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Generic techniques are available for the design of local observers for nonlinear continuous-time systems. By local, we mean that the state estimate is guaranteed to converge to the true state, provided its initial value is nearby the plant initial condition. The main drawback of this approach is the right initialization of the observer, which may not be easy in practice. To overcome this potential issue, we propose to combine two observers: a local one, and an other observer, which provides (approximate) estimates but in a global sense, namely for any initial condition. We explain how to combine these two observers with a hybrid scheme guaranteeing global asymptotic convergence. The hybrid observer, called uniting observer, matches the local observer when the initial conditions are nearby the initial conditions of the observed system. We illustrate the proposed approach by means of a numerical example.

I. INTRODUCTION

While the systematic design of observers for linear timeinvariant dynamical systems is very well understood, see the seminal works of Kalman [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF] and Luenberger [START_REF] Luenberger | An introduction to observers[END_REF], no general method, that can be always easily applied to observable systems, is available when the system's dynamics are nonlinear. After the first works in the 70's and 80's, many techniques have been proposed in the last decades. Among them, we may identify two classes of asymptotic observers: (semi) global and local. We refer to (semi) global asymptotic observers when asymptotic estimation is achieved for any initial condition of the observed plant and any initial condition of the observer. Within this class of observers we recall passivity-based designs, e.g. [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF]; techniques based on LMIs conditions, [START_REF] Besancon | On uniform observation of nonuniformly observable systems[END_REF], [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF]; Luenberger-like observers (also known as Kazantzis-Kravaris Luenberger observers), e.g., [START_REF] Andrieu | On the existence of a Kazantzis Kravaris Luenberger observer[END_REF], [START_REF] Kazantzis | Nonlinear observer design using Lyapunovs auxiliary theorem[END_REF]; approaches which use normal forms induced by uniform observability conditions such as high-gain observers, e.g., [START_REF] Astolfi | A high-gain observer with limited gain power[END_REF], [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF], [START_REF] Ciccarella | A Luenberger-like observer for nonlinear systems[END_REF], [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]; sliding-mode observers, e.g., [START_REF] Ghanes | A second order sliding mode differentiator with a variable exponent[END_REF]. When the system's dynamics are very complex, the design of such observers may be not possible, e.g., because of non-feasibility of the LMIs [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], [START_REF] Besancon | On uniform observation of nonuniformly observable systems[END_REF], [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF], or too complicated to apply, e.g. because we need to solve partial differential equations [START_REF] Andrieu | On the existence of a Kazantzis Kravaris Luenberger observer[END_REF], or to find analytically the inverse of a nonlinear change of coordinates [START_REF] Astolfi | A high-gain observer with limited gain power[END_REF], [START_REF] Ghanes | A second order sliding mode differentiator with a variable exponent[END_REF], [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]. On the other hand, we refer to local asymptotic observers when asymptotic estimation is guaranteed only when the initial conditions of the observer are close enough to those of the observed plant. Among the various techniques for the design of local observers, the most popular is certainly the extended Kalman filter (EKF), e.g. [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], but other techniques can be found in [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF], [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF]. The design of local observers, such as EKF, is systematic under mild regularity conditions, but due to their local properties, divergence of the estimation may occur if the initial conditions are not carefully chosen. This wrong initialization problem could be overcome if we were able to build a global approximate observer, that is an observer providing, in a finite amount of time, an estimation close enough to the true value of the state. Examples of approximate observers can be found in [START_REF] Menini | A practical observer for nonlinear systems[END_REF], [START_REF] Teel | Tools for semiglobal stabilization by partial state and output feedback[END_REF]. Then, intuitively, by waiting long enough, we could use the local observer at hand by picking as initial conditions the ones given by the approximate observer.

In this paper, we follow the ideas of [START_REF] Prieur | Uniting local and global controllers[END_REF], [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], which investigate control problems, but in the context of observers. In particular, our goal is to unite two given observers, one possibly local and an other possibly global. In [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], different observers are combined in the context of observer-based output feedback stabilization and not estimation solely. In this work, the observers we consider may have different structures, state dimensions and can be expressed in different coordinates. Under a certain number of sufficient conditions, we show how to design a hybrid observer which guarantees global asymptotic estimation and preserves the behaviour of the local observer when the estimation error is small enough. The proposed hybrid scheme can be used not only for the purpose of improving performances of two continuoustime observers, as done in [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] or [START_REF] Ghanes | A second order sliding mode differentiator with a variable exponent[END_REF] in a continuoustime approach with adaptive designs for specific classes of observers, but also to achieve global asymptotic estimation when a continuous-time global asymptotic observer is not (explicitly) known. This novel perspective suggests also to put more efforts in the study of global approximate observers for nonlinear systems.

Note that the idea of exploiting local observers to ensure (semi) global asymptotic stability property for the estimation error was also pursued in [START_REF] Krener | A hybrid computational approach to nonlinear estimation[END_REF], [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF], where a multiobserver, consisting of a bank of numerous local observers, is proposed. However, the approach pursued in this paper is different as only two observers are required, as well as some auxiliary variables, which ease the implementation in terms of computational cost. Also, here, we do not need to assume that initial condition of the plant lies in a known compact set. Finally, it is worth stressing that this work is not simply an extension to the observer case of [START_REF] Prieur | Uniting local and global controllers[END_REF], [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF] since a certain number of different technical points need to be addressed. The main difference is that, while, in [START_REF] Prieur | Uniting local and global controllers[END_REF], [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF], the equilibrium of the closed-loop system is known a priori, in the considered observation framework, the steady-state of the hybrid observer is an unknown time-varying trajectory. As a consequence, in order to decide which observer has to be used, we need to know the norm of the estimation error provided by the global observer and not the norm of the system state.

The paper is organized as follows. In Section II, we state the framework and the uniting observers problem we aim to solve. In Section III, we give a certain number of assumptions under which the uniting problem can be solved. An explicit solution is presented in Section IV. The proof of the main result is omitted for the space reasons. A simple example is given in Section V, where we combine an extended Kalman filter with a high-gain observer in order to improve the performances in presence of measurement noise.

Notation

Let R = (-∞, ∞) and N = {1, 2, . . .}. Given a matrix P ∈ R n×m , we denote with vec(P ) the vectorization of the matrix P . Given a differential equation ẋ = f (x), we denote by x(t) its solution initialized at x • at time t, when it exists. We consider hybrid systems of the form [START_REF] Goebel | Hybrid dynamical systems[END_REF] 

ẋ = F (x), x ∈ C, x + = G(x), x ∈ D,
where x ∈ R nx is the state, C is the flow set, F is the flow map, D is the jump set and G is the jump map. We assume that the hybrid model satisfies the basic regularity conditions, see Section 6.2 in [START_REF] Goebel | Hybrid dynamical systems[END_REF], which will be the case in our study. We recall some definitions from [START_REF] Goebel | Hybrid dynamical systems[END_REF]. Solutions to system (1) are defined on so-called hybrid time domains.

