) 3 G 7! p'(G) 2]�1,+1]

is convex, and either p'(G) = +1 for all G 2 A(M), or p'(G) 2 R for all G 2 A(M).

(2) If {G(k)} is an approximating sequence for G, then

p'(G) = lim

k!1
p0'(G

(k)
). (2.11)
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(3) The topological entropy of ' satisfies

h
Top

(') = p0'(0) = sup

Q2P
'

(M)

h'(Q) = sup

Q2E
'

(M)

h'(Q). (2.12)

In particular, p'(G) is finite for all G 2 A(M) if and only if ' has finite topological entropy.

(4) If the topological entropy of ' is finite, then for any G,G0 2 A(M) we have

|p'(G)� p'(G0
)|  kG � G0k⇤. (2.13)

(5) For any G 2 A(M) we have

p'(G) = sup

P2P
'

(M)

�

G(P) + h'(P)
�

. (2.14)

(6) If the entropy map P'(M) 3 P 7! h'(P) is upper semicontinuous, then for any P 2 P'(M),

h'(P) = inf

G2A(M)

(p'(G)� G(P)), (2.15)

and for any G 2 A(M) and P 2 P'(M) we have

h'(P) = inf

G2C(M)

(p'(GG)� GG(P)), (2.16)

where GG = {Gn + SnG}.

Proof. Proof of (1) and (2). As we have already mentioned, if G = {SnG} for some G 2 C(M), then it

is well known (see Sections 3.1.b and 20.2 of [KH95] or Section 9.1 of [Wal82]) that the four quantities

in (2.9) and (2.10) are equal and define p0'(G). To extend this result to any G = {Gn} 2 A(M), we

start with (2.9). Note that for any finite set E ⇢ M and any G0
= {G0

n} 2 A(M) we have

�

�

�

�

�

1

n
log

X

x2E
eGn

(x) � 1

n
log

X

x2E
eG

0
n

(x)

�

�

�

�

�

 1

n

�

�Gn �G0
n

�

�

1. (2.17)

It follows that

1

n

�

�

logS(G, ✏, n)� logS(G0, ✏, n)
�

�  1

n

�

�Gn �G0
n

�

�

1. (2.18)

Taking G0
= {SnG

(k)} for some approximating sequence {G(k)} of G, we find

1

n

�

�

�

logS(G, ✏, n)� logS({SnG
(k)}, ✏, n)

�

�

�

 1

n

�

�Gn � Sn(G
(k)

)

�

�

1.

Relation (0.11) and the fact that p0'(G
(k)

) is well defined for all k give that (2.9) holds and that the

limits are equal to limk!1 p0'(G
(k)

). Relation (2.17) gives that (2.18) also holds for logN(·, ✏, n),
and the above argument yields that the all four limits in (2.9) and (2.10) are equal and that (2.11)

holds.

17

Since Gn 7! log

P

x2E eGn

(x)
is convex by Hölder’s inequality, we obtain that so is G 7! p'(G).

17

See also [IY17, Lemma 1.1.] and [ZZC11, Lemma 2.3] for proofs of (2.11).
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By applying (0.13) to the asymptotically additive potential G � G0
, we obtain that the right-hand side

of (2.18) is bounded uniformly in n. As a consequence, we have p'(G) = 1 () p'(G0
) = 1,

which yields the last statement of Part (1).

Proof of (3) and (4). Relations (2.12) are well known (see Theorem 8.6 and Theorem 9.7 (i) in [Wal82]),

and (2.13) immediately follows from (2.18).

Proof of (5). The variational principle (2.14) is established in [FH10, Theorem 3.1] for asymptotically

sub-additive potential sequences. We include here a proof in the (simpler) asymptotically additive case

(see also [Bar11, Theorem 7.2.1]).

If h'(P) = +1 for some P 2 P'(M), then p0'(0) = +1, so that p'(G) = +1 for all G 2 A(M).

Relation (2.14) is obvious in this case. Assume now that h'(P) < +1 for all P 2 P'(M). By [Wal82,

Theorem 9.10], for any G 2 C(M),

p0'(G) = sup

P2P
'

(M)

(h'(P) + hG,Pi) . (2.19)

By Lemma 2.3, the sequence fk(P) := hG(k),Pi + h'(P) converges uniformly to G(P) + h'(P)
on P'(M). It follows that

p'(G) = lim

k!1
p0'(G

(k)
) = lim

k!1
sup

P2P
'

(M)

fk(P)

= sup

P2P
'

(M)

lim

k!1
fk(P) = sup

P2P
'

(M)

�

G(P) + h'(P)
�

,

where the second equality uses (2.19).

Proof of (6). We start by recalling (see [Wal82, Theorem 9.12]) that if P'(M) 3 P 7! h'(P) is upper

semicontinuous, then for all P 2 P',

h'(P) = inf

G2C(M)

(p0'(G)� hG,Pi). (2.20)

We now prove (2.15) and (2.16). Both “” inequalities are an immediate consequence of (2.14).

The “�” inequality in (2.15) is immediate by (2.20) since for G 2 C(M) and G = {SnG} we have

p'(G)� G(P) = p0'(G)� hG,Pi. To prove the “�” inequality in (2.16), fix ✏ > 0 and use (2.20) to

find W✏ 2 C(M) such that

h'(Q) � p0'(W✏)� hW✏,Qi � ✏. (2.21)

Consider the sequence Gk = W✏ �G(k)
, where {G(k)} is an approximating sequence for G. In view

of (2.2) and (2.13), we have

GG
k

(Q) ! hW✏,Qi, p'(GG
k

) ! p0'(W✏) as k ! 1.

Combining this with (2.21), we see that for a sufficiently large k,

GG
k

(Q)� p'(GV
k

) � hW✏,Qi � p0'(W✏)� ✏ � �h'(Q)� 2✏.

Since ✏ > 0 is arbitrary, the proof is complete. 2
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2.4 Expansiveness

Besides the specification properties (WPS) and (S), we shall need the following assumptions to

formulate our main results. The first concerns the regularity of the entropy map and is needed in the

proof of both Theorems A and B. The second concerns the approximation of the pressure in terms of

periodic orbits and is only needed in the proof of Theorem A.

(USCE) ' has finite topological entropy, and the map Q 2 P'(M) 7! h'(Q) is upper semicontinuous.

(PAP) For any n � 1 the set Mn is finite, and for any G 2 A(M), the topological pressure satisfies

p'(G) = lim

n!1

1

n
log

X

x2M
n

e

G
n

(x). (2.22)

We note that, by Proposition 2.5, Condition (USCE) implies that the pressure p'(G) is finite for all

G 2 A(M) and that the entropy satisfies the variational principle (2.15). In particular, h'(Q) 2 [0,1[

for all Q 2 P'.

We now discuss some criteria ensuring Conditions (USCE) and (PAP). Together with the specification

property, expansiveness is often considered as characteristic of chaotic dynamics.

Definition 2.6 The map ' is said to be forward expansive if there is r > 0 such that if x, y 2 M
satisfy the inequality d('k

(x),'k
(y))  r for all k 2 Z

+

, then x = y. A homeomorphism ' is called
expansive if there is r > 0 such that if x, y 2 M satisfy the inequality d('k

(x),'k
(y))  r for all

k 2 Z, then x = y.

