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Uniting local and global observers for the state estimation
of nonlinear continuous-time systems

Daniele Astolfi a, Romain Postoyan a and Dragan Nešić b

Abstract— Generic techniques are available for the design of
local observers for nonlinear continuous-time systems. By local,
we mean that the state estimate is guaranteed to converge to
the true state, provided its initial value is nearby the plant
initial condition. The main drawback of this approach is the
right initialization of the observer, which may not be easy
in practice. To overcome this potential issue, we propose to
combine two observers: a local one, and an other observer,
which provides (approximate) estimates but in a global sense,
namely for any initial condition. We explain how to combine
these two observers with a hybrid scheme guaranteeing global
asymptotic convergence. The hybrid observer, called uniting
observer, matches the local observer when the initial conditions
are nearby the initial conditions of the observed system. We
illustrate the proposed approach by means of a numerical
example.

Index Terms— Observers, hybrid systems, local perfor-
mances.

I. INTRODUCTION

While the systematic design of observers for linear time-
invariant dynamical systems is very well understood, see
the seminal works of Kalman [12] and Luenberger [17],
no general method, that can be always easily applied to
observable systems, is available when the system’s dynamics
are nonlinear. After the first works in the 70’s and 80’s,
many techniques have been proposed in the last decades.
Among them, we may identify two classes of asymptotic
observers: (semi) global and local. We refer to (semi) global
asymptotic observers when asymptotic estimation is achieved
for any initial condition of the observed plant and any initial
condition of the observer. Within this class of observers we
recall passivity-based designs, e.g. [2]; techniques based on
LMIs conditions, [5], [23], [25]; Luenberger-like observers
(also known as Kazantzis-Kravaris Luenberger observers),
e.g., [1], [13]; approaches which use normal forms induced
by uniform observability conditions such as high-gain ob-
servers, e.g., [3], [4], [8], [14]; sliding-mode observers,
e.g., [9]. When the system’s dynamics are very complex,
the design of such observers may be not possible, e.g.,
because of non-feasibility of the LMIs [2], [5], [25], or too
complicated to apply, e.g. because we need to solve partial
differential equations [1], or to find analytically the inverse
of a nonlinear change of coordinates [3], [9], [14]. On the
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other hand, we refer to local asymptotic observers when
asymptotic estimation is guaranteed only when the initial
conditions of the observer are close enough to those of the
observed plant. Among the various techniques for the design
of local observers, the most popular is certainly the extended
Kalman filter (EKF), e.g. [7], but other techniques can be
found in [11], [22]. The design of local observers, such
as EKF, is systematic under mild regularity conditions, but
due to their local properties, divergence of the estimation
may occur if the initial conditions are not carefully chosen.
This wrong initialization problem could be overcome if we
were able to build a global approximate observer, that is an
observer providing, in a finite amount of time, an estimation
close enough to the true value of the state. Examples of
approximate observers can be found in [18], [24]. Then,
intuitively, by waiting long enough, we could use the local
observer at hand by picking as initial conditions the ones
given by the approximate observer.

In this paper, we follow the ideas of [20], [21], which
investigate control problems, but in the context of observers.
In particular, our goal is to unite two given observers, one
possibly local and an other possibly global. In [21], different
observers are combined in the context of observer-based
output feedback stabilization and not estimation solely. In
this work, the observers we consider may have different
structures, state dimensions and can be expressed in different
coordinates. Under a certain number of sufficient conditions,
we show how to design a hybrid observer which guarantees
global asymptotic estimation and preserves the behaviour of
the local observer when the estimation error is small enough.
The proposed hybrid scheme can be used not only for
the purpose of improving performances of two continuous-
time observers, as done in [6] or [9] in a continuous-
time approach with adaptive designs for specific classes of
observers, but also to achieve global asymptotic estimation
when a continuous-time global asymptotic observer is not
(explicitly) known. This novel perspective suggests also to
put more efforts in the study of global approximate observers
for nonlinear systems.

Note that the idea of exploiting local observers to ensure
(semi) global asymptotic stability property for the estima-
tion error was also pursued in [15], [19], where a multi-
observer, consisting of a bank of numerous local observers,
is proposed. However, the approach pursued in this paper
is different as only two observers are required, as well as
some auxiliary variables, which ease the implementation in
terms of computational cost. Also, here, we do not need to
assume that initial condition of the plant lies in a known



compact set. Finally, it is worth stressing that this work is
not simply an extension to the observer case of [20], [21]
since a certain number of different technical points need to
be addressed. The main difference is that, while, in [20], [21],
the equilibrium of the closed-loop system is known a priori,
in the considered observation framework, the steady-state of
the hybrid observer is an unknown time-varying trajectory.
As a consequence, in order to decide which observer has to
be used, we need to know the norm of the estimation error
provided by the global observer and not the norm of the
system state.

The paper is organized as follows. In Section II, we state
the framework and the uniting observers problem we aim to
solve. In Section III, we give a certain number of assumptions
under which the uniting problem can be solved. An explicit
solution is presented in Section IV. The proof of the main
result is omitted for the space reasons. A simple example is
given in Section V, where we combine an extended Kalman
filter with a high-gain observer in order to improve the
performances in presence of measurement noise.

Notation

Let R = (−∞,∞) and N = {1, 2, . . .}. Given a matrix
P ∈ Rn×m, we denote with vec(P ) the vectorization of the
matrix P . Given a differential equation ẋ = f(x), we denote
by x(t) its solution initialized at x◦ at time t, when it exists.
We consider hybrid systems of the form [10]

ẋ = F (x), x ∈ C, x+ = G(x), x ∈ D,

where x ∈ Rnx is the state, C is the flow set, F is the
flow map, D is the jump set and G is the jump map. We
assume that the hybrid model satisfies the basic regularity
conditions, see Section 6.2 in [10], which will be the case in
our study. We recall some definitions from [10]. Solutions to
system (1) are defined on so-called hybrid time domains. A
set E ⊂ R≥0 × N is a compact hybrid time domain if E =⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times 0 =

t0 ≤ t1 ≤ . . . ≤ tJ and it is a hybrid time domain if for all
(T, J) ∈ E, E ∩ ([0, T ]×{0, 1, . . . , J}) is a compact hybrid
time domain. Given two hybrid times (t0, j0), (t1, j1) ∈ E,
we denote (t0, j0) ≤ (t1, j1) if t0 ≤ t1 and j0 ≤ j1. Given an
initial condition x◦ ∈ C ∪D, we denote by x(t, j) a solution
to the hybrid system starting at x◦ at time (t, j) if (t, j) ∈
domx. Throughout the text, we will refer to solutions as
maximal solutions, see Definition 2.7 in [10].