A set E ⊂ R ≥0 × N is a compact hybrid time domain if E = J-1
j=0 ([t j , t j+1 ], j) for some finite sequence of times 0 = t 0 ≤ t 1 ≤ . . . ≤ t J and it is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a compact hybrid time domain. Given two hybrid times (t 0 , j 0 ), (t 1 , j 1 ) ∈ E, we denote (t 0 , j 0 ) ≤ (t 1 , j 1 ) if t 0 ≤ t 1 and j 0 ≤ j 1 . Given an initial condition x • ∈ C ∪ D, we denote by x(t, j) a solution to the hybrid system starting at x • at time (t, j) if (t, j) ∈ dom x. Throughout the text, we will refer to solutions as maximal solutions, see Definition 2.7 in [START_REF] Goebel | Hybrid dynamical systems[END_REF].

II. PROBLEM STATEMENT

We investigate the estimation problem for autonomous nonlinear systems of the form

ẋ = f (x) , y = h(x) (1) 
where x ∈ R nx is the state and y ∈ R ny is the measured output, n x , n y ∈ N. Moreover, we suppose that f, h are continuous functions and that there exists a set X ⊆ R nx , which is forward invariant for system (1), namely x(0) ∈ X implies x(t) ∈ X for all t ∈ [0, ∞). To make precise what we mean by a global approximate observer and a local asymptotic observer, consider the following observer

ζ = ϕ(ζ, y), x = ψ(ζ), (2) 
where ζ ∈ Z ⊆ R n ζ is the observer state and x ∈ R nx is the estimation, n ζ ∈ N. Even if often the dimension of the observer n ζ coincides with the system dimension n x , e.g. [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF], [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF], [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF], the notation above allows to consider observers with a state dimension larger than the dimension of the plant, such as in [START_REF] Andrieu | On the existence of a Kazantzis Kravaris Luenberger observer[END_REF], [START_REF] Astolfi | A high-gain observer with limited gain power[END_REF], [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF]. We use the following definitions. Definition 1 (Local asymptotic observer): System (2) is said to be a local asymptotic observer for system (1) if there exists a set-valued map B(x) ⊆ Z such that for any (x(0), ζ(0)) ∈ X ×B(x(0)), then the corresponding solutions to (1), [START_REF] Arcak | Nonlinear observers: a circle criterion design and robustness analysis[END_REF] In this paper, we assume to know a local asymptotic observer and a global approximate observer for system [START_REF] Andrieu | On the existence of a Kazantzis Kravaris Luenberger observer[END_REF]. Any of the techniques in literature (such as [START_REF] Andrieu | On the existence of a Kazantzis Kravaris Luenberger observer[END_REF], [START_REF] Astolfi | A high-gain observer with limited gain power[END_REF], [START_REF] Besancon | On uniform observation of nonuniformly observable systems[END_REF], [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF], [START_REF] Menini | A practical observer for nonlinear systems[END_REF], [START_REF] Teel | Tools for semiglobal stabilization by partial state and output feedback[END_REF], [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF]) satisfying Definitions 1 and 2 can be used to construct these estimators. Note that any observer guaranteeing global asymptotic convergence is by definition a global approximate observer. The local asymptotic observer is given by ζ0 = ϕ 0 (ζ 0 , y) ,

x0 = ψ 0 (ζ 0 ) , (3) 
with ζ 0 ∈ Z 0 ⊆ R n0 and x0 ∈ R nx , and the global approximate observer is written as

ζ1 = ϕ 1 (ζ 1 , y) , x1 = ψ 1 (ζ 1 ) , (4) 
with ζ 1 ∈ Z 1 ⊆ R n1 , and x1 ∈ R nx . The subscript 0 is hence used to denote the local observer, while the subscript 1 is used to denote the global one. For the sake of convenience, we suppose that, given any solution x to (1) in X , the set Z 0 , respectively Z 1 , is forward invariant for observer (3), respectively (4). This is assumption is stated in order to avoid the finite escape time phenomenon; we will work on relaxing this condition in future work. By combining observers (3) and (4), we aim at designing a hybrid scheme in order to achieve global asymptotic estimation of system [START_REF] Andrieu | On the existence of a Kazantzis Kravaris Luenberger observer[END_REF]. The hybrid observer has the form ξ = ϕ(ξ, y), ξ ∈ C, ξ + = w(ξ, y), ξ ∈ D, (5)

and x = ψ(ξ), with ξ ∈ R n ξ , x ∈ R nx , C ⊆ R n ξ , D ⊆ R n ξ .
As a result, systems (1) and ( 5) lead to the overall system below ẋ = f (x) ξ = ϕ(ξ, y) (x, ξ) ∈ X × C,

x + = x ξ + = w(ξ, y) (x, ξ) ∈ X × D, y = h(x), x = ψ(ξ) . (6) 
Our objective is to solve the uniting problem, as defined next. Definition 3 (Uniting problem): The uniting problem is solved if there exists an integer n ξ ≥ max{n 0 , n 1 }, closed sets C, D, continuous functions ϕ :

C × h(X ) → R n ξ , w : D × h(X ) → R n ξ and ψ : (C ∪ D) → R nx , α : R nx × R n ξ → R ≥0 , δ
> 0 and a (non-zero) matrix M ∈ R nx×n ξ , such that the following holds.

• (Completeness property) Any solution (x, ξ) to (6) is complete. • (Global asymptotic property) Any solution (x, ξ) to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] satisfies

lim t+j→∞ |x(t, j) -x(t, j)| = 0 . (7) 
• (Local property) Any solution (x, ξ) to (6) satisfying α(x(0), ξ(0

)) ≤ δ has the hybrid time domain [0, ∞) × {0} and (x(t, 0), M ξ(t, 0)) = (x(t), ζ0 (t)) for all t ∈ [0, ∞), where (x, ζ0 ) is a solution to (1), (3). 
The global asymptotic property states that hybrid observer (5) guarantees global asymptotic estimation of x. On the other hand, the local property ensures that, when the initial conditions of hybrid observer ( 5) are nearby to the initial conditions of system (1), then hybrid observer (5) behaves as the local observer (3). In other words, solutions to (1), ( 5) correspond to solutions to (1), ( 3). This property guarantees that the performances and the robustness properties of local observer (3) are locally retained by hybrid observer [START_REF] Besancon | On uniform observation of nonuniformly observable systems[END_REF].