The number r for which this property hold is called the expansiveness (or expansivity) constant of '.

We note that the expansiveness constant depends on the metric d, whereas expansiveness only depends

on the induced topology on M .

Theorem 2.7 (1) If ' is forward expansive or expansive, then Condition (USCE) holds.

(2) If, in addition, ' satisfies Condition (WPS), then Condition (PAP) holds.

Proof. Part (1) follows from Corollary 7.11.1 in [Wal82], whose proof immediately extends from

case (H) to case (C) (see also [Bar11, Lemma 2.4.4]).

Part (2) is also well known in the additive case, and the proof requires only notational modifications in

the asymptotically additive case. We include the proof for completeness.

Let I = Z
+

in the forward expansive case, and I = Z in the expansive case. The uniform continuity

of ' and periodicity imply that there is � > 0 such that if x, y 2 Mn and d(x, y)  �, then

d('k
(x),'k

(y))  r for all k 2 I , where r is the expansivity constant. By expansiveness, such points

must coincide, and compactness implies that Mn may contain only finitely many points.

Let G 2 A(M), and let ✏ 2 ]0, r[. Then, in view of periodicity, for any n � 1 the set Mn is

(✏, n)-separated. It follows that

X

x2M
n

e

G
n

(x)  N(G, ✏, n),

whence, recalling representation (2.10) for the pressure, we conclude that

lim sup

n!1

1

n
log

X

x2M
n

e

G
n

(x)  p'(G). (2.23)



Cuneo, Jakši

´

c, Pillet, Shirikyan 24

On the other hand, since ' satisfies Condition (WPS), the set Mn is (✏, n � m✏(n))-spanning. It

follows that

X

x2M
n

e

G
n

(x) � S(G, ✏, n�m✏(n)).

Combining this with representation (2.9), and using the condition on m✏(n), we see that

lim inf

n!1

1

n
log

X

x2M
n

e

G
n

(x) � p'(G). (2.24)

Inequalities (2.23) and (2.24) imply the required relation (2.22). 2

Recall the variational principle (2.14). A measure P 2 P'(M) is called an equilibrium state for

G 2 A(M) if

p'(G) = G(P) + h'(P). (2.25)

We refer the reader to Section 9.5 in [Wal82] for a discussion of equilibrium states. The following

proposition implies, in particular, that there always exists at least one equilibrium state if (USCE)

and (PAP) are assumed.

Proposition 2.8 Assume that Conditions (USCE) and (PAP) hold, and let

Pn =

1

n

n�1

X

i=0

Pn � '�i,

where Pn is defined by (0.14). If P is a weak limit point of the sequence {Pn}, then P is an equilibrium
state for G. In particular, if G is additive, then Pn = Pn, and any limit point of {Pn} is an equilibrium
state.

Proof. Let a sequence nk ! 1 be such that Pn
k

* P. Since Pn is invariant for all n, so is P.

In view of Hölder’s inequality, the function G 7! logZn(G) 2 R is convex. Moreover, for any

G,G0 2 A(M), the function f(↵) := logZn(G+↵G0
) differentiable, and its derivative at zero is given

by f 0
(0) = hG0

n,Pni. By convexity, we have f(1)� f(0) � f 0
(0), which gives

logZn(G + G0
)� logZn(G) � hG0

n,Pni.

Replacing G = {Gn} and G0
= {G0

n} with {Gn � 'i} and {G0
n � 'i}, respectively, using the relation

Zn(G) = Zn({Gn � 'i}), and averaging with respect to n, we derive

logZn(G + G0
)� logZn(G) � hG0

n,Pni.

We take n = nk, divide the above inequality by nk, and pass to the limit as k ! 1. By (2.1)

and the uniformity of the limit on invariant measures, the right-hand side converges to G0
(P), and

in view of (2.22), the left-hand side converges to p'(G + G0
) � p'(G). This leads to the inequality

p'(G + G0
)� p'(G) � G0

(P), which can be rewritten as

p'(G + G0
)� (G + G0

)(P) � p'(G)� G(P).

Taking the supremum over G0 2 A(M) and invoking (2.15), we arrive at (2.25). The statement about

the case where G is additive is immediate, since then Pn is invariant. 2
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Remark 2.9 None of the quantities appearing in (2.25) depend on the specific choice of potential G
within a given equivalence class (in the sense of Remark 0.11), and hence the equilibrium states depend

only on the equivalence class. The limit points of {Pn}, however, may depend on the specific choice

of G in the equivalence class. It is an interesting question to describe potentials G 2 A(M) for which

the invariant weak limit points of {Pn} are equilibrium states.

3 Periodic Orbits Fluctuation Principle

3.1 LDP for empirical measures

Let G 2 A(M). Recall that the sequence of probability measures {Pn} is defined by (0.14), and the

sequence of empirical measures {µx
n} by (0.4). For a fixed n � 1, we regard µx

n as a random variable

on M with range in the space of probability measures P(M) endowed with the weak topology.

Theorem 3.1 Suppose that Conditions (USCE), (WPS), (S) and (PAP) hold. Then:

(1) The LDP holds for {µ·
n} under the laws Pn, with the lower semicontinuous convex rate function I :

P(M) ! [0,+1] defined by

I(Q) =

⇢

�G(Q)� h'(Q) + p'(G) for Q 2 P'(M),
+1 otherwise.

(3.1)

In other words, for any Borel subset � ⇢ P(M), we have

� inf

Q2
.
�

I(Q)  lim inf

n!1
n�1

logPn{µ·
n 2 �}

 lim sup

n!1
n�1

logPn{µ·
n 2 �}  � inf

Q2�
I(Q),

(3.2)

where
.
� and � stand, respectively, for the interior and closure of �.

(2) For any V = {Vn} 2 A(M), the sequence 1

nVn under the laws Pn satisfies the LDP with the good
convex rate function I : R ! [0,+1] defined by the contraction relation18

I(s) = inf{I(Q) : Q 2 P'(M),V(Q) = s}. (3.3)

In other words, for any Borel subset � ⇢ R, we have

� inf

s2
.
�

I(s)  lim inf

n!1
n�1

logPn

�

n�1Vn 2 �

 

 lim sup

n!1
n�1

logPn{n�1Vn 2 �}  � inf

s2�
I(s).

(3.4)

Moreover, I is the Legendre transform of the function ↵ 7! p'(G + ↵V)� p'(G).

Remark 3.2 An immediate consequence of (3.1) is that the function I is affine on P'(M).

18

Recall that for V 2 A(M), the quantity V(Q) is defined as (2.1).
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Remark 3.3 If V = {SnV } for some V 2 C(M), then Part (2) follows from Part (1) by an application

of the contraction principle [DZ00, Theorem 4.2.1]. When V is only asymptotically additive, an

approximation argument is required (see Section 5.3). This applies, in particular, to the entropy

production sequence {�n} defined by (0.16), see below.

Obviously, Part (1) of Theorem 3.1 yields the LDP part of Theorem A in the asymptotically additive

setting.

The proof of Theorem 3.1 is postponed to Section 5, more precisely to Theorem 5.2. There some more

general measures Pn are considered, in order to give a unified treatment to the measures Pn in (0.14)

and the weak Gibbs measures considered in Section 4.