II. PROBLEM STATEMENT

We investigate the estimation problem for autonomous
nonlinear systems of the form

ẋ = f(x) , y = h(x) (1)

where x ∈ Rnx is the state and y ∈ Rny is the measured
output, nx, ny ∈ N. Moreover, we suppose that f, h are
continuous functions and that there exists a set X ⊆ Rnx ,
which is forward invariant for system (1), namely x(0) ∈ X
implies x(t) ∈ X for all t ∈ [0,∞). To make precise

what we mean by a global approximate observer and a local
asymptotic observer, consider the following observer

ζ̇ = ϕ(ζ, y), x̂ = ψ(ζ), (2)

where ζ ∈ Z ⊆ Rnζ is the observer state and x̂ ∈ Rnx is
the estimation, nζ ∈ N. Even if often the dimension of the
observer nζ coincides with the system dimension nx, e.g.
[2], [4], [14], [25], the notation above allows to consider
observers with a state dimension larger than the dimension
of the plant, such as in [1], [3], [7]. We use the following
definitions.

Definition 1 (Local asymptotic observer): System (2) is
said to be a local asymptotic observer for system (1) if
there exists a set-valued map B(x) ⊆ Z such that for any
(x(0), ζ(0)) ∈ X×B(x(0)), then the corresponding solutions
to (1), (2) verifies lim

t→∞
|x(t)− x̂(t)| = 0. �

Definition 2 (Global approximate observer): System (2)
is said to be a global approximate observer for (1) if
there exists a ε > 0 such that, for any initial condition
(x(0), ζ(0)) ∈ X × Z , the corresponding solution to (1),
(2) verifies lim sup

t→∞
|x(t)− x̂(t)| ≤ ε. �

In this paper, we assume to know a local asymptotic
observer and a global approximate observer for system (1).
Any of the techniques in literature (such as [1], [3], [5], [7],
[14], [18], [24], [25]) satisfying Definitions 1 and 2 can be
used to construct these estimators. Note that any observer
guaranteeing global asymptotic convergence is by definition
a global approximate observer. The local asymptotic observer
is given by

ζ̇0 = ϕ0(ζ0, y) , x̂0 = ψ0(ζ0) , (3)

with ζ0 ∈ Z0 ⊆ Rn0 and x̂0 ∈ Rnx , and the global
approximate observer is written as

ζ̇1 = ϕ1(ζ1, y) , x̂1 = ψ1(ζ1) , (4)

with ζ1 ∈ Z1 ⊆ Rn1 , and x̂1 ∈ Rnx . The subscript 0 is hence
used to denote the local observer, while the subscript 1 is
used to denote the global one. For the sake of convenience,
we suppose that, given any solution x to (1) in X , the set
Z0, respectively Z1, is forward invariant for observer (3),
respectively (4). This is assumption is stated in order to avoid
the finite escape time phenomenon; we will work on relaxing
this condition in future work.

By combining observers (3) and (4), we aim at designing
a hybrid scheme in order to achieve global asymptotic
estimation of system (1). The hybrid observer has the form

ξ̇ = ϕ(ξ, y), ξ ∈ C, ξ+ = w(ξ, y), ξ ∈ D, (5)

and x̂ = ψ(ξ), with ξ ∈ Rnξ , x̂ ∈ Rnx , C ⊆ Rnξ , D ⊆ Rnξ .
As a result, systems (1) and (5) lead to the overall system
below

ẋ = f(x)

ξ̇ = ϕ(ξ, y)

}
(x, ξ) ∈ X × C,

x+ = x
ξ+ = w(ξ, y)

}
(x, ξ) ∈ X ×D,

y = h(x), x̂ = ψ(ξ) .

(6)



Our objective is to solve the uniting problem, as defined next.
Definition 3 (Uniting problem): The uniting problem is

solved if there exists an integer nξ ≥ max{n0, n1}, closed
sets C, D, continuous functions ϕ : C × h(X ) → Rnξ ,
w : D × h(X ) → Rnξ and ψ : (C ∪ D) → Rnx ,
α : Rnx × Rnξ → R≥0, δ > 0 and a (non-zero) matrix
M ∈ Rnx×nξ , such that the following holds.
• (Completeness property) Any solution (x, ξ) to (6) is

complete.
• (Global asymptotic property) Any solution (x, ξ) to (6)

satisfies

lim
t+j→∞

|x(t, j)− x̂(t, j)| = 0 . (7)

• (Local property) Any solution (x, ξ) to (6) satisfying
α(x(0), ξ(0)) ≤ δ has the hybrid time domain [0,∞)×
{0} and (x(t, 0),Mξ(t, 0)) = (x̄(t), ζ̄0(t)) for all t ∈
[0,∞), where (x̄, ζ̄0) is a solution to (1), (3). �

The global asymptotic property states that hybrid observer
(5) guarantees global asymptotic estimation of x. On the
other hand, the local property ensures that, when the initial
conditions of hybrid observer (5) are nearby to the initial
conditions of system (1), then hybrid observer (5) behaves
as the local observer (3). In other words, solutions to (1), (5)
correspond to solutions to (1), (3). This property guarantees
that the performances and the robustness properties of local
observer (3) are locally retained by hybrid observer (5).

III. ASSUMPTIONS

As mentioned above, we will use observers (3) and (4),
which we assume to know, to construct hybrid observer (5).
The main idea is the following. When the state estimation is
large, we need to use the global approximate observer, as the
local one is not ensured to convergence in this case. After
a sufficiently long time, the estimation error will become
smaller than ε in view of Definition 2. Then, we can switch
observer and use the local one. In order to implement such
a mechanism, the following assumptions are needed.