III. ASSUMPTIONS

As mentioned above, we will use observers (3) and ( 4), which we assume to know, to construct hybrid observer [START_REF] Besancon | On uniform observation of nonuniformly observable systems[END_REF]. The main idea is the following. When the state estimation is large, we need to use the global approximate observer, as the local one is not ensured to convergence in this case. After a sufficiently long time, the estimation error will become smaller than ε in view of Definition 2. Then, we can switch observer and use the local one. In order to implement such a mechanism, the following assumptions are needed.

Assumption 1 (State correspondence): There exists a continuous function γ : R n1 → R n0 such that γ(Z 1 ) ⊆ Z 0 and

ψ 1 (ζ 1 ) = ψ 0 (γ(ζ 1 )) for all ζ 1 ∈ Z 1 .
When we will switch from one observer to the other, we will use the function γ(•) to maps estimates of global observer (4) into estimates for local observer [START_REF] Astolfi | A high-gain observer with limited gain power[END_REF]. Basically, if we want to initialize local observer (3) at time T , we select

ζ 0 (T ) = γ(ζ 1 (T )).

Assumption 2 (Local observer):

There exist a continuous function V 0 : R nx × R n0 → R ≥0 and a real number ε 0 > 0 such that the following holds.

1) System ( 3) is a local asymptotic observer for system (1) with a basin of attraction B 0 containing the set

Ω 0 := {(x, ζ 0 ) ∈ X × Z 0 : V 0 (x, ζ 0 ) ≤ ε 0 } . (8)
2) The set Ω 0 is forward invariant for system (1), (3). Assumption 2 states that observer (3) is a local asymptotic observer. The function V 0 is usually a Lyapunov function for observer (3), used to prove convergence, see [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF], for instance. Forward invariance of the set Ω 0 is an extra assumption which comes for free when V 0 is a Lyapunov function. In the following, it is used to prevent undesired jump.

To solve our uniting problem, we need the estimation error provided by global observer (4) to be small enough in order to guarantee convergence of local asymptotic observer (3) when initialized with the estimate provided by global observer [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF]. For this, let Υ 1 ⊂ X × Z 1 be defined as

Υ 1 := (x, ζ 1 ) ∈ X × Z 1 : V 0 (x, γ(ζ 1 )) ≤ ε 0 , (9)
where V 0 and ε 0 are given in Assumption 2. Note that by construction, γ(Υ 1 ) = Ω 0 . Loosely speaking, the set Υ 1 is the "projection" of the Ω 0 in the ζ 1 -coordinates. As a consequence, we will ask that global observer (4) to converge to a subset of Υ 1 , in the next assumption.

Assumption 3 (Global approximate observer):

There exist a continuous function V 1 : R nx × R n1 → R ≥0 , and a real number ε 1 > 0 such that the following holds.

1) For all solutions x to system (1) evolving in X and all corresponding solutions ζ 1 to observer (4) starting in

Z 1 we have lim sup t→∞ V 1 (x(t), ζ 1 (t)) < ε 1 .
2) The set Ω 1 defined as

Ω 1 := (x, ζ 1 ) ∈ X × Z 1 : V 1 (x, ζ 1 ) ≤ ε 1 (10) 
is forward invariant for system (1), (4). Moreover, the set Ω 1 is strictly contained in the set Υ 1 defined by ( 9), namely

Ω 1 ⊂ Υ 1 .
Item 1) of Assumption 3 means that observer (4) is a global approximate observer for system [START_REF] Andrieu | On the existence of a Kazantzis Kravaris Luenberger observer[END_REF]. When V 1 is a Lypaunov function, Ω 1 is a Lyapunov level set of V 1 and forward invariance comes directly. Finally, item 2) implies that the estimate provided by global observer (4) converges inside the set Υ 1 defined in [START_REF] Ghanes | A second order sliding mode differentiator with a variable exponent[END_REF].

Let Ω := Ω 0 ∪ Ω 1 , with Ω 0 and Ω 1 from Assumption 2-3,

Ω := (x, ζ 0 , ζ 1 ) ∈ X × Z 0 × Z 1 : V 0 (x, ζ 0 ) ≤ ε 0 , V 1 (x, ζ 1 ) ≤ ε 1 . (11 
) By construction, when both observers are initialized inside the set Ω, convergence of the uniting observer should be guaranteed. In order to satisfy the local property of Definition 3, the following assumption is needed.

Assumption 4 (Basin of attractions):

There exist a continuous function θ :

R nx × R nx → R ≥0 and class K ∞ functions α θ , ᾱθ satisfying α θ (|x 0 -x1 |) ≤ θ(x 0 , x1 ) ≤ ᾱθ (|x 0 -x1 |) (12) 
for all x0 , x1 ∈ R nx , and such that, by letting xq = ψ q (ζ q ), q = 0, 1, the following holds.

1) By letting Ω defined as in [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF], we have

c 0 := sup θ(x 0 , x1 ) : (x, ζ 0 , ζ 1 ) ∈ Ω > ε 1 . (13)
2) The set Υ 0 defined as

Υ 0 := (x, ζ 0 ) ∈ X × Z 0 : ∃ ζ 1 ∈ Ω 1 , θ(x 0 , x1 ) < c 0 + 1 (14
) is strictly contained in the set B 0 given by Assumption 2, namely Υ 0 ⊂ B 0 .

The function θ(•) in Assumption 4 is a distance function, which is needed to detect whether the estimates provided by the local observer and the global one are too far when the state of global observer (4) is inside the set Ω 1 defined in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. Further comments are postponed to the end of this section and in the forthcoming Section IV where the design of the hybrid observer solving the uniting problem is proposed.

Finally, the last key ingredient we need to implement the hybrid observer solving the uniting problem is the switching rule from the global observer to the local one. We mentioned above that we aim at switching between the observers depending on the state estimation error x1 -x provided by global observer (4). The latter is unknown, we therefore need to estimate it. Hence, we assume below that we can design this estimator. In particular, we assume how to upper-bound the function V 1 which takes place of the estimation errors x1 -x, and which is all we need to switch from one observer to the other in view of item 2) of Assumption 3.

Assumption 5 (Error-norm estimator):

There exist a continuous function ρ : R ny × R ny → R ≥0 , a class KL function β and c 1 > 0 satisfying ε 1 < c 1 < c 0 , with ε 1 given by Assumption 3 and c 0 given by Assumption 4, such that, the following holds.