3.2 Fluctuation Theorem and Fluctuation Relations

In this subsection we prove the FT and FR parts of Theorem A in the general setting of the previous

subsection. To this end, in addition to Conditions (USCE), (WPS), (S) and (PAP) which are needed

for the LDP, we impose one of the following assumptions to ensure the validity of FR.

(C-Commutation) There is a homeomorphism ✓ : M ! M such that ✓ � ✓ = IdM and ' = ✓ �' � ✓.

(R-Reversal) The map ' is a homeomorphism and there is a homeomorphism ✓ : M ! M such that

✓ � ✓ = IdM and '�1

= ✓ � ' � ✓.

Let us remark that in both cases, if Q 2 P'(M), then

bQ := Q � ✓ 2 P'(M). Indeed, in case (R), for

any V 2 C(M) we have

hV � ', bQi = hV � ' � ✓,Qi = hV � ✓ � '�1,Qi = hV � ✓,Qi = hV, bQi.

A similar argument applies in case (C).
Condition (R) is the standard dynamical system reversal condition that appears in virtually all works

on the FT and FR. To the best of our knowledge, it was not previously remarked that (C) also suffices

to derive the FR. Since (C) does not require that ' be a homeomorphism, it allows one to expand the

class of examples for which the FR can be established.

Example 3.4 Let X be a compact metric space and � : X ! X a continuous map. Set M = X ⇥X
and ✓(x, y) = (y, x). Then (C) holds for the map ' : (x, y) 7! (�(x),�(y)). If � is a homeomorphism,

then (R) holds for the homeomorphism ' : (x, y) 7! (�(x),��1

(y)).

Example 3.5 An interesting concrete setting of Example 3.4 is the case X = [0, 1]. The classical

examples of interval maps � : [0, 1] ! [0, 1] such as the tent map, Farey map, or the Pomeau-

Manneville map are not bijections and (R) cannot hold whereas (C) applies. We refer the reader to

[CJPS18] for a discussion of the FT and FR for this class of examples.

Observe that Condition (R)/(C) implies

Sn(V � ✓)(x) =
X

0k<n

V � ✓ � 'k
(x) =

X

0k<n

V � '⌥k � ✓(x) = (SnV )(✓⌥n (x)) (3.5)
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where

✓�n = ✓ � 'n�1

for (R), ✓+n = ✓ for (C).

Note that the map ✓±n is an involution: in the case (C) this is immediate, and in the case (R) we have

(✓�n )
�1

= '1�n � ✓�1

= '1�n � ✓ = ✓ � 'n�1

= ✓�n .

For G = {Gn} 2 A(M), we define G � ✓ := {Gn � ✓±n }.

Lemma 3.6 If G is asymptotically additive with approximating sequence {G(k)}, then G � ✓ is asymp-
totically additive with approximating sequence {G(k) � ✓}.

Proof. By (3.5), we have

�

�Gn � ✓±n � Sn(G
(k) � ✓)

�

�

1 =

�

�Gn � ✓±n � Sn(G
(k)

) � ✓±n
�

�

1 =

�

�Gn � SnG
(k)
�

�

1,

and the result follows. 2

It follows from Lemmas 2.3 and 3.6 that

(G � ✓)(Q) = lim

k!1
hG(k) � ✓,Qi = lim

k!1
hG(k), bQi = G(bQ), Q 2 P'(M). (3.6)

In addition, we have

Lemma 3.7 The following holds:

h'(bQ) = h'(Q) for Q 2 P'(M), (3.7)

p'(G � ✓) = p'(G) for G 2 A(M). (3.8)

Proof. Let  = ✓ � ' � ✓. Since the Kolmogorov–Sinai entropy is conjugacy invariant (see [Wal82,

Theorem 4.11]), h (Q) = h'(Q � ✓) = h'(bQ). In case (C) we have  = ', and (3.7) follows. In

case (R) we note that by [Wal82, Theorem 4.13], h (Q) = h'�1(Q) = h'(Q). Thus (3.7) holds in

both cases.

In order to prove (3.8), we observe that, by (2.14), (3.6) and (3.7),

p'(G � ✓) = sup

Q2P
'

(M)

�

(G � ✓)(Q) + h'(Q)

�

= sup

Q2P
'

(M)

�

G(bQ) + h'(bQ)

�

= sup

Q2P
'

(M)

�

G(Q) + h'(Q)

�

= p'(G),

which completes the proof. 2

The entropy production in time n is defined by

�n = �n(G) = Gn �Gn � ✓±n . (3.9)

Observing that Mn is strictly invariant under ✓±n , the following result is immediate.



Cuneo, Jakši

´

c, Pillet, Shirikyan 28

Lemma 3.8 Let G 2 A(M). Then Zn(G) = Zn(G � ✓) =: Zn. Moreover, Pn � ✓±n is the measure
given by (0.14) for the potential sequence G � ✓, i.e.,

Pn � ✓±n = Z�1

n

X

x2M
n

e

G
n

�✓±
n

(x)�x.

Finally, the measures Pn and Pn � ✓±n are equivalent, and we have

log

dPn

dPn � ✓±n
= �n.

Condition (PAP) implies that the limit defining the entropic pressure

e(↵) = lim

n!1

1

n
log

Z

M
n

e

�↵�
n

dPn

exists for all ↵ 2 R and is given by

e(↵) = p'((1� ↵)G + ↵G � ✓).

For Q 2 P'(M), let

ep(Q) = G(Q)� (G � ✓)(Q). (3.10)

Note that

ep(

bQ) = �ep(Q), (3.11)

and that if Gn = SnV and Q 2 P'(M), then ep(Q) = hV � V � ✓,Qi = hV,Q� bQi.

Theorem 3.9 In addition to the hypotheses of Theorem 3.1, suppose that Condition (C)/(R) holds.
Then the rate function I of the LDP for the empirical measures (0.4) under the laws Pn satisfies the
relation19

I(bQ) = I(Q) + ep(Q) for any Q 2 P'(M). (3.12)

Furthermore, the sequence 1

n�n under the laws Pn satisfies the LDP (3.4) with the good convex rate
function given by

I(s) = inf{I(Q) : Q 2 P'(M), ep(Q) = s}. (3.13)

The rate function I satisfies the relation

I(�s) = I(s) + s (3.14)

for all s 2 R and is the Legendre transform of e(�↵).

Proof. Recall that the rate function I is given by (3.1). By (3.6) and (3.7), for any Q 2 P'(M)

I(bQ) = �G(bQ)� h'(bQ) + p'(G) = �(G � ✓)(Q)� h'(Q) + p'(G),

and (3.12) follows.

19

Note that (3.12) implies (0.6) for Q 2 P
'

(M). On the other hand, when Q is not invariant, both sides of (0.6) are +1,

whereas in the asymptoticatically additive setup, the quantity ep(Q) is defined only for Q 2 P
'

(M).
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To obtain the LDP for n�1�n, we first observe that, by Lemma 3.6, the sequence {�n} is asymptotically

additive with approximating sequence �(k) = G(k) �G(k) � ✓. The LDP with rate function (3.13) then

follows from Part (2) of Theorem 3.1.