Assumption 1 (State correspondence): There exists a con-
tinuous function γ : Rn1 → Rn0 such that γ(Z1) ⊆ Z0 and
ψ1(ζ1) = ψ0(γ(ζ1)) for all ζ1 ∈ Z1. �

When we will switch from one observer to the other,
we will use the function γ(·) to maps estimates of global
observer (4) into estimates for local observer (3). Basically,
if we want to initialize local observer (3) at time T , we select
ζ0(T ) = γ(ζ1(T )).

Assumption 2 (Local observer): There exist a continuous
function V0 : Rnx × Rn0 → R≥0 and a real number ε0 > 0
such that the following holds.

1) System (3) is a local asymptotic observer for system
(1) with a basin of attraction B0 containing the set

Ω0 := {(x, ζ0) ∈ X × Z0 : V0(x, ζ0) ≤ ε0} . (8)

2) The set Ω0 is forward invariant for system (1), (3). �

Assumption 2 states that observer (3) is a local asymptotic
observer. The function V0 is usually a Lyapunov function

for observer (3), used to prove convergence, see [7], [22],
for instance. Forward invariance of the set Ω0 is an extra
assumption which comes for free when V0 is a Lyapunov
function. In the following, it is used to prevent undesired
jump.

To solve our uniting problem, we need the estimation
error provided by global observer (4) to be small enough in
order to guarantee convergence of local asymptotic observer
(3) when initialized with the estimate provided by global
observer (4). For this, let Υ1 ⊂ X × Z1 be defined as

Υ1 :=
{

(x, ζ1) ∈ X × Z1 : V0(x, γ(ζ1)) ≤ ε0

}
, (9)

where V0 and ε0 are given in Assumption 2. Note that by
construction, γ(Υ1) = Ω0. Loosely speaking, the set Υ1

is the “projection” of the Ω0 in the ζ1-coordinates. As a
consequence, we will ask that global observer (4) to converge
to a subset of Υ1, in the next assumption.

Assumption 3 (Global approximate observer): There ex-
ist a continuous function V1 : Rnx × Rn1 → R≥0, and a
real number ε1 > 0 such that the following holds.

1) For all solutions x to system (1) evolving in X and all
corresponding solutions ζ1 to observer (4) starting in
Z1 we have lim sup

t→∞
V1(x(t), ζ1(t)) < ε1.

2) The set Ω1 defined as

Ω1 :=
{

(x, ζ1) ∈ X × Z1 : V1(x, ζ1) ≤ ε1

}
(10)

is forward invariant for system (1), (4). Moreover, the
set Ω1 is strictly contained in the set Υ1 defined by (9),
namely Ω1 ⊂ Υ1. �

Item 1) of Assumption 3 means that observer (4) is a
global approximate observer for system (1). When V1 is a
Lypaunov function, Ω1 is a Lyapunov level set of V1 and
forward invariance comes directly. Finally, item 2) implies
that the estimate provided by global observer (4) converges
inside the set Υ1 defined in (9).

Let Ω := Ω0∪Ω1, with Ω0 and Ω1 from Assumption 2-3,

Ω :=
{

(x, ζ0, ζ1) ∈ X × Z0 ×Z1 : V0(x, ζ0) ≤ ε0,
V1(x, ζ1) ≤ ε1

}
.

(11)
By construction, when both observers are initialized inside
the set Ω, convergence of the uniting observer should be
guaranteed. In order to satisfy the local property of Definition
3, the following assumption is needed.

Assumption 4 (Basin of attractions): There exist a con-
tinuous function θ : Rnx × Rnx → R≥0 and class K∞
functions αθ, ᾱθ satisfying

αθ(|x̂0 − x̂1|) ≤ θ(x̂0, x̂1) ≤ ᾱθ(|x̂0 − x̂1|) (12)

for all x̂0, x̂1 ∈ Rnx , and such that, by letting x̂q = ψq(ζq),
q = 0, 1, the following holds.

1) By letting Ω defined as in (11), we have

c0 := sup
{
θ(x̂0, x̂1) : (x, ζ0, ζ1) ∈ Ω

}
> ε1 . (13)



2) The set Υ0 defined as

Υ0 :=
{

(x, ζ0) ∈ X × Z0 : ∃ ζ1 ∈ Ω1, θ(x̂0, x̂1) < c0 + 1
}

(14)
is strictly contained in the set B0 given by Assumption
2, namely Υ0 ⊂ B0. �

The function θ(·) in Assumption 4 is a distance function,
which is needed to detect whether the estimates provided
by the local observer and the global one are too far when
the state of global observer (4) is inside the set Ω1 defined
in (10). Further comments are postponed to the end of
this section and in the forthcoming Section IV where the
design of the hybrid observer solving the uniting problem is
proposed.

Finally, the last key ingredient we need to implement the
hybrid observer solving the uniting problem is the switching
rule from the global observer to the local one. We mentioned
above that we aim at switching between the observers
depending on the state estimation error x̂1 − x provided by
global observer (4). The latter is unknown, we therefore need
to estimate it. Hence, we assume below that we can design
this estimator. In particular, we assume how to upper-bound
the function V1 which takes place of the estimation errors
x̂1−x, and which is all we need to switch from one observer
to the other in view of item 2) of Assumption 3.

Assumption 5 (Error-norm estimator): There exist a con-
tinuous function ρ : Rny ×Rny → R≥0, a class KL function
β and c1 > 0 satisfying ε1 < c1 < c0, with ε1 given by
Assumption 3 and c0 given by Assumption 4, such that, the
following holds.