1) For any solution (x, ζ 1 ) to ( 1), ( 4) with (x(0),

ζ 1 (0)) ∈ X × Z 1 , V 1 (x(t), ζ 1 (t)) ≤ z(t) + β(|x(0)| + |ζ 1 (0)| + |z(0)|, t)
for all t ∈ [0, ∞), where z is the solution of

ż = -z + ρ(y, h(x 1 )) (15) 
with initial condition z(0) ∈ R ≥0 . 2) For each solution to (1), (4) starting in the set Ω 1 , defined in [START_REF] Goebel | Hybrid dynamical systems[END_REF], we have ρ(y(t), h(x

1 (t))) < c 1 for all t ∈ [0, ∞).
The existence of (15) satisfying the previous assumption is related to the notion of norm-estimator, see [START_REF] Krichman | Inputoutput-to-state stability[END_REF]. In this case, however, we ask that an upper bound for V 1 can be estimated from |y -h(x 1 )|. Moreover, in view of item 2) of Assumption 5, after a time long enough, we can expect that if the norm of z is small, then the state of global observer (4) is inside the set Ω 1 defined in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. We can therefore switch observer. The existence of ( 15) is always guaranteed when V 1 is a Lyapunov function satisfying

∇V 1 (x, ζ 1 ), (f (x, u), ϕ 1 (x, u, y)) ≤ -V 1 (x, ζ 1 ) + ε 1 , since we can select ρ(•) := ρ 1 (•) + ε 1 where ρ 1 : R ny × R ny → R ≥0 is any continuous function satisfying max (x,ζ1)∈Ω1 ρ 1 (y, h(x 1 )) < c 1 -ε 1 .
Finally, note that the estimation of an upper bound for V 0 is not necessary, since the information whether the state of local observer (3) is inside the "right" set Ω 0 , defined in [START_REF] Ciccarella | A Luenberger-like observer for nonlinear systems[END_REF], can be indirectly obtained by using the function θ(•) of Assumption 4.

IV. MAIN RESULT

We are now in the position to state our main result concerning the existing of a hybrid observer solving the uniting problem.

Theorem 1: Under Assumptions 1-5, there exists a hybrid observer (5) solving the uniting problem.

The proposed hybrid observer is made of four components:

• local observer [START_REF] Astolfi | A high-gain observer with limited gain power[END_REF], which provides an estimate x0 ;

• global approximate observer [START_REF] Astolfi | Integral action in output feedback for multiinput multi-output nonlinear systems[END_REF], which provides an estimate x1 ; • the dynamical estimator z given in Assumption 5;

• a discrete variable q which takes value in {0, 1} defining which state estimate, x0 or x1 , we need to use. According to the discrete variable q, the hybrid observer has two different operating modes. a) (Global mode q = 1) The global observer is "running" and we the local observer is "turned off", namely we keep its state constant. Consequently, we set x = x1 . The z-dynamics is used to detect whether the error estimate |x 1 -x| is small enough. In particular, when |z| ≤ c 1 , with c 1 given in Assumption 5, we allow for a jump and we change the operating mode. b) (Local mode q = 0) The estimate x is provided by the local observer, namely x = x0 . To avoid wrong initializations, we must detect if the local observer is outside its basin of attraction, see Assumption 2. Since we do not have a direct knowledge of the behaviour of the local observer when (x, ζ 0 ) ∈ B 0 , we let run both observers and we compare the estimates x0 and x1 . These two estimates should be respectively close enough if both observers are working in the right region, namely (x, x0 ) ∈ B 0 and (x, x1 ) ∈ Ω 1 , defined in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. As a consequence, if the difference between the two estimates |x 0 -x1 | is too large, which is detected thanks to the function θ(•) in Assumption 4, then we impose a jump and change the operating mode. Moreover, for robustness purposes, if |x 1 -x| becomes too large, we also impose a jump and we change operating mode. This can be observed by using the function ρ(•) in Assumption 5. According to the previous operating modes, by letting n ξ = n 0 + n 1 + 2 and by taking ξ = (ζ 0 , ζ 1 , z, q) ∈ R n ξ = R n0 ×R n1 ×R×R, the proposed hybrid observer (5) solving the uniting problem is given by

ζ0 = (1 -q)ϕ 0 (ζ 0 , y) ζ1 = ϕ 1 (ζ 1 , y) ż = -z + max ρ(y, h(x 1 )), (1 -q)θ(x 0 , x1 ) q = 0              ξ ∈ C (16) ζ + 0 = γ(ζ 1 ) ζ + 1 = ζ 1 z + = z q + = 1 -q          ξ ∈ D (17) x0 = ψ 0 (ζ 0 ) , x1 = ψ 1 (ζ 1 ) , x = (1 -q)x 0 + qx 1 , (18) where 
C = C 0 ∪ C 1 , D = D 0 ∪ D 1 C 0 := ξ ∈ Ξ : 0 ≤ z ≤ c 0 , q = 0 , C 1 := ξ ∈ Ξ : c 1 ≤ z, q = 1 , D 0 := ξ ∈ Ξ : c 0 ≤ z, q = 0 , D 1 := ξ ∈ Ξ : 0 ≤ z ≤ c 1 , q = 1 , (19) 
Ξ := Z 0 × Z 1 × R ≥0 × {0, 1}
and c 1 < c 0 are given in Assumptions 4 and 5. Moreover, the local property in Definition 3 is verified with M := (I n0 0), where I n0 is the identity matrix in R n0×n0 ,

α(x, ξ) := max 1 ε 0 V 0 (x, ζ 0 ), 1 ε 1 V 1 (x, ζ 1 ), 1 c 0 |z|, q
and for some value 0 < δ < 1, with V 0 , V 1 , ε 0 ε 1 , defined by Assumptions 2-3 and c 0 given by ( 13).

The main idea of the proof of Theorem 1 is to show that the set A ⊂ X × (C ∪ D), defined as

A := (x, ξ) ∈ X × Ξ : (x, ζ 0 , ζ 1 ) ∈ Ω, z ≤ c 0 , q = 0 ,
is globally attractive for [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] and that any solution lying inside a compact subset of A for a long enough time satisfies [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF].

V. ILLUSTRATIVE EXAMPLE

In the following example we want to exploit the robustness properties of extended Kalman filters (EKF), e.g. [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF], with respect to measurement noise, as opposed to highgain observers (HGO), [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]. We consider, in particular, the perturbed Duffing oscillator

ẋ = Sx + Bφ(x) + Q c u, y = Cx + R c v, (20) 
where x = (x a , x b ) T ∈ R 2 is the state, y ∈ R is the output, φ(x) = x a -x 3 a , and (S, B, C) is a triplet in prime form, namely S = 0 1 0 0 , B = (0, 1) T , C = (1, 0). In (20), u ∈ R 2 is some unmeasured disturbance affecting the plant and v ∈ R is the measurement noise. Moreover, Q c = Q T c > 0 and R c > 0 are supposed to be known. Note that for initial condition x(0) ranging in some given compact set X • ⊂ R 2 , and for any (small) bounded input u(t), there exists a set X ⊇ X • , which is forward invariant for [START_REF] Prieur | Uniting local and global controllers[END_REF]. It can be computed numerically.