Finally, the FR (3.14) follows from Proposition 1.4, but it also can be directly deduced as follows.

Combining (3.11) with (3.12) and (3.13), we see that

I(�s) = inf{I(Q) : Q 2 P'(M), ep(Q) = �s}

= inf{I(bQ)� ep(Q) : Q 2 P'(M), ep(Q) = �s}

= inf{I(Q0
) : Q0 2 P'(M), ep(Q0

) = s}+ s = I(s) + s,

where we used the fact that Q 2 P'(M) if and only if

bQ 2 P'(M). This completes the proof of

Theorem 3.9. 2

4 Weak Gibbs measures

Definition 4.1 We say that P 2 P(M) is a weak Gibbs measure for G 2 A(M) if for any n � 1 and
any ✏ > 0 there is Kn(✏) � 1 such that

Kn(✏)
�1

e

G
n

(x)�np
'

(G)  P
�

Bn(x, ✏)
�

 Kn(✏) e
G

n

(x)�np
'

(G), (4.1)

lim

✏#0
lim sup

n!1

1

n
logKn(✏) = 0, (4.2)

where (4.1) holds for every x 2 M .

Remark 4.2 It is easy to see that if a probability measure P 2 P(M) is weak Gibbs for two potential

sequences G,G0 2 A(M), then (Gn�np'(G))n�1

and (G0
n�np'(G0

))n�1

are equivalent in the sense

of Remark 0.11. Conversely, if G ⇠ G0
, then P is weak Gibbs for G iff it is weak Gibbs for G0

.

We emphasize that the definition of weak Gibbs measure does not require P 2 P'(M). Notice also

that it follows from (4.1) that the support of P coincides with M . The following lemma shows that

if the latter property is satisfied, then it suffices to require the validity of (4.1) almost everywhere.

This observation is technically useful when the transfer operators are used to construct weak Gibbs

measures; see [Kes01, Section 2], [Cli10, Appendix B], and [CJPS18].

Lemma 4.3 Let G = {Gn} 2 A(M), and let P 2 P(M) be a measure such that supp(P) = M .
Assume that for all ✏ > 0, (4.1) holds for P-almost every x 2 M , with {Kn(✏)} satisfying (4.2). Then
P is weak Gibbs for G.

Proof. Define

�(n, ✏) := sup

x2M
sup

y,z2B
n

(x,✏)

1

n

�

�Gn(y)�Gn(z)
�

�. (4.3)

By (2.4),

lim

✏#0
lim sup

n!1
�(n, ✏) = 0. (4.4)
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For given n � 1 and ✏ > 0, let A ⇢ M be a set of full P-measure on which (4.1) holds and let x 2 M
be an arbitrary point. Since A = M , we can find x0 2 A \Bn(x, ✏/2), so that

P(Bn(x, ✏)) � P(Bn(x
0, ✏/2)) � Kn(✏/2) e

G
n

(x0
)�np

'

(G) � K 0
n(✏)

�1eGn

(x)�np
'

(G),

P(Bn(x, ✏))  P(Bn(x
0, 2✏))  Kn(2✏)e

G
n

(x0
)�np

'

(G)  K 0
n(✏)e

G
n

(x)�np
'

(G),

where

K 0
n(✏) = en�(n,✏)max(Kn(2✏),Kn(✏/2)).

Relation (4.4) gives that

lim

✏#0
lim sup

n!1

1

n
logK 0

n(✏) = 0

and the statement follows. 2

The following result is again a special case of Theorem 5.2.

Theorem 4.4 Assume that Conditions (USCE) and (S) hold and that P is a weak Gibbs measure for
G 2 A(M). Then the conclusions of Theorem 3.1 hold with Pn replaced with P.

Recall that �n is defined by (3.9). By Lemma 5.4 below, the limit

e(↵) := lim

n!1

1

n
log

Z

M
e

�↵�
n

dP

exists for all ↵ 2 R and is given by

e(↵) = p'((1� ↵)G + ↵G � ✓).

The proof of the following result is exactly the same as that of Theorem 3.9.

Theorem 4.5 If in addition to the hypotheses of Theorem 4.4, Condition (C)/(R) holds, then all the
conclusions of Theorem 3.9 hold with Pn replaced with P.

Remark 4.6 Weak Gibbs measures have been extensively studied in the recent literature on multifractal

formalism; see [CJPS18] for references and additional information.

5 Large deviation principles

5.1 Main result and applications

In this subsection we establish the LDP for the empirical measures {µx
n} defined in (0.4) and for

asymptotically additive potential sequences under some assumptions that cover both the sequence

measures (0.14) concentrated on periodic trajectories and the weak Gibbs measures.

We begin with the identification of the rate function for the LDP. Given G = {Gn} 2 A(M) and V 2
C(M), we set GV = {Gn + Sn(V )} and define a map I : P(M) ! [0,1] by

I(Q) = sup

V 2C(M)

�

hV,Qi � p'(GV ) + p'(G)
�

. (5.1)
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Note that it follows from (2.13) that for any fixed G we have

|p'(GV )� p'(GV 0
)|  kV � V 0k1,

and in particular that the map V 7! p'(GV ) is continuous.

Lemma 5.1 The map P(M) 3 Q 7! I(Q) 2 [0,+1] is lower semicontinuous and convex. Moreover,
if Condition (USCE) holds, then

I(Q) =

⇢

�G(Q)� h'(Q) + p'(G) for Q 2 P'(M),
+1 otherwise.

(5.2)

An immediate consequence of (5.2) is that the map P'(M) 3 Q 7! I(Q) is affine if ' satisfies (USCE).
Proof. By definition (5.1), the function I is the pointwise supremum of a family of continuous affine

maps. Therefore it is convex and lower semicontinuous.

If Q /2 P'(M), then there is V 2 C(M) such that � := hV,Qi � hV � ',Qi > 0. Thus, letting

Vm = m(V � V � ') and observing that kSn(Vm)k1  2mkV k1, we deduce from (2.13) that

p'(GV
m

) = p'(G). Since hVm,Qi = m�, we conclude that the supremum in (5.1) is equal to +1.

To prove (5.2) in the case Q 2 P'(M), we rewrite (5.1) as

I(Q) = sup

V 2C(M)

�

GV (Q)� p'(GV )
�

� G(Q) + p'(G).

The required result now follows by the variational principle (2.16). 2

Given a sequence {Pn}n�1

⇢ P(M) and a function V 2 C(M), we define

An(V ) =

Z

M
e

nhV,µx

n

iPn(dx) =

Z

M
e

S
n

(V )(x)Pn(dx).

Theorem 5.2 Suppose that Conditions (S) and (USCE) hold. Let {Pn} ⇢ P(M) and G 2 A(M).
Suppose also that the following holds:

(C1) For all V 2 C(M), we have

lim

n!1

1

n
logAn(V ) = p'(GV )� p'(G). (5.3)

(C2) For any 0 < � ⌧ 1 there is an integer n
0

(�) � 1 and sequences Kn(�) � 1, m�(n) 2 N, such
that

Kn(�)
�1

e

G
n

(x)�np
'

(G)  Pn

�

Bn�m
�

(n)(x, �)
�

for x 2 M , n � n
0

(�), (5.4)

lim

�#0
lim sup

n!1

1

n

�

logKn(�) +m�(n)
�

= 0. (5.5)

Then:

(1) The LDP (3.2) holds with the rate function I given by (5.2).
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(2) For any V = {Vn} 2 A(M), the sequence 1

nVn satisfies the LDP (3.4) with the good convex rate
function I : R ! [0,+1] defined by the contraction relation

I(s) = inf{I(Q) : Q 2 P'(M),V(Q) = s}. (5.6)

Moreover, I is the Legendre transform of the function ↵ 7! p'(G + ↵V)� p'(G).