1) For any solution (x, ζ1) to (1), (4) with (x(0), ζ1(0)) ∈
X × Z1,

V1(x(t), ζ1(t)) ≤ z(t) + β(|x(0)|+ |ζ1(0)|+ |z(0)|, t)

for all t ∈ [0,∞), where z is the solution of

ż = −z + ρ(y, h(x̂1)) (15)

with initial condition z(0) ∈ R≥0.
2) For each solution to (1), (4) starting in the set Ω1,

defined in (10), we have ρ(y(t), h(x̂1(t))) < c1 for all
t ∈ [0,∞). �

The existence of (15) satisfying the previous assumption
is related to the notion of norm-estimator, see [16]. In this
case, however, we ask that an upper bound for V1 can be
estimated from |y−h(x̂1)|. Moreover, in view of item 2) of
Assumption 5, after a time long enough, we can expect that
if the norm of z is small, then the state of global observer
(4) is inside the set Ω1 defined in (10). We can therefore
switch observer. The existence of (15) is always guaranteed
when V1 is a Lyapunov function satisfying

〈∇V1(x, ζ1), (f(x, u), ϕ1(x, u, y))〉 ≤ −V1(x, ζ1) + ε1 ,

since we can select ρ(·) := ρ1(·) + ε1 where ρ1 : Rny ×
Rny → R≥0 is any continuous function satisfying

max
(x,ζ1)∈Ω1

ρ1(y, h(x̂1)) < c1 − ε1 .

Finally, note that the estimation of an upper bound for V0

is not necessary, since the information whether the state of
local observer (3) is inside the “right” set Ω0, defined in
(8), can be indirectly obtained by using the function θ(·) of
Assumption 4.

IV. MAIN RESULT

We are now in the position to state our main result
concerning the existing of a hybrid observer solving the
uniting problem.

Theorem 1: Under Assumptions 1-5, there exists a hybrid
observer (5) solving the uniting problem.

The proposed hybrid observer is made of four components:
• local observer (3), which provides an estimate x̂0;
• global approximate observer (4), which provides an

estimate x̂1;
• the dynamical estimator z given in Assumption 5;
• a discrete variable q which takes value in {0, 1} defining

which state estimate, x̂0 or x̂1, we need to use.
According to the discrete variable q, the hybrid observer has
two different operating modes.

a) (Global mode q = 1) The global observer is “running”
and we the local observer is “turned off”, namely we
keep its state constant. Consequently, we set x̂ = x̂1.
The z-dynamics is used to detect whether the error
estimate |x̂1 − x| is small enough. In particular, when
|z| ≤ c1, with c1 given in Assumption 5, we allow for
a jump and we change the operating mode.

b) (Local mode q = 0) The estimate x̂ is provided by
the local observer, namely x̂ = x̂0. To avoid wrong
initializations, we must detect if the local observer is
outside its basin of attraction, see Assumption 2. Since
we do not have a direct knowledge of the behaviour
of the local observer when (x, ζ0) 6∈ B0, we let run
both observers and we compare the estimates x̂0 and
x̂1. These two estimates should be respectively close
enough if both observers are working in the right region,
namely (x, x̂0) ∈ B0 and (x, x̂1) ∈ Ω1, defined in (10).
As a consequence, if the difference between the two
estimates |x̂0−x̂1| is too large, which is detected thanks
to the function θ(·) in Assumption 4, then we impose
a jump and change the operating mode. Moreover, for
robustness purposes, if |x̂1 − x| becomes too large, we
also impose a jump and we change operating mode.
This can be observed by using the function ρ(·) in
Assumption 5.

According to the previous operating modes, by letting
nξ = n0 + n1 + 2 and by taking ξ = (ζ0, ζ1, z, q) ∈ Rnξ =
Rn0×Rn1×R×R, the proposed hybrid observer (5) solving
the uniting problem is given by

ζ̇0 = (1− q)ϕ0(ζ0, y)

ζ̇1 = ϕ1(ζ1, y)

ż = −z + max
{
ρ(y, h(x̂1)),

(1− q)θ(x̂0, x̂1)
}

q̇ = 0


ξ ∈ C (16)



ζ+
0 = γ(ζ1)

ζ+
1 = ζ1

z+ = z

q+ = 1− q

 ξ ∈ D (17)

x̂0 = ψ0(ζ0) , x̂1 = ψ1(ζ1) , x̂ = (1− q)x̂0 + qx̂1 ,
(18)

where C = C0 ∪ C1, D = D0 ∪ D1

C0 :=
{
ξ ∈ Ξ : 0 ≤ z ≤ c0, q = 0

}
,

C1 :=
{
ξ ∈ Ξ : c1 ≤ z, q = 1

}
,

D0 :=
{
ξ ∈ Ξ : c0 ≤ z, q = 0

}
,

D1 :=
{
ξ ∈ Ξ : 0 ≤ z ≤ c1, q = 1

}
,

(19)

Ξ := Z0 × Z1 × R≥0 × {0, 1} and c1 < c0 are given
in Assumptions 4 and 5. Moreover, the local property in
Definition 3 is verified with M := (In0 0), where In0 is the
identity matrix in Rn0×n0 ,

α(x, ξ) := max

{
1

ε0
V0(x, ζ0),

1

ε1
V1(x, ζ1),

1

c0
|z|, q

}
and for some value 0 < δ < 1, with V0, V1, ε0 ε1, defined
by Assumptions 2-3 and c0 given by (13).

The main idea of the proof of Theorem 1 is to show that
the set A ⊂ X × (C ∪ D), defined as

A :=
{

(x, ξ) ∈ X × Ξ : (x, ζ0, ζ1) ∈ Ω, z ≤ c0, q = 0
}
,

is globally attractive for (6) and that any solution lying inside
a compact subset of A for a long enough time satisfies (7).

V. ILLUSTRATIVE EXAMPLE

In the following example we want to exploit the robustness
properties of extended Kalman filters (EKF), e.g. [7], [22],
with respect to measurement noise, as opposed to high-
gain observers (HGO), [14]. We consider, in particular, the
perturbed Duffing oscillator

ẋ = Sx+Bφ(x) +Qcu, y = Cx+Rcv, (20)

where x = (xa, xb)
T ∈ R2 is the state, y ∈ R is the output,

φ(x) = xa − x3
a, and (S,B,C) is a triplet in prime form,

namely S =

(
0 1
0 0

)
, B = (0, 1)T , C = (1, 0). In (20), u ∈

R2 is some unmeasured disturbance affecting the plant and
v ∈ R is the measurement noise. Moreover, Qc = QTc > 0
and Rc > 0 are supposed to be known. Note that for initial
condition x(0) ranging in some given compact set X ◦ ⊂ R2,
and for any (small) bounded input u(t), there exists a set
X ⊇ X ◦, which is forward invariant for (20). It can be
computed numerically.