By following [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF], the local asymptotic observer in (3) is an EKF with state ζ 0 = (x T 0 , vec(P )) T and dynamics given by [START_REF] Prieur | Uniting local and global controllers[END_REF], and A(x 0 ) := S + B∂φ(x 0 )/∂x. Since system [START_REF] Prieur | Uniting local and global controllers[END_REF] is uniformly observable, the matrix P (t) is guaranteed to be bounded for all t ≥ 0 and convergence of observer ( 21) can be established with the Lyapunov function V 0 = (x 0 -x) T P -1 (x 0 -x) for |x(0)x(0)| small enough, see [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF], [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF]. The global observer in ( 4) is given by a HGO designed with state ζ 1 = x1 and dynamics given by

ẋ0 = S x0 + Bφ(x 0 ) + K(y -C x0 ) Ṗ = A(x 0 )P + P A(x 0 ) T -P C T R -1 c CP + Q c K = P C T R -1 c (21) where x0 = (x 0a , x0b ) ∈ R 2 is the estimate, P ∈ R 2×2 , Q c , R c are chosen according to
ẋ1 = S x1 + Bφ s (x 1 ) + D κ L(y -C x1 ) (22) 
where x1 = (x 1a , x1b ) ∈ R 2 is the observer state, L ∈ R 2×1 is any matrix chosen such that S -LC is Hurwitz, D κ = diag(κ, κ 2 ), where κ ≥ 1 is the high-gain parameter, and the function φ s (•) := sat r (φ(•)) where sat r is any (continuous) saturation function with saturation level r ≥ max x∈X |φ(x)|. Observer ( 22) is a semi-global asymptotic observer for [START_REF] Prieur | Uniting local and global controllers[END_REF] when κ ≥ 1 is large enough. This can be established with the Lyapunov function V 1 = êT 1 H ê1 , where H is solution of H(S -LC) + (S -LC) T H = -I, and ê1 = κD -1 k (x 1 -x), see [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF].

We construct the hybrid observer ( 16)-( 18) with γ(x 1 ) :=

(x 1 , vec(I 2×2 )) T , ρ(y, C x1 ) := |y -C x1 |, and θ(x 0 , x1 ) := |x 0 -x1 |, for x1 , x0 ∈ R 2 .
In the simulations, we suppose that u and v are generated by

ẇi = Ω i w i , i ∈ {1, 2, 3}, u = Q 1 w 1 + Q 2 w 2 , v = Q 3 w 3
where

Ω i = (0 ω i , -ω i 0) and the matrices Q 1 , Q 2 ∈ R 2×2
and Q 3 ∈ R 1×2 have unitary norms. We selected ω 1 = 5, ω 2 = 27, ω 3 = 32, Q 1 = (0.99 0.12, -0.12 0.99), Q 2 = (0.85 0.53, -0.53 0.85), Q 3 = (0.65 0.76), Q c = diag(0.1, 0.1), R c = 0.5. The initial conditions of (20) range in the compact set

X • := {(x a , x b ) ∈ R 2 : x 2 a + x 2 b ≤ 25} and we have X ⊂ {(x a , x b ) ∈ R 2 : |x a | ≤ 6, |x b | ≤ 20}.
This can be computed numerically. According to this bound we selected L = (1, 1), r = 210 and κ = 10. Since observer [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF] is asymptotic, ε 1 in Assumption 3 is equal to 0 and therefore c 1 in Assumption 5 can be chosen arbitrarily small. We selected c 0 = 1.4, c 1 = 0.7. Simulations have been made to verify convergence of EKF [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF] with such values.

In Figures 1,2, we show the behaviours of system (20) and hybrid observer ( 16)-( 18) with initial conditions x(0, 0) = (2, 3), x0 (0, 0) = (-3, -5), P (0, 0) = I 2×2 , x1 (0, 0) = (2.5, 3.5), z(0, 0) = 0, q(0, 0) = 0 to show the case of a "wrong initialization". With such initial conditions, 2 jumps occur at t 1 = 0.25 and t 2 = 1.31 during the simulation. Figure 1 shows the plots of x(t, j), x0 (t, j) and x1 (t, j), for (t, j) ∈ [0, 3]×{0, 1, 2}, while Figure 2 shows the plot of the error estimate e(t, j) defined as e := x -x and the value of the error norm estimator z(t, j), for (t, j) ∈ [0, 3] × {0, 1, 2}. It is possible to appreciate the better performances in steady state x 0 = (x 0a , x 0b ) T of EKF ( 21) when compared to the estimate x 1 = (x 1a , x 1b ) T of HGO [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF], in particular for x0b and x1b . At (0, 0), local EKF ( 21) is far from the system state (20) while global HGO [START_REF] Reif | An EKF-based nonlinear observer with a prescribed degree of stability[END_REF] is nearby [START_REF] Prieur | Uniting local and global controllers[END_REF]. However, q(0, 0) = 0 and z(0, 0) = 0 impose the use of the local observer for (t, j) ∈ [0, t 1 ) × {0}. After some time the large error between x0 and x1 is detected by z through the function θ(x 0 , x1 ) and a jump is imposed when z = c 0 . The local EKF observer is turned off for (t, j) ∈ [t 1 , t 2 ) × {1}. As a consequence, the value of z starts decreasing since the global HGO observer is close to the system state and ρ(y, C x1 ) is small. Another jump occurs when z = c 1 . Finally, for (t, j) ∈ [t 3 , ∞)×{2}, the local observer is used. The steadystate of the error norm estimator z is different from zero due to the presence of measurement noise which enter through the function ρ(y, C x1 ).

VI. CONCLUSION

We investigated the uniting problem [START_REF] Prieur | Uniting local and global controllers[END_REF], [START_REF] Prieur | Uniting local and global output feedback controllers[END_REF] in the context of estimation. The main idea is to combine a local asymptotic observer, such as an extended Kalman filter, together with a global (possibly approximate) observer in order to design a hybrid observer guaranteeing global asymptotic estimation while inheriting the good properties of the local estimator when the estimation error is small. The uniting observer design is achieved under a set of prescriptive conditions. In future work, we will propose constructive conditions for relevant classes of nonlinear observers and we will analyse the robustness properties of the proposed uniting observer with respect to measurement noise. We also aim at enlarging the considered class of systems by considering systems with inputs, and relaxing some of the assumptions made on the observers used to derive the hybrid-estimator.