The two parts of Theorem 5.2 are proved in Sections 5.2 and 5.3 below. Here we prove that Theorem 5.2

applies to the sequences (0.14) and to weak Gibbs measures.

Lemma 5.3 Assume that ' satisfies Conditions (WPS) and (PAP). Then the measures defined by
(0.14) satisfy Conditions (C1) and (C2) of Theorem 5.2.

Proof. Since

logAn = log

X

x2M
n

e

G
n

(x)+S
n

V (x) � logZn = log

X

x2M
n

e

G
n

(x)+S
n

V (x) � log

X

x2M
n

e

G
n

(x),

(PAP) yields (5.3) and (C1).

To prove (C2), let m�(n) and n
0

(�) be as in the definition of (WPS). Set

�(n, �) =
1

n
kGn�m

�

(n) �Gnk1, (5.7)

and let �(n, �) be defined by (4.3). It follows from Lemma 2.4 that

lim

�#0
lim sup

n!1

�

�(n, �) + �(n, �)
�

= 0. (5.8)

By (WPS), for any n � n
0

(�) the intersection Mn \Bn�m
�

(n)(x, �) contains at least one point xn, so

that, by writing n0
(�) = n�m�(n), we have

logPn

�

Bn0
(�)(x, �)

�

� Gn0
(�)(xn)� logZn0

(�)

� Gn0
(�)(x)� n0

(�)�(n0
(�), �)� logZn0

(�)

� Gn(x)� n�(n, �)� n0
(�)�(n0

(�), �)� logZn0
(�)

� Gn(x)� np'(G)� logKn(�),

where

Kn(�) = exp

�

n�(n, �) + n0
(�)�(n0

(�), �) + | logZn0
(�) � np'(G)|

 

.

Condition (C2) now follows from (5.8) and the definition of topological pressure. 2

Lemma 5.4 Suppose that Condition (USCE) holds and that P 2 P(M) is a weak Gibbs measure for
G 2 A(M). Then for all G0 2 A(M) we have

lim

n!1

1

n
log

D

e

G0
n ,P

E

= p'(G + G0
)� p'(G). (5.9)
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Proof. The proof follows Proposition 3.2 in [Kif90] (see also Proposition 10.3 in [JPRB11]); since an

additional limiting argument is needed, we include it for the sake of completeness.

For any ✏ > 0, n � 1, and any (✏, n)-spanning set E✏,n, using (4.1) we derive

D

e

G0
n ,P

E


X

x2E
✏,n

⌦

1B
n

(x,✏)e
G0

n ,P
↵

 e

n�(n,✏)
X

x2E
✏,n

e

G0
n

(x)P
�

Bn(x, ✏)
�

 Kn(✏)e
n�(n,✏)�np

'

(G)
X

x2E
✏,n

e

G
n

(x)+G0
n

(x),

where �(n, ✏) is defined by (4.3). It follows that

lim sup

n!1

1

n
log

D

e

G0
n ,P

E

 lim sup

n!1

�

n�1

logKn(✏) + �(n, ✏) + n�1

logS(G + G0, ✏, n)
�

� p'(G).

Sending ✏! 0 and using expression (2.9) for p'(G + G0
), we obtain the “” inequality in (5.9).

To prove the other inequality, we proceed similarly, observing that for any (✏, n)-separated set E✏,n we

have

D

e

G0
n ,P

E

� K�1

n (✏)e�n�(n,✏)�np
'

(G)
X

x2E
✏,n

e

G
n

(x)+G0
n

(x).

Taking the supremum over all (✏, n)-separated sets, repeating the above argument, and using expres-

sion (2.10) for p'(G + G0
), we obtain the desired result. 2

Lemma 5.5 Let P 2 P(M) be a weak Gibbs measure. Then Conditions (C1) and (C2) of Theorem 5.2
hold for Pn = P.

Proof. (C1) follows from the special case G0
= {SnV } in Lemma 5.4. (C2) with m�(n) ⌘ 0 follows

from Definition 4.1. 2

5.2 Proof of the LDP for empirical measures

We first give the proof of Theorem 5.2 (1), which is completed in the following two steps.

Step 1: LD upper bound.

Proposition 5.6 If Condition (USCE) holds, then

lim sup

n!1

1

n
logPn{µ·

n 2 F}  � inf

Q2F
I(Q) (5.10)

holds for any closed set F ⇢ P(M).

Proof. It is a well-known fact (see [Kif90, Theorem 2.1] and also [DZ00, Section 4.5.1]) that the

existence of limit (5.3) implies inequality (5.10) with a rate function I given by the Legendre transform

of p'(GV )� p'(G) with respect to V , i.e., by (5.1). 2
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Step 2: LD lower bound. We need to prove that, for any open set O ⇢ P(M),

lim inf

n!1

1

n
logPn{µ·

n 2 O} � � inf

Q2O
I(Q).

This inequality will be established if we prove that, for any Q 2 O,

lim inf

n!1

1

n
logPn{µ·

n 2 O} � �I(Q). (5.11)

Moreover, we only need to consider Q 2 P'(M) since otherwise I(Q) = +1, and (5.11) is trivially

satisfied. To prove (5.11) for Q 2 P'(M), we follow a strategy that goes back to [FO88], see also

[EKW94, PS05], and first consider the special case Q 2 E'(M). In the argument we shall need the

following consequence of Birkhoff’s ergodic theorem (cf. [FH10, Proposition A.1]).

Lemma 5.7 Let Q 2 E'(M) and G 2 A(M). Then, for Q-almost every x 2 M we have

lim

n!1

1

n
Gn(x) = G(Q).

Proof. Let {G(k)} be an approximating sequence for G. By Birkhoff’s ergodic theorem, for any k � 1

we have

lim

n!1

1

n
SnG

(k)
(x) = hG(k),Qi

for Q-almost every x 2 M . By (2.2), the right-hand side converges to G(Q) when k ! 1, and (0.11)

completes the proof. 2

Proposition 5.8 Assume (5.4). Then inequality (5.11) holds for any open set O ⇢ P(M) and any
Q 2 O \ E'(M).

Proof. Fix O ⇢ P(M) and Q 2 O \ E'(M). Given V
1

, . . . , Vm 2 C(M) and ✏ > 0 we set

R✏ = R✏(V1

, . . . , Vm) =

m
\

j=1

�

Q0 2 P(M) : |hVj ,Q0i � hVj ,Qi| < ✏
 

.

Since O 3 Q is open, we can find finitely many functions V
1

, . . . , Vm 2 C(M) and a number ✏
0

> 0

such that R
2✏0 ⇢ O. Let ✏ 2]0, ✏

0

[ and let X✏
n be the set of points x 2 M such that

|n�1Gn(x)� G(Q)| < ✏, |n�1SnVj(x)� hVj ,Qi| < ✏ for j = 1, . . . ,m.

