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Abstract

The paper presents a fully automated numerical tool for computing the intrinsic per-
meability of porous media from digital images which come from the modern imagery
technique. The permeability is obtained by the homogenization process applied to a
periodic rigid solid in which the fluid flow is described by the Stokes equations. The
unit cell problem is solved by using the Fast Fourier Transform (FFT) algorithm,
well adapted for the microstructures defined by voxels. Various 3-D examples are
considered to show the capacity of the method. First, the case of flow through regular
arrays of aligned cylinders or spheres are considered as benchmark problems. Next,
the method is applied to some more complex and realistic porous solids obtained
with assemblies of overlapping spherical pores having identical or different radii,
regularly or randomly distributed within the unit cell. The use of FFT allows the
resolution of high dimension problems and open various possibilities for computing
the permeability of porous microstructures coming from x-ray microtomography.
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1 Introduction

The determination of permeability of porous media in connection with mi-
crostructure morphology has been addressed with homogenization techniques
based on asymptotic series expansion methods [1-3] or on energy principle and
volume averaging [4,5]. Analytic methods have been first developed in the lit-
erature for solving the associated unit cell problem. For instance, some works
use expansions along eigenfunctions [6-9], however such approaches are limited
to some simple geometries corresponding to the flow through regular arrays of
cylinders or spheres. The use of high-performance computers open number of
possibilities for considering more realistic geometries, based on reconstructed
porous cell or directly based on digital images obtained from X-ray microto-
mography. This also encourages the development of robust and efficient nu-
merical tools for computing the effective permeability. For instance, standard
numerical methods based on Finite Elements (FEM) or Finite Volumes have
been often considered for computing the permeability of porous media [10-18].
The computation of permeability by means of the Boundary Element Method
(BEM) has has been also proposed [22] or using the Lattice Boltzmann method
[19-21]. When the microstructure is defined by voxels, the FEM can be used
by considering a regular mesh with cubic elements. However the use of FFT
type algorithms is more adapted for reducing the memory saving. Indeed, the
method do not need the storage of stiffness or interaction matrices but only
the storage of the nodal variables and the Fourier coefficients of the Green
tensors. Moreover, the case of incompressible constituents (the fluid) does not
requires specific treatments while, the FEM uses more sophisticated interpo-
lation (for instance the "MINI” elements [23-25]) which generally increases the
size of the system. In this paper, we apply the method based on Fast Fourier
Transform for computing the permeability of complex 3-D microstructures
defined by digital images [26]. Various problems and porous structures with
increasing complexity are considered. First, the case of a flow around a cylin-
der and a sphere is considered as benchmark problems for which comparison
with FEM or existing literature data are provided. Then, we construct more
realistic porous media defined as assemblies of overlapping spherical voids to
evaluate the capacity of this method.

2 The FFT method in short

We consider a unit cell containing an interconnected rigid solid €2; and an
interconnected porous open set {2y saturated by a fluid. The flow is described
by the Stokes equations and is generated by an applied pressure gradient
denoted G. The unit cell problem reads:



pAv —Vp -G =0 €y
dive