Proof of Theorem 1. Throughout the proofs, when we refer to system (6), we mean that observer (5) is given by ( 16)- [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF]. First, we prove that every solution to (6) is complete. Then, we will prove the local property and finally the global asymptotic property.

(Completeness of solutions) We apply Proposition 6.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] for this purpose. First of all, in view of the definition of the sets C, D, and the maps f (•), ϕ(•), w(•) of (6), hybrid system (6) satisfies Assumption 6.5 in [START_REF] Goebel | Hybrid dynamical systems[END_REF]. Let (x, ξ) ∈ C\D. When (x, ξ) is in the interior 1 

of C, T C (x, ξ) = R n0 × R n1 ×R ≥0 ×{0} and (f (x), φ(ξ, y)) ∈ X ×C ×R ≥0 ×{0, 1}.
When (x, ξ) is not in the interior of C, then necessarily, since (x, ξ) / ∈ D, z = 0 and q = 0 in view of [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF]. In this case,

T C (x, ξ) = R n0 × R n1 × R ≥0 × {0}.
Since the flow map of the z-variable takes non-negative values when z = 0 and q = 0 in view of ( 16) and ( 19), (f (x), ϕ(ξ, y)) ∈ T C (x, ξ). As a result, the viability condition (VC) in Proposition 6.10 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] holds for any (x, ξ) ∈ C\D. On the other hand, w(D 0 , h(X )) ⊆ C 1 and w(D 1 , h(X )) ⊆ C 0 , hence w(D) ⊆ C. As a consequence (x, ξ) is either complete or explode in finite time. When ξ ∈ C 0 , the dynamics of ζ 0 and ζ 1 correspond respectively to those of ( 3) and ( 4). On the other hand, when ξ ∈ C 1 , we have that ζ0 = 0 and ζ 1 evolves according to the dynamics of (4). As a consequence, since

C ⊆ Z 0 × Z 1 × R ≥0 × {0}, by definition of ϕ 0 (•), ϕ 1 (•)
, no finite escape time phenomenon may occur. We conclude that all solutions are complete by application of Proposition 6.1 in [START_REF] Goebel | Hybrid dynamical systems[END_REF].

(Local property) Given δ ∈ (0, 1), let A δ ⊂ X × (C ∪ D) be defined as

A δ := {(x, ξ) ∈ X × Ξ : α(x, ξ) ≤ δ} . (23) 
By construction, we have A δ ⊂ A ⊆ X × C 0 since δ < 1.

The local property follows then by applying the forthcoming claim.

Claim 1: Any solution (x, ξ) to (6) starting in A δ is such that:

(i) dom(x, ξ) = [0, ∞) × {0}; (ii) (x(t, 0), ξ(t, 0)) ∈ A for all t ∈ [0, ∞).
In view of item (ii) of Claim 1, (x(t, j), ξ(t, j)) lies in A for all (t, j) ∈ [0, ∞) × {0}, and hence in C 0 as long as (x(0, 0), ξ(0, 0)) ∈ A δ . As a result, since the vector field of ζ 0 in C 0 corresponds to that of the local observer (3), (x(t, 0), M ξ(t, 0)) = (x(t), ζ0 (t)) for all t ∈ [0, ∞) where (x, ζ0 ) is a solution to (1), [START_REF] Astolfi | A high-gain observer with limited gain power[END_REF].

(Global asymptotic property) The asymptotic property follows by combining the next three claims. The first claim shows that the discrete variable q has to take the value 0 at some (hybrid) time. In other words, any (x, ξ) solution to (6) enters the set C 0 at some (hybrid) time. The second claim states that, if the discrete variable q remains equal to 0 after (a sufficiently long) time, i.e. (x, ξ) remains in C 0 for all sufficiently large time, then [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF] holds. Finally, the third claim states that the discrete variable cannot switch back and 1 where T C denote the tangent cone of C, Definition 5.12 in [START_REF] Goebel | Hybrid dynamical systems[END_REF] forth between q = 0 and q = 1, namely a solution cannot switch back and forth between C 0 and C 1 forever.

Claim 2: For any solution (x, ξ) to ( 6), there exists (t, j) ∈ dom(x, ξ) such that q(t, j) = 0. Claim 3: Let (x, ξ) be a solution to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF]. If there exists a hybrid time ( t, j) ∈ dom(x, ξ), such that q(t, j) = 0 for all (t, j) ∈ dom(x, ξ), (t, j) ≥ ( t, j), then (7) holds.

Claim 4: Let (x, ξ) be a solution to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF]. There does not exist a nondecreasing sequence of hybrid times ((t n , j n ) n∈N ) ∈ dom(x, ξ), such that we have q(t 2n , j 2n ) = 0 q(t 2n+1 , j 2n+1 ) = 1 [START_REF] Teel | Tools for semiglobal stabilization by partial state and output feedback[END_REF] for all n ∈ N.

We are in the position to combine the previous claims to prove the global asymptotic property. Pick any solution (x, ξ) to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF]. In view of Claim 4, there exists a hybrid time (t 1 , j 1 ) ∈ dom(x, ξ) such that either q(t, j) = 0 or q(t, j) = 1 for all (t, j) ∈ dom(x, ξ) with (t, j) ≥ (t 1 , j 1 ). By applying Claim 2, we know that it cannot exist a hybrid time (t 2 , j 2 ) ∈ dom(x, ξ), (t 2 , j 2 ) ≥ (t 1 , j 1 ) such that, q(t, j) = 1, for all (t, j) ∈ dom(x, ξ) such that (t, j) ≥ (t 2 , j 2 ). As a result, the solution (x, ξ) is such that q(t, j) = 0 for all (t, j) ∈ dom(x, ξ), (t, j) ≥ (t 1 , j 1 ). As a consequence, by applying Claim 3 we conclude that [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF] holds. This concludes the asymptotic property.