Note that

X✏
n ⇢ X2✏

n ⇢ {x 2 M : µx
n 2 R

2✏} ⇢ {x 2 M : µx
n 2 O}.

Since Q is ergodic, it follows from Lemma 5.7 that

lim

n!1
Q(X✏

n) = 1. (5.12)

For � > 0 and n � n
0

(�) we define

Y ✏
n(�) =

�

x 2 M : Q(Bn�m
�/2(n)(x, �))  e�n(h

'

(Q)�✏) .
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Invoking the ergodicity of Q, the Brin–Katok local entropy formula (see [BK83]) implies that

lim

�#0
lim sup

n!1

1

n
logQ

�

Bn�m
�/2(n)(x, �)

�

= �h'(Q) for Q-almost every x 2 M.

(We have used also that lim�#0 lim infn!1
n�m

�/2(n)

n = lim�#0 lim supn!1
n�m

�/2(n)

n = 1.) Com-

bining this with a simple measure-theoretic argument (similar to the one used to prove Egorov’s

theorem), we see that

lim

�#0
lim inf

n!1
Q
�

Y ✏
n(�)

�

= 1. (5.13)

It follows from (5.12) and (5.13) that for all small enough � > 0 there is an integer n
1

(�) � n
0

(�)
such that

Q
�

X✏
n \ Y ✏

n(�)
�

� 1

2

for all n � n
1

. (5.14)

Moreover, by (2.6) (applied to Gn and to the potential sequences {SnVj}) and (5.5), we can assume,

by possibly decreasing � and increasing n
1

, that for all n � n
1

,

sup

x2M
sup

y,z2B
n�m

�/2(n)(x,�/2)

1

n

�

�Gn(y)�Gn(z)
�

� < ✏, (5.15)

sup

x2M
sup

y,z2B
n�m

�/2(n)(x,�/2)

1

n

�

�SnVj(y)� SnVj(z)
�

� < ✏, for j = 1, . . . ,m, (5.16)

1

n
logKn(�/2) < ✏. (5.17)

Suppose that, for sufficiently large n, we have constructed points x
1

, . . . , xr
n

2 X✏
n \ Y ✏

n(�) such that

the balls Bn�m
�/2(n)(xi, �/2) are pairwise disjoint, and

r
n

[

i=1

Bn�m
�/2(n)(xi, �/2) ⇢ X2✏

n , X✏
n \ Y ✏

n(�) ⇢
r
n

[

i=1

Bn�m
�/2(n)(xi, �). (5.18)

In this case, we can write

Pn{µ·
n 2 O} � Pn(X

2✏
n ) �

r
n

X

i=1

Pn

�

Bn�m
�/2(n)(xi, �/2)

�

=

r
n

X

i=1

Pn

�

Bn�m
�/2(n)(xi, �/2)

�

Q
�

Bn�m
�/2(n)(xi, �)

� Q
�

Bn�m
�/2(n)(xi, �)

�

. (5.19)

Since xi 2 Y ✏
n(�), we have

Q
�

Bn�m
�/2(n)(xi, �)

�

 e

�n(h
'

(Q)�✏)
(5.20)

for n � n
0

. Moreover, (5.4) and xi 2 X✏
n imply that

Pn

�

Bn�m
�/2(n)(xi, �/2)

�

� Kn(�/2)
�1

e

G
n

(x
i

)�np
'

(G)

� Kn(�/2)
�1

e

nG(Q)�n✏�np
'

(G).
(5.21)
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Thus, using (5.19), (5.20), (5.21), the second inclusion in (5.18), and (5.14), we derive

Pn{µ·
n 2 O} � 1

2

Kn(�/2)
�1

e

n(G(Q)+h
'

(Q))�2n✏�np
'

(G)

� 1

2

Kn(�/2)
�1

e

�nI(Q)�2n✏,

where the second inequality follows from (5.2). Together with (5.17) this gives

lim inf

n!1
n�1

logPn{µ·
n 2 O} � �I(Q)� 2✏.

Since ✏ 2]0, ✏
0

[ can be chosen arbitrarily small, (5.11) follows.

It remains to construct points x
1

, . . . , xr
n

2 X✏
n \ Y ✏

n(�) such that the balls Bn�m
�/2(n)(xi, �/2) are

disjoint and (5.18) holds.

First, it follows from (5.15) and (5.16) that for all y 2 Bn�m
�/2(n)(x, �/2),

�

�n�1Gn(y)� G(Q)

�

�  ✏+
�

�n�1Gn(x)� G(Q)

�

� < 2✏,

�

�n�1SnVj(y)� hVj ,Qi
�

�  ✏+
�

�n�1SnVj(x)� hVj ,Qi
�

� < 2✏ for j = 1, . . . ,m,

and so

x 2 X✏
n =) Bn�m

�/2(n)(x, �/2) ⇢ X2✏
n (5.22)

for all n � n
1

. Now let B = {Bn�m
�/2(n)(xi, �/2) : 1  i  rn} be any maximal

20

collection

of disjoint balls included in X2✏
n such that xi 2 X✏

n \ Y ✏
n(�). The first inclusion in (5.18) follows

from (5.22). To prove the second one, suppose that x⇤ 2 X✏
n \ Y ✏

n(�) does not belong to any of the

balls Bn�m
�/2(n)(xi, �). Then Bn�m

�/2(n)(x⇤, �/2) does not intersect the balls in B and, by (5.22), is

included in X2✏
n , and the collection B is not maximal. This completes the proof of the proposition. 2

The following proposition completes the proof of Part (1) of Theorem 5.2.

Proposition 5.9 If, in addition to the hypotheses of Proposition 5.8, Condition (S) holds, then inequal-
ity (5.11) holds for any open set O ⇢ P(M) and any Q 2 O \ P'(M).

Proof. Let Q 2 O \ P'(M). By Proposition 2.2, there exists a sequence {Q(m)} ⇢ E'(M) such that

Q(m) * Q, h'(Q(m)

) ! h'(Q),

as m ! 1. In this case, in view of (5.2) and the continuity assertion in Lemma 2.3, we have

I(Q(m)

) = �G(Q(m)

)� h'(Q(m)

) + p'(G) ! �G(Q)� h'(Q) + p'(G) = I(Q) (5.23)

as m ! 1. Since O is open, Q(m) 2 O for large enough m, and by Proposition 5.8, we have

lim inf

n!1
n�1

logPn{µ·
n 2 O} � �I(Q(m)

).

Passing to the limit m ! 1 and using (5.23) we obtain inequality (5.11). 2

20

Such a maximal collection exists, since (5.4) gives an absolute upper bound on r

n

.
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5.3 Proof of the LDP for asymptotically additive sequences of functions

Part (2) of Theorem 5.2 is a special case of Theorem 4.2.23 in [DZ00].

21

For the reader’s convenience,

we outline the proof in our case.