By following [7], [22], the local asymptotic observer in
(3) is an EKF with state ζ0 = (x̂T0 , vec(P ))T and dynamics
given by

˙̂x0 = Sx̂0 +Bφ(x̂0) +K(y − Cx̂0)

Ṗ = A(x̂0)P + PA(x̂0)T − PCTR−1
c CP +Qc

K = PCTR−1
c

(21)

where x̂0 = (x̂0a, x̂0b) ∈ R2 is the estimate, P ∈ R2×2,
Qc, Rc are chosen according to (20), and A(x̂0) := S +

B∂φ(x̂0)/∂x. Since system (20) is uniformly observable, the
matrix P (t) is guaranteed to be bounded for all t ≥ 0 and
convergence of observer (21) can be established with the
Lyapunov function V0 = (x̂0−x)TP−1(x̂0−x) for |x̂(0)−
x(0)| small enough, see [7], [22]. The global observer in (4)
is given by a HGO designed with state ζ1 = x̂1 and dynamics
given by

˙̂x1 = Sx̂1 +Bφs(x̂1) +DκL(y − Cx̂1) (22)

where x̂1 = (x̂1a, x̂1b) ∈ R2 is the observer state, L ∈ R2×1

is any matrix chosen such that S − LC is Hurwitz, Dκ =
diag(κ, κ2), where κ ≥ 1 is the high-gain parameter, and the
function φs(·) := satr(φ(·)) where satr is any (continuous)
saturation function with saturation level r ≥ maxx∈X |φ(x)|.
Observer (22) is a semi-global asymptotic observer for (20)
when κ ≥ 1 is large enough. This can be established with
the Lyapunov function V1 = êT1 Hê1, where H is solution of
H(S−LC)+(S−LC)TH = −I , and ê1 = κD−1

k (x̂1−x),
see [14].

We construct the hybrid observer (16)-(18) with γ(x̂1) :=
(x̂1, vec(I2×2))T , ρ(y, Cx̂1) := |y−Cx̂1|, and θ(x̂0, x̂1) :=
|x̂0 − x̂1|, for x̂1, x̂0 ∈ R2. In the simulations, we suppose
that u and v are generated by

ẇi = Ωiwi, i ∈ {1, 2, 3},
u = Q1w1 +Q2w2, v = Q3w3

where Ωi = (0 ωi,−ωi 0) and the matrices Q1, Q2 ∈ R2×2

and Q3 ∈ R1×2 have unitary norms. We selected ω1 = 5,
ω2 = 27, ω3 = 32, Q1 = (0.99 0.12,−0.12 0.99),
Q2 = (0.85 0.53,−0.53 0.85), Q3 = (0.65 0.76), Qc =
diag(0.1, 0.1), Rc = 0.5. The initial conditions of (20) range
in the compact set X ◦ := {(xa, xb) ∈ R2 : x2

a + x2
b ≤ 25}

and we have X ⊂ {(xa, xb) ∈ R2 : |xa| ≤ 6, |xb| ≤ 20}.
This can be computed numerically. According to this bound
we selected L = (1, 1), r = 210 and κ = 10. Since observer
(22) is asymptotic, ε1 in Assumption 3 is equal to 0 and
therefore c1 in Assumption 5 can be chosen arbitrarily small.
We selected c0 = 1.4, c1 = 0.7. Simulations have been made
to verify convergence of EKF (21) with such values.

In Figures 1, 2, we show the behaviours of system (20) and
hybrid observer (16)-(18) with initial conditions x(0, 0) =
(2, 3), x̂0(0, 0) = (−3,−5), P (0, 0) = I2×2, x̂1(0, 0) =
(2.5, 3.5), z(0, 0) = 0, q(0, 0) = 0 to show the case of a
“wrong initialization”. With such initial conditions, 2 jumps
occur at t1 = 0.25 and t2 = 1.31 during the simulation.
Figure 1 shows the plots of x(t, j), x̂0(t, j) and x̂1(t, j), for
(t, j) ∈ [0, 3]×{0, 1, 2}, while Figure 2 shows the plot of the
error estimate e(t, j) defined as e := x− x̂ and the value of
the error norm estimator z(t, j), for (t, j) ∈ [0, 3]×{0, 1, 2}.
It is possible to appreciate the better performances in steady
state x0 = (x0a, x0b)

T of EKF (21) when compared to the
estimate x1 = (x1a, x1b)

T of HGO (22), in particular for
x̂0b and x̂1b. At (0, 0), local EKF (21) is far from the system
state (20) while global HGO (22) is nearby (20). However,
q(0, 0) = 0 and z(0, 0) = 0 impose the use of the local
observer for (t, j) ∈ [0, t1)×{0}. After some time the large
error between x̂0 and x̂1 is detected by z through the function
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Fig. 1: State x = (xa, xb) of Duffing oscillator (20) and compo-
nents of uniting observer (16)-(18) constructed by combining EKF
observer (21), with state x̂0 = (x̂0a, x̂0b), and HGO observer (22),
with state x̂1 = (x̂1a, x̂1b). Plot a): xa, red line; x̂0a, blue dotted
line; x̂1a, dashed green line. Plot b): xb, red line; x̂0b, blue dotted
line; x̂1b, dashed green line.
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Fig. 2: Estimation error e = (ea, eb) = (xa − x̂a, xb − x̂b) and
norm estimator of uniting observer (16)-(18). Plot a): component
ea, blue line. Plot b): component eb, blue line. Plot c): error-state-
norm estimator z, red line.

θ(x̂0, x̂1) and a jump is imposed when z = c0. The local
EKF observer is turned off for (t, j) ∈ [t1, t2) × {1}. As a
consequence, the value of z starts decreasing since the global
HGO observer is close to the system state and ρ(y, Cx̂1)
is small. Another jump occurs when z = c1. Finally, for
(t, j) ∈ [t3,∞)×{2}, the local observer is used. The steady-
state of the error norm estimator z is different from zero due
to the presence of measurement noise which enter through
the function ρ(y, Cx̂1).