Proof of Claim 1. Let δ ∈ (0, 1) and (x, ξ) ∈ A δ defined as in [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF]. By definition of A δ , q = 0 and |z| < c 0 . Hence A δ ⊆ (C 0 \D). Let (x, ξ) be now a solution to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] initialized in A δ . In order to prove the claim, we first need to prove (x, ξ) experiences no jump on its hybrid time domain. We proceed by contradiction and we assume that there exists t > 0 such that ( t, 0), ( t, 1) ∈ dom(x, ξ). Hence q( t, 1) = 1 in view of ( 17) and [START_REF] Postoyan | A multi-observer approach for the state estimation of nonlinear systems[END_REF]. Note that the components of the flow map corresponding to ζ 0 and ζ 1 are equal ϕ 0 and ϕ 1 , respectively, in C 0 . As a consequence, the properties of Assumptions 2, 3 and 5 hold for the ζ 0 and the ζ 1 component of (x, ξ) on [0, t) × {0}. On the other hand, since (x(0, 0), ξ(0, 0)) ∈ A δ , then (x(0, 0), ξ(0, 0)) ∈ Ω in view of [START_REF] Hamid | Local observers design for a class of neural mass models[END_REF] and [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF]. As a consequence, by using item 2) of Assumption 2 and item 1) of Assumption 3, we have (x(t, 0), ζ 0 (t, 0), ζ 1 (t, 0)) ∈ Ω for all t ∈ [0, t). Moreover, by using ( 13) and item 2) of Assumption 5, we also derive that θ(x 0 (t, 0), x1 (t, 0)) ≤ c 0 and ρ(h(x(t, 0)), h(ψ 1 (ζ 1 (t, 0)))) < c 1 for all t ∈ [0, t). Now recall that A δ ⊂ C 0 . Then the dynamics of z is given by, in view of ( 16), ż = -z + max{ρ(y, h(x 1 )), θ(x 0 , x1 )} [START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF] on [0, t) × {0}. We introduce the following notation for the sake of convenience ρ(t, j) = ρ(y(t, j), h(x 1 (t, j))), θ(t, j) = θ(x 0 (t, j), x1 (t, j)).

In view of the definition A δ in [START_REF] Rajamani | Observers for Lipschitz nonlinear systems[END_REF], we have 0 ≤ z(0, 0) ≤ δc 0 . Note that since θ(•), ρ(•) are functions taking values in R ≥0 , we have z(t, 0) ≥ 0 for all t ∈ [0, t). Moreover, by recalling Assumptions 4, 5 and that c 1 < c 0 , we compute from ( 25), ( 26) z(t, 0) = e -t z(0, 0) + t 0 e -(t-s) max{ρ(s, 0), θ(s, 0)}ds ≤ e -t δc 0 + 1 -e -t c 0 = c 0 + e -t (δ -1)c 0 for all t ∈ [0, t). Since 0 < δ < 1, the last inequality implies z( t, 0) < c 0 for any t < ∞. Therefore z(t, 0) ∈ C 0 \D 0 for all t ∈ [0, t]. As a result, z cannot jump at ( t, 0), we have attained a contradiction. Therefore t = ∞ (recall that any solution is complete, as already proved). This proves the item (i) of the claim.

To prove the item (ii), note that in view of Assumptions 2 and 3, the sets Ω 0 and Ω 1 are forward invariant for systems (1), ( 3) and ( 1), (4), respectively. Since A δ ⊂ Ω×R ≥0 ×{0}, we conclude that (x(t, 0), ζ 0 (t, 0), ζ 1 (t, 0)) ∈ Ω for all t ∈ [0, ∞). Since z(t, 0) ≤ c 0 for all t ∈ [0, ∞), and A δ ⊂ A we finally conclude that (x(t, 0), ξ(t, 0)) lies in the set A for all t ∈ [0, ∞). Proof of Claim 2. We proceed by contradiction. Assume that there exists a solution (x, ξ) to ( 6)such that that

q(t, j) = 1 ∀ (t, j) ∈ dom(x, ξ) . (27) 
We will show that the solution (x, ξ) flowing in C 1 must enter D 1 in finite time violating (27) since q + = 1.

In this case dom(x, ξ) = [0, ∞) × {0}. Recall that when ξ flows in C 1 , its dynamics are given by ζ0 = 0, ζ1 = ϕ 1 (ζ 1 , u, y), ż = -z + ρ(y, h(x 1 )).

According to item 1) of Assumption 3, there exists a t 1 > 0 such that V 1 (x(t, 0), ζ 1 (t, 0)) ≤ ε 1 for all t ∈ [t 1 , ∞). Therefore, by using item 2) of Assumption 5, we have ρ(h(x(t, 0)), h(x 1 (t, 0))) < c 1 for all t ∈ [t 1 , ∞). By recalling that z evolves according to [START_REF] Krener | A hybrid computational approach to nonlinear estimation[END_REF] in this case, we obtain, for t ∈

[t 1 , ∞) |z(t, 0)| ≤ |z(t 1 , 0)|e -t+t1 + max s∈[t1,t] ρ(y(s, 0), h(x 1 (s, 0))) .
As a consequence, there exists a t 2 in[t 1 , ∞) such that z(t, 0) < c 1 for all t ∈ [t 2 , ∞). In view of the definitions of C 1 and D 1 , we conclude that ξ(t, 0) leaves the set C 1 and enters D 1 at (t 2 , 0). After the jump, q becomes equal to 0. This contradicts (27) and concludes the proof of the claim.

Proof of Claim 3. Let (x, ξ) be a solution to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] such that there exists ( t, j) ∈ dom(x, ξ) such that q(t, j) = 0 for all (t, j) ≥ ( t, j), namely (x(t, j), ξ(t, j)) ∈ X × C 0 for all (t, j) ≥ ( t, j). Suppose then, without loss of generality, that ( t, j) = (0, 0). In view of the expression of the flow map in C 0 , we can apply Assumptions 2-5 to (x, ξ). In particular, by using Assumption 3, there exists a time T < ∞ such that V 1 (x(t, 0), ζ 1 (t, 0)) ≤ ε 1 for all t ∈ [T, ∞). Without loss of generality, we assume that T = 0, namely suppose that the solution (x, ξ) to (6) starts in the set {(x, ξ) ∈ X × C 0 : (x, ζ 1 ) ∈ Ω 1 } with Ω 1 defined as in [START_REF] Goebel | Hybrid dynamical systems[END_REF], and satisfies

(x(t, 0), ξ(t, 0)) ∈ X × C 0 for all t ∈ [0, ∞).
When flowing in C 0 , the z-dynamics is given by z(t, 0) = e -t z(0, 0) + t 0 e -(s-t) max{ρ(s, 0), θ(s, 0)}ds where we use the notation in (26). Since z(t, 0) ∈ C 0 for all for all t ∈ [0, ∞), it must satisfy z(t, 0) ≤ c 0 for all t ∈ [0, ∞), which implies t 0 e -(s-t) ρ(s, 0)ds ≤ c 0 , t 0 e -(s-t) θ(s, 0)ds ≤ c 0 .

(28) In view of Assumption 5, since (x(t), ζ 1 (t)) ∈ Ω 1 for all t ∈ [0, ∞), we have ρ(y(t), h(x 1 (t, 0))) ≤ c 1 < c 0 for all t ∈ [0, ∞). As a consequence the first inequality in (28) is trivially satisfied.