Let V = {Vn} 2 A(M) with approximating sequence {V (k)}. We define the random variables

⇠n =

1

nVn and

⇠kn :=

1

n
SnV

(k)
= hV (k), µ·

ni,

and consider them under the law Pn. By the definition of V (k)
we have

lim

k!1
lim sup

n!1
k⇠kn � ⇠nk1 = 0. (5.24)

By the usual contraction principle [DZ00, Theorem 4.2.1], for each k the family {⇠kn}n�1

satisfies the

LDP with the good convex rate function

Ik(s) = inf{I(Q) : Q 2 P'(M), hV (k),Qi = s}. (5.25)

We now show that ⇠n satisfies the LDP with the rate function

I(s) := sup

�>0

lim inf

k!1
inf

z2B(s,�)
Ik(z).

It is immediate that I is lower semicontinuous. By (5.24), for all � > 0,

lim sup

n!1

1

n
logPn{⇠n 2 B(s, �)}  � lim inf

k!1
inf

y2B(s,2�)
Ik(y),

lim inf

n!1

1

n
logPn{⇠n 2 B(s, �)} � � lim inf

k!1
inf

y2B(s,�/2)
Ik(y).

Hence we obtain

sup

�>0

lim sup

n!1

1

n
logPn{⇠n 2 B(s, �)} = sup

�>0

lim inf

n!1

1

n
logPn{⇠n 2 B(s, �)} = I(s).

A standard argument [DZ00, Theorem 4.1.11] implies that ⇠n satisfies the weak LDP with rate

function I . Since the family {⇠n} is bounded (recall Remark 0.11), ⇠n actually satisfies the full LDP,

and I is a good rate function. It remains to show that I(s) = J(s), where

J(s) = inf{I(Q) : Q 2 P'(M),V(Q) = s}.

Note that J is lower semicontinuous, since Q 7! V(Q) is continuous on P'(M) by Lemma 2.3, and is

obviously convex. It follows from (5.25) that

I(s) = sup

�>0

lim inf

k!1
inf{I(Q) : Q 2 P'(M), hV (k),Qi 2 B(s, �)},

while the lower semicontinuity of J gives

J(s) = sup

�>0

inf

y2B(s,�)
J(s) = sup

�>0

inf{I(Q) : Q 2 P'(M),V(Q) 2 B(s, �)}.

Using that hV (k),Qi ! V(Q) uniformly on P'(M) (recall (2.2)), we derive that J(s) = I(s). This

completes the proof of Part (2) of Theorem 5.2.

21

In the notation therein, X = P(M), Y = R, f

m

(Q) = hV (m)
,Qi and f(Q) is defined by V(Q) when Q 2 P

'

(M)
and arbitrarily when Q 2 P(M) \ P

'

(M).
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6 Conditions for asymptotic additivity

In this section we give some necessary and sufficient conditions for a potential sequence to be

asymptotically additive.

A sequence G = {Gn} ⇢ B(M) is said to have tempered variation if

lim

✏#0
lim sup

n!1
sup

x2M
sup

y,z2B
n

(x,✏)

1

n

�

�Gn(y)�Gn(z)
�

�

= 0. (6.1)

We have shown in Lemma 2.4 that asymptotic additivity implies (6.1). Below, we shall sometimes take

(6.1) as an assumption (along with others), in order to obtain asymptotic additivity.

We recall that {Gn} ⇢ B(M) is called weakly almost additive if for all n,m � 1,

�Cm +Gm +Gn � 'm  Gm+n  Cm +Gm +Gn � 'm, (6.2)

where limn!1 n�1Cn = 0.

The main result of this section is

Theorem 6.1 If G = {Gn}n�1

⇢ B(M) satisfies any of the following conditions, then G is asymptoti-
cally additive.

(1) Gn = SnG for each n, with G 2 C(M).

(2) Gn = SnG for each n, with G 2 B(M), and G has tempered variation.

(3) G is weakly almost additive, and Gn 2 C(M) for each n.

(4) G is weakly almost additive and has tempered variation.

Moreover, if G ⇢ C(M), then the following assertion is equivalent to asymptotic additivity of G.

(5) G satisfies

lim

k!1
lim sup

n!1
n�1

�

�Gn � 1

k
SnGk

�

�

1 = 0. (6.3)

Finally, for G ⇢ B(M), each of the following assertions is equivalent to asymptotic additivity of G.

(6) G has tempered variation and satisfies (6.3).

(7) G has tempered variation and there exists a sequence {G(k)} ⇢ B(M) such that

lim

k!1
lim sup

n!1
n�1

�

�Gn � SnG
(k)
�

�

1 = 0. (6.4)

(8) There exists a sequence {G(k)} ⇢ B(M) such that (6.4) holds, and

lim

k!1
lim

✏#0
lim sup

n!1
sup

x2M
sup

y,z2B
n

(x,✏)

1

n

�

�SnG
(k)

(y)� SnG
(k)

(z)
�

�

= 0. (6.5)
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Let us mention that various partial results contained in Theorem 6.1 were known earlier (e.g., see the

papers [Bar06, ZZC11, Bar11] and the references therein). However, the equivalence relationships

stated above seem to be new.

We start with the following lemma, which was established in [FH10, Proposition A.5] and [ZZC11,

Proposition 2.1] in the almost additive case, that is, when {Cm} in (6.2) is a constant sequence.

Lemma 6.2 Assume that {Gn} ⇢ B(M) is weakly almost additive. Then (6.3) holds.

Proof. Given two positive integers n and k, we write nk for the integer part of n/k and, for a function

V , denote

Sk
nV =

n�1

X

r=0

V � 'rk.

Suppose that for any ✏ > 0 we can find k✏ � 1 such that

lim sup

n!1

�

�n�1Gn � n�1S k
n
k

Gk

�

�

1  ✏ for k � k✏. (6.6)

For a fixed k � k✏ and any ` 2 [[1, k � 1]], replacing x by '`(x) in (6.6) and using an elementary

estimate for the ergodic average, we derive

lim sup

n!1

�

�n�1Gn � '` � n�1S k
(n+`)

k

Gk � '`
�

�

1  ✏ for k � k✏.

Combining this with the relation

lim

n!1

�

�

(n+ `)�1Gn+` � n�1Gn � '`
�

�

1 = 0

which follows from (6.2), we obtain

lim sup

n!1

�

�n�1Gn � n�1S k
n
k

Gk � '`
�

�

1  ✏ for k � k✏. (6.7)

Now note that

k�1

k�1

X

`=0

S k
n
k

Gk � '` = k�1Skn
k

Gk.

Comparing with (6.7) we get that for k � k✏,

lim sup

n!1

�

�n�1Gn � n�1k�1Skn
k

Gk

�

�

1 = lim sup

n!1

�

�n�1Gn � n�1k�1SnGk

�

�

1  ✏.

Since ✏ > 0 is arbitrary, the relation (6.3) follows.

We now prove (6.6). Let us fix an integer k � 1 and write, for n large, n = knk + `, where

0  `  k � 1. Applying inequality (6.2) consecutively nk times, we derive

Gn  knCk +

n
k

�1

X

r=0

Gk � 'rk
+G` � 'kn

k .

This gives

lim sup

n!1
sup

x2M

�

n�1Gn(x)� n�1S k
n
k

Gk(x)
�

 k�1Ck.



Cuneo, Jakši

´

c, Pillet, Shirikyan 40

Replacing Gn by �Gn, we derive

lim inf

n!1
inf

x2M

�

n�1Gn(x)� n�1S k
n
k

(Gk)(x)
�

� �k�1Ck.