VI. CONCLUSION

We investigated the uniting problem [20], [21] in the
context of estimation. The main idea is to combine a
local asymptotic observer, such as an extended Kalman
filter, together with a global (possibly approximate) observer
in order to design a hybrid observer guaranteeing global
asymptotic estimation while inheriting the good properties of
the local estimator when the estimation error is small. The
uniting observer design is achieved under a set of prescriptive
conditions. In future work, we will propose constructive
conditions for relevant classes of nonlinear observers and we
will analyse the robustness properties of the proposed uniting
observer with respect to measurement noise. We also aim
at enlarging the considered class of systems by considering

systems with inputs, and relaxing some of the assumptions
made on the observers used to derive the hybrid-estimator.
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APPENDIX

Proof of Theorem 1. Throughout the proofs, when we refer
to system (6), we mean that observer (5) is given by (16)-
(19). First, we prove that every solution to (6) is complete.
Then, we will prove the local property and finally the global
asymptotic property.

(Completeness of solutions) We apply Proposition 6.10 in
[10] for this purpose. First of all, in view of the definition
of the sets C, D, and the maps f(·), ϕ(·), w(·) of (6), hybrid
system (6) satisfies Assumption 6.5 in [10]. Let (x, ξ) ∈
C\D. When (x, ξ) is in the interior1 of C, TC(x, ξ) = Rn0 ×
Rn1×R≥0×{0} and (f(x), φ(ξ, y)) ∈ X×C×R≥0×{0, 1}.
When (x, ξ) is not in the interior of C, then necessarily, since
(x, ξ) /∈ D, z = 0 and q = 0 in view of (19). In this case,
TC(x, ξ) = Rn0 × Rn1 × R≥0 × {0}. Since the flow map
of the z-variable takes non-negative values when z = 0 and
q = 0 in view of (16) and (19), (f(x), ϕ(ξ, y)) ∈ TC(x, ξ).
As a result, the viability condition (VC) in Proposition 6.10
in [10] holds for any (x, ξ) ∈ C\D. On the other hand,
w(D0, h(X )) ⊆ C1 and w(D1, h(X )) ⊆ C0, hence w(D) ⊆
C. As a consequence (x, ξ) is either complete or explode
in finite time. When ξ ∈ C0, the dynamics of ζ0 and ζ1
correspond respectively to those of (3) and (4). On the other
hand, when ξ ∈ C1, we have that ζ̇0 = 0 and ζ1 evolves
according to the dynamics of (4). As a consequence, since
C ⊆ Z0 ×Z1 ×R≥0 ×{0}, by definition of ϕ0(·), ϕ1(·), no
finite escape time phenomenon may occur. We conclude that
all solutions are complete by application of Proposition 6.1
in [10].

(Local property) Given δ ∈ (0, 1), let Aδ ⊂ X × (C ∪ D)
be defined as

Aδ := {(x, ξ) ∈ X × Ξ : α(x, ξ) ≤ δ} . (23)

By construction, we have Aδ ⊂ A ⊆ X × C0 since δ < 1.
The local property follows then by applying the forthcoming
claim.

Claim 1: Any solution (x, ξ) to (6) starting in Aδ is such
that: (i) dom(x, ξ) = [0,∞)×{0}; (ii) (x(t, 0), ξ(t, 0)) ∈ A
for all t ∈ [0,∞). �

In view of item (ii) of Claim 1, (x(t, j), ξ(t, j)) lies in
A for all (t, j) ∈ [0,∞) × {0}, and hence in C0 as long
as (x(0, 0), ξ(0, 0)) ∈ Aδ . As a result, since the vector field
of ζ0 in C0 corresponds to that of the local observer (3),
(x(t, 0),Mξ(t, 0)) = (x̄(t), ζ̄0(t)) for all t ∈ [0,∞) where
(x̄, ζ̄0) is a solution to (1), (3).

(Global asymptotic property) The asymptotic property
follows by combining the next three claims. The first claim
shows that the discrete variable q has to take the value 0
at some (hybrid) time. In other words, any (x, ξ) solution
to (6) enters the set C0 at some (hybrid) time. The second
claim states that, if the discrete variable q remains equal to
0 after (a sufficiently long) time, i.e. (x, ξ) remains in C0 for
all sufficiently large time, then (7) holds. Finally, the third
claim states that the discrete variable cannot switch back and

1where TC denote the tangent cone of C, Definition 5.12 in [10]

forth between q = 0 and q = 1, namely a solution cannot
switch back and forth between C0 and C1 forever.

Claim 2: For any solution (x, ξ) to (6), there exists
(t, j) ∈ dom(x, ξ) such that q(t, j) = 0. �

Claim 3: Let (x, ξ) be a solution to (6). If there exists a
hybrid time (t̄, j̄) ∈ dom(x, ξ), such that q(t, j) = 0 for all
(t, j) ∈ dom(x, ξ), (t, j) ≥ (t̄, j̄), then (7) holds. �

Claim 4: Let (x, ξ) be a solution to (6). There does not ex-
ist a nondecreasing sequence of hybrid times ((tn, jn)n∈N) ∈
dom(x, ξ), such that we have

q(t2n, j2n) = 0 q(t2n+1, j2n+1) = 1 (24)

for all n ∈ N. �

We are in the position to combine the previous claims
to prove the global asymptotic property. Pick any solution
(x, ξ) to (6). In view of Claim 4, there exists a hybrid time
(t1, j1) ∈ dom(x, ξ) such that either q(t, j) = 0 or q(t, j) =
1 for all (t, j) ∈ dom(x, ξ) with (t, j) ≥ (t1, j1). By
applying Claim 2, we know that it cannot exist a hybrid time
(t2, j2) ∈ dom(x, ξ), (t2, j2) ≥ (t1, j1) such that, q(t, j) =
1, for all (t, j) ∈ dom(x, ξ) such that (t, j) ≥ (t2, j2). As
a result, the solution (x, ξ) is such that q(t, j) = 0 for all
(t, j) ∈ dom(x, ξ), (t, j) ≥ (t1, j1). As a consequence, by
applying Claim 3 we conclude that (7) holds. This concludes
the asymptotic property. �

Proof of Claim 1. Let δ ∈ (0, 1) and (x, ξ) ∈ Aδ defined as
in (23). By definition of Aδ , q = 0 and |z| < c0. Hence Aδ ⊆
(C0\D). Let (x, ξ) be now a solution to (6) initialized in Aδ .
In order to prove the claim, we first need to prove (x, ξ)
experiences no jump on its hybrid time domain. We proceed
by contradiction and we assume that there exists t̄ > 0 such
that (t̄, 0), (t̄, 1) ∈ dom(x, ξ). Hence q(t̄, 1) = 1 in view
of (17) and (19). Note that the components of the flow map
corresponding to ζ0 and ζ1 are equal ϕ0 and ϕ1, respectively,
in C0. As a consequence, the properties of Assumptions 2,
3 and 5 hold for the ζ0 and the ζ1 component of (x, ξ) on
[0, t̄)×{0}. On the other hand, since (x(0, 0), ξ(0, 0)) ∈ Aδ ,
then (x(0, 0), ξ(0, 0)) ∈ Ω in view of (11) and (23). As a
consequence, by using item 2) of Assumption 2 and item
1) of Assumption 3, we have (x(t, 0), ζ0(t, 0), ζ1(t, 0)) ∈ Ω
for all t ∈ [0, t̄). Moreover, by using (13) and item 2) of
Assumption 5, we also derive that θ(x̂0(t, 0), x̂1(t, 0)) ≤ c0
and ρ(h(x(t, 0)), h(ψ1(ζ1(t, 0)))) < c1 for all t ∈ [0, t̄).
Now recall that Aδ ⊂ C0. Then the dynamics of z is given
by, in view of (16),

ż = −z + max{ρ(y, h(x̂1)), θ(x̂0, x̂1)} (25)

on [0, t̄)× {0}. We introduce the following notation for the
sake of convenience

ρ(t, j) = ρ(y(t, j), h(x̂1(t, j))),
θ(t, j) = θ(x̂0(t, j), x̂1(t, j)).

(26)

In view of the definition Aδ in (23), we have 0 ≤ z(0, 0) ≤
δc0. Note that since θ(·), ρ(·) are functions taking values in
R≥0, we have z(t, 0) ≥ 0 for all t ∈ [0, t̄). Moreover, by



recalling Assumptions 4, 5 and that c1 < c0, we compute
from (25), (26)

z(t, 0) = e−tz(0, 0) +

∫ t

0

e−(t−s) max{ρ(s, 0), θ(s, 0)}ds

≤ e−tδc0 +
[
1− e−t

]
c0

= c0 + e−t(δ − 1)c0

for all t ∈ [0, t̄). Since 0 < δ < 1, the last inequality implies
z(t̄, 0) < c0 for any t̄ < ∞. Therefore z(t, 0) ∈ C0\D0

for all t ∈ [0, t̄]. As a result, z cannot jump at (t̄, 0), we
have attained a contradiction. Therefore t̄ = ∞ (recall that
any solution is complete, as already proved). This proves the
item (i) of the claim.

To prove the item (ii), note that in view of Assumptions 2
and 3, the sets Ω0 and Ω1 are forward invariant for systems
(1), (3) and (1), (4), respectively. Since Aδ ⊂ Ω×R≥0×{0},
we conclude that (x(t, 0), ζ0(t, 0), ζ1(t, 0)) ∈ Ω for all t ∈
[0,∞). Since z(t, 0) ≤ c0 for all t ∈ [0,∞), and Aδ ⊂ A
we finally conclude that (x(t, 0), ξ(t, 0)) lies in the set A for
all t ∈ [0,∞). �

Proof of Claim 2. We proceed by contradiction. Assume
that there exists a solution (x, ξ) to (6)such that that

q(t, j) = 1 ∀ (t, j) ∈ dom(x, ξ) . (27)

We will show that the solution (x, ξ) flowing in C1 must
enter D1 in finite time violating (27) since q+ = 1.

In this case dom(x, ξ) = [0,∞) × {0}. Recall that when
ξ flows in C1, its dynamics are given by

ζ̇0 = 0, ζ̇1 = ϕ1(ζ1, u, y), ż = −z + ρ(y, h(x̂1)).

According to item 1) of Assumption 3, there exists a t1 > 0
such that V1(x(t, 0), ζ1(t, 0)) ≤ ε1 for all t ∈ [t1,∞).
Therefore, by using item 2) of Assumption 5, we have
ρ(h(x(t, 0)), h(x̂1(t, 0))) < c1 for all t ∈ [t1,∞). By
recalling that z evolves according to (15) in this case, we
obtain, for t ∈ [t1,∞)

|z(t, 0)| ≤ |z(t1, 0)|e−t+t1 + max
s∈[t1,t]

ρ(y(s, 0), h(x̂1(s, 0))) .

As a consequence, there exists a t2in[t1,∞) such that
z(t, 0) < c1 for all t ∈ [t2,∞). In view of the definitions
of C1 and D1, we conclude that ξ(t, 0) leaves the set C1 and
enters D1 at (t2, 0). After the jump, q becomes equal to 0.
This contradicts (27) and concludes the proof of the claim.
�

Proof of Claim 3. Let (x, ξ) be a solution to (6) such that
there exists (t̄, j̄) ∈ dom(x, ξ) such that q(t, j) = 0 for all
(t, j) ≥ (t̄, j̄), namely (x(t, j), ξ(t, j)) ∈ X × C0 for all
(t, j) ≥ (t̄, j̄). Suppose then, without loss of generality, that
(t̄, j̄) = (0, 0). In view of the expression of the flow map in
C0, we can apply Assumptions 2-5 to (x, ξ). In particular,
by using Assumption 3, there exists a time T < ∞ such
that V1(x(t, 0), ζ1(t, 0)) ≤ ε1 for all t ∈ [T,∞). Without
loss of generality, we assume that T = 0, namely suppose
that the solution (x, ξ) to (6) starts in the set {(x, ξ) ∈ X ×
C0 : (x, ζ1) ∈ Ω1} with Ω1 defined as in (10), and satisfies
(x(t, 0), ξ(t, 0)) ∈ X × C0 for all t ∈ [0,∞).