Suppose, that there exists

t 1 > 0 such that θ(x 0 (t 1 , 0), x1 (t 1 , 0)) ≤ c 0 + 1 2 .
Then, by definition of c 0 and by applying item 2) of Assumption 4, (x(t 1 , 0), ζ 0 (t 1 , 0)) is in the set B 0 , introduced in Assumption 2. As a consequence, in view of item 1) of Assumption 2, the limit (7) holds. Consider now the opposite case in which θ(x 0 (t, 0), x1 (t, 0)) ≥ c 0 + 1 2 (29) for all t ∈ [0, ∞). The inequality (29) implies, in view of (28),

c 0 ≥ t 0 e -(s-t) θ(s, 0)ds ≥ t 0 e -(s-t) (c 0 + 1 2 )ds ≥ (c 0 + 1 2 )(1 -e -t
) implying e -t ≥ 1 1+2c0 for all t ∈ [0, ∞), which cannot hold since lim t→∞ e -t = 0. We deduce that the solution (x, ξ) may not satisfy at the same time (28) and (29) for all t ∈ [0, ∞). In particular, either a jump occur (contradicting our assumptions), either there must exists a t 1 ∈ [0, ∞) such that θ(x 0 (t 1 , 0), x1 (t 1 , 0)) ≤ c 0 + 1 2 , which implies that (x, ζ 0 ) is in B 0 in view of Assumption 4. Hence the solution (x, ξ) satisfies [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended Kalman filter[END_REF] in view of Assumption 2. This conclude the proofs. Proof of Claim 4. Let (x, ξ) be a solution to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF]. We proceed again by contradiction. Assume that there exists a non-decreasing sequence of hybrid times (t n , j n ) n∈N ∈ dom(x, ξ), with (t n , j n ) ∈ dom(x, ξ) for all n ∈ N, such that [START_REF] Teel | Tools for semiglobal stabilization by partial state and output feedback[END_REF] holds for all n ∈ N. Without loss of generality and to simplify the notation, we assume that there is no jump between two elements of this sequence and that j n = n. Due to the expression of the function w(•) and the definitions of the sets C and D, for all n ∈ N we have that (x, ξ) to [START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF] flows in X ×C 0 between (t 2n , 2n) and (t 2n+1 , 2n), and flows in X × C 1 between (t 2n+1 , 2n + 1) and (t 2n+2 , 2n + 1). We want to show that this behaviour cannot occur for n large since, after a time large enough, the components (x, ζ 0 , ζ 1 ) of (x, ξ) will enter the set Ω, which is forward invariant.

In view of [START_REF] Luenberger | An introduction to observers[END_REF], after a jump we have ζ 1 (t n , n + 1) = ζ 1 (t n , n) for any n ∈ N, namely the value of ζ 1 changes only during flows but not at jumps. Therefore, in view of Assumption 3, there exists a N ∈ N sufficiently large, such that, for any n ≥ N , we have V 1 (x(t, j), ζ 1 (t, j)) ≤ ε 1 for all (t, j) ∈ [t 2n , t 2n+1 ) × {2n} and all (t, j) ∈ [t 2n+1 , t 2n+2 ) × {2n + 1}.

Consider a solution (x, ξ) to (6) starting at the time (t 2N +1 , 2N + 1) with initial conditions equal to the value of (x, ξ) at (t 2N +1 , 2N + 1). In view of previous arguments, between (t 2N +1 , 2N + 1) and (t 2N +2 , 2N + 1), the solution (x, ξ) flows in X × C 1 . By definition of the flow map, ζ 0 is constant during this interval. Then at time (t 2N +2 , 2N + 1) we have a jump. By definition of the jump map and by using Assumption 1,

ψ 0 (ζ 0 (t 2N +2 , 2N + 2)) = ψ 1 (ζ 1 (t 2N +2 , 2N + 2))
and therefore, by using Assumption 4, with Ω 0 defined in [START_REF] Ciccarella | A Luenberger-like observer for nonlinear systems[END_REF] e -(t-s) max{ρ(s, 0), θ(s, 0)}ds ≤ e -t c 1 + 1 -e -t c 0 < c 0 , for t ∈ [t 2N +2 , t 2N +3 ], where we used the notation in (26). As a consequence, z(t 2N +3 , t 2N +2 ) < c 0 contradicting the fact that at time (t 2N +3 , 2N + 2) the solution (x, ξ) enters D 0 . This concludes the proof of the claim.
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 12 Fig. 1: State x = (xa, x b ) of Duffing oscillator (20) and components of uniting observer (16)-(18) constructed by combining EKF observer (21), with state x0 = (x0a, x0b ), and HGO observer (22), with state x1 = (x1a, x1b ). Plot a): xa, red line; x0a, blue dotted line; x1a, dashed green line. Plot b): x b , red line; x0b , blue dotted line; x1b , dashed green line.
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 0 (t 2N +2 , 2N + 2), x1 (t 2N +2 , 2N + 2)) = 0 , with x0 = ψ 0 (ζ 0 ) and x1 = ψ 1 (ζ 1). As a consequence, by using item 2) of Assumption 3,(x(t 2N +2 , 2N + 2), ζ 0 (t 2N +2 , 2N + 2)) ∈ Ω 0
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  . Consequently, by applying Assumptions 2 and 3(x(t, 2N + 2), ζ 0 (t, 2N + 2), ζ 1 (t, 2N + 2)) ∈ Ωfor all for all t ∈ [t 2N +2 , t 2N +3 ). The latter implies, by using Assumption 4,θ(x 0 (t, 2N + 2), x1 (t, 2N + 2)) ≤ c 0 for all t ∈ [t 2N +2 , t 2N +3 ). In view of Assumption 3 ρ(y(t 2N +2 , 2N + 2), h(x 1 (t 2N +2 , 2N + 2))) ≤ c 1 . which implies, since c 1 < c 0 ρ(y(t, 2N + 2), h(x 1 (t, 2N + 2))) ≤ c 1 . for all t ∈ [t 2N +2 , t 2N +3 ). At time (t 2N +2 , 2N + 1), the solution (x, ξ) is in D 1 , implying z(t 2N +2 , 2N + 2) = z(t 2N +2 , 2N + 1) ≤ c 1 .As a consequence, by evaluating the z-dynamics according to[START_REF] Zemouche | On LMI conditions to design observers for Lipschitz nonlinear systems[END_REF] between (t 2N +2 , 2N + 2) and (t 2N +3 , 2N + 2) we have |z(t, 2N + 2)| = e -t |z(t 2N +2 , 2N + 2)|
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