Combining the last two inequalities and recalling that n�1Cn ! 0, we arrive at (6.6). 2

Lemma 6.3 Let G = {Gn} ⇢ B(M) be such that there exists {G(k)} ⇢ B(M) satisfying (6.4). Then
(6.3) holds.

Proof. For all j we have

kGn � k�1SnGkk1  kGn � SnG
(j)k1 + kSnG

(j) � k�1SnSkG
(j)k1

+ k�1kSnSkG
(j) � SnGkk1.

Applying Lemma 6.2 to {SnG
(j)} we obtain that for each j,

lim

k!1
lim sup

n!1

1

n
kSnG

(j) � k�1SnSkG
(j)k1 = 0.

Fix now ✏ > 0. If j is large enough, then by (6.4) we have

lim sup

n!1

1

n
kGn � SnG

(j)k1  ✏,

lim sup

k!1
lim sup

n!1

1

kn
kSnSkG

(j) � SnGkk1  lim sup

k!1

1

k
kSkG

(j) �Gkk1  ✏.

We thus obtain

lim sup

k!1
lim sup

n!1

1

n
kGn � k�1SnGkk1  2✏.

Since ✏ is arbitrary, this completes the proof. 2

Lemma 6.4 Let f 2 B(M) be such that for some fixed n, ✏,↵ we have

sup

x2M
sup

y2B
n

(x,✏)
|f(y)� f(x)|  ↵.

Then there exists a continuous function g such that kf � gk1  ↵.

Proof. Let E = {x
1

, x
2

, . . . , xr} be any finite (n, ✏)-spanning set. Let ⇢
1

, . . . , ⇢r be a partition of

unity subordinated to the collection {Bn(xi, ✏) : i = 1, . . . , r} (i.e., ⇢i is continuous, vanishes outside

Bn(xi, ✏), and

P

i ⇢i = 1). We claim that the continuous function

g =

r
X

i=1

⇢if(xi)

satisfies the required properties. Let x 2 M and let J ⇢ {1, . . . , r} be the largest set such that

x 2
T

j2J Bn(xj , ✏). We then have

|g(x)� f(x)| = |
X

j2J
⇢j(x)f(xj)� f(x)| = |

X

j2J
⇢j(x)(f(xj)� f(x))|  ↵,
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and the result follows. 2

Proof of Proposition 6.1. In case (1) we can obviously choose G(k)
= G as an approximating

sequence for G. Next, (2) is a special case of (4) with Cn ⌘ 0. In case (3), we obtain by Lemma 6.2

that (6.3) holds so that we are in case (5). In case (4), (6.3) also holds by Lemma 6.2, and hence we

find ourselves in the case (6).

That (5) implies asymptotic additivity is immediate, with G(k)
:= k�1Gk as an approximating sequence.

The reverse implication follows immediately from Lemma 6.3 applied to Gn and any approximating

sequence {G(k)}.

We now prove that (6) implies asymptotic additivity. First, it follows from (6.1) that there exists a

sequence {✏k}k�1

such that

lim

k!1
sup

x2M
sup

y2B
k

(x,✏
k

)

1

k
|Gk(x)�Gk(y)| = 0. (6.8)

Indeed, by (6.1), for each ` 2 N, there exists ✏(`) and k
0

(`) such that for all k � k
0

(`) we have

supx2M supy2B
k

(x,✏(`))
1

k |Gk(x)�Gk(y)|  `�1

. Let {`k} be such that `k ! 1 and k � k
0

(`k) for

all k. Setting ✏k = ✏(`k) establishes (6.8).

Let G(k)
be the regularization of

1

kGk obtained in Lemma 6.4 with respect to the Bowen balls Bk(x, ✏k),

with ✏k as in (6.8). The function G(k)
is continuous and

lim

k!1
kk�1Gk �G(k)k1 = 0. (6.9)

Since

1

n
kGn � SnG

(k)k1  1

n
kGn � k�1SnGkk1 +

1

n

�

�

�

Sn

h

k�1Gk �G(k)
i

�

�

�

1
,

relations (6.3) and (6.9) give that Gn is asymptotically additive.

Next, Lemma 6.3 immediately implies that (7) is a special case of (6). Finally, assuming (6.4), it is

easy to see that (6.1) and (6.5) are equivalent. Thus, (7) and (8) are equivalent.

We have shown that (8) () (7) =) (6) =) G 2 A(M). Since by Lemma 2.4 asymptotic additivity

implies (7), the statements (6), (7), (8) are all equivalent to G 2 A(M). 2

Remark 6.5 Note that by the characterization given in (5), if Gn 2 C(M) for all n, then the approx-

imating sequence can be chosen to be G(k)
= k�1Gk. Moreover, the proof gives that when these

functions are not continuous, G(k)
can be chosen as a regularization of k�1Gk. By the finiteness of

(0.13), this specific choice of G(k)
satisfies supk�1

kG(k)k1 < 1 (this is not true of all approximating

sequences). Finally, if G = {Gn} ⇢ B(M) is asymptotically additive, then there exists an asymptoti-

cally additive potential sequence {G0
n} ⇢ C(M) in the same class as G in the sense of Remark 0.11, i.e.,

such that lim supn!1 n�1kGn �G0
nk1 = 0. Indeed, it suffices to take an approximating sequence

{G(k)} ⇢ C(M) for G, and then to define G0
n = SnG

(k
n

)

for some well-chosen sequence kn ! 1
(which is obtained with an argument similar to that leading to (6.8)).

Remark 6.6 The reader may check that Gn = log n gives a sequence which is weakly almost additive

but not almost additive.

22

Moreover, choosing Gn =

p
n when n is even, and Gn = 0 when n is odd,

22

We recall that a sequence is almost additive if (6.2) holds with C

n

independent of n.
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gives a sequence which is asymptotically additive but not weakly almost additive. We note that these

two potential sequences are actually equivalent (in the sense of Remark 0.11) to the potential which is

identically zero. It remains an open question whether one can find an asymptotically additive potential

G such that there is no additive potential in the same equivalence class.

Frequently used notation

(S) specification property, page 18

(WPS) weak periodic specification property, page 18

(USCE) upper semi-continuity of entropy, page 23

(PAP) periodic approximation of pressure, page 23

(C) ' is continuous, page 17

(H) ' is a homeomorphism, page 17

(C-Commutation) commutation hypothesis, page 26

(R-Reversal) reversal hypothesis, page 26

M compact metric space

' continuous mapping of the space M into itself

Mn set of fixed points of the mapping 'n

C(M) space of continuous functions V : M ! R with the supremum norm k · k1
B(M) space of bounded measurable functions V : M ! R with the norm k · k1
A(M) space of asymptotically additive sequences of functions, page 7

P(M) set of probability measures on the space M with the Borel �-algebra

P'(M) set of invariant measures for a mapping '
E'(M) set of ergodic invariant measures for '
h
Top

(') topological entropy of '
h'(Q) Kolmogorov–Sinai entropy of '
p'(G) topological pressure of a continuous map ' with respect to G 2 A(M), page 20

µx
n empirical measures, page 4

�n the entropy production in time n, page 27
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