When flowing in C0, the z-dynamics is given by

z(t, 0) = e−tz(0, 0) +

∫ t

0

e−(s−t) max{ρ(s, 0), θ(s, 0)}ds

where we use the notation in (26). Since z(t, 0) ∈ C0 for
all for all t ∈ [0,∞), it must satisfy z(t, 0) ≤ c0 for all
t ∈ [0,∞), which implies∫ t

0

e−(s−t)ρ(s, 0)ds ≤ c0 ,

∫ t

0

e−(s−t)θ(s, 0)ds ≤ c0 .

(28)
In view of Assumption 5, since (x(t), ζ1(t)) ∈ Ω1 for all
t ∈ [0,∞), we have ρ(y(t), h(x̂1(t, 0))) ≤ c1 < c0 for all
t ∈ [0,∞). As a consequence the first inequality in (28) is
trivially satisfied.

Suppose, that there exists t1 > 0 such that
θ(x̂0(t1, 0), x̂1(t1, 0)) ≤ c0+ 1

2 . Then, by definition of c0 and
by applying item 2) of Assumption 4, (x(t1, 0), ζ0(t1, 0)) is
in the set B0, introduced in Assumption 2. As a consequence,
in view of item 1) of Assumption 2, the limit (7) holds.
Consider now the opposite case in which

θ(x̂0(t, 0), x̂1(t, 0)) ≥ c0 + 1
2 (29)

for all t ∈ [0,∞). The inequality (29) implies, in view of
(28),

c0 ≥
∫ t

0

e−(s−t)θ(s, 0)ds ≥
∫ t

0

e−(s−t)(c0 + 1
2 )ds

≥ (c0 + 1
2 )(1− e−t)

implying e−t ≥ 1
1+2c0

for all t ∈ [0,∞), which cannot
hold since limt→∞ e−t = 0. We deduce that the solution
(x, ξ) may not satisfy at the same time (28) and (29) for all
t ∈ [0,∞). In particular, either a jump occur (contradicting
our assumptions), either there must exists a t1 ∈ [0,∞)
such that θ(x̂0(t1, 0), x̂1(t1, 0)) ≤ c0 + 1

2 , which implies that
(x, ζ0) is in B0 in view of Assumption 4. Hence the solution
(x, ξ) satisfies (7) in view of Assumption 2. This conclude
the proofs. �

Proof of Claim 4. Let (x, ξ) be a solution to (6). We
proceed again by contradiction. Assume that there exists
a non-decreasing sequence of hybrid times (tn, jn)n∈N ∈
dom(x, ξ), with (tn, jn) ∈ dom(x, ξ) for all n ∈ N, such
that (24) holds for all n ∈ N. Without loss of generality and
to simplify the notation, we assume that there is no jump
between two elements of this sequence and that jn = n. Due
to the expression of the function w(·) and the definitions of
the sets C and D, for all n ∈ N we have that (x, ξ) to (6)
flows in X×C0 between (t2n, 2n) and (t2n+1, 2n), and flows
in X ×C1 between (t2n+1, 2n+ 1) and (t2n+2, 2n+ 1). We
want to show that this behaviour cannot occur for n large
since, after a time large enough, the components (x, ζ0, ζ1)
of (x, ξ) will enter the set Ω, which is forward invariant.

In view of (17), after a jump we have ζ1(tn, n + 1) =
ζ1(tn, n) for any n ∈ N, namely the value of ζ1 changes
only during flows but not at jumps. Therefore, in view of
Assumption 3, there exists a N ∈ N sufficiently large, such
that, for any n ≥ N , we have V1(x(t, j), ζ1(t, j)) ≤ ε1 for all



(t, j) ∈ [t2n, t2n+1)×{2n} and all (t, j) ∈ [t2n+1, t2n+2)×
{2n+ 1}.

Consider a solution (x̄, ξ̄) to (6) starting at the time
(t2N+1, 2N + 1) with initial conditions equal to the value
of (x, ξ) at (t2N+1, 2N +1). In view of previous arguments,
between (t2N+1, 2N + 1) and (t2N+2, 2N + 1), the solution
(x̄, ξ̄) flows in X × C1. By definition of the flow map, ζ0 is
constant during this interval. Then at time (t2N+2, 2N + 1)
we have a jump. By definition of the jump map and by using
Assumption 1,

ψ0(ζ0(t2N+2, 2N + 2)) = ψ1(ζ1(t2N+2, 2N + 2))

and therefore, by using Assumption 4,

θ(x̂0(t2N+2, 2N + 2), x̂1(t2N+2, 2N + 2)) = 0 ,

with x̂0 = ψ0(ζ0) and x̂1 = ψ1(ζ1). As a consequence, by
using item 2) of Assumption 3,

(x(t2N+2, 2N + 2), ζ0(t2N+2, 2N + 2)) ∈ Ω0

with Ω0 defined in (8). Consequently, by applying Assump-
tions 2 and 3

(x(t, 2N + 2), ζ0(t, 2N + 2), ζ1(t, 2N + 2)) ∈ Ω

for all for all t ∈ [t2N+2, t2N+3). The latter implies, by using
Assumption 4,

θ(x̂0(t, 2N + 2), x̂1(t, 2N + 2)) ≤ c0

for all t ∈ [t2N+2, t2N+3). In view of Assumption 3

ρ(y(t2N+2, 2N + 2), h(x̂1(t2N+2, 2N + 2))) ≤ c1 .

which implies, since c1 < c0

ρ(y(t, 2N + 2), h(x̂1(t, 2N + 2))) ≤ c1 .

for all t ∈ [t2N+2, t2N+3). At time (t2N+2, 2N + 1), the
solution (x, ξ) is in D1, implying z(t2N+2, 2N + 2) =
z(t2N+2, 2N + 1) ≤ c1. As a consequence, by evaluating
the z-dynamics according to (25) between (t2N+2, 2N + 2)
and (t2N+3, 2N + 2) we have

|z(t, 2N + 2)| = e−t|z(t2N+2, 2N + 2)|

+

∫ t

0

e−(t−s) max{ρ(s, 0), θ(s, 0)}ds

≤ e−tc1 +
[
1− e−t

]
c0 < c0 ,

for t ∈ [t2N+2, t2N+3], where we used the notation in (26).
As a consequence, z(t2N+3, t2N+2) < c0 contradicting the
fact that at time (t2N+3, 2N + 2) the solution (x, ξ) enters
D0. This concludes the proof of the claim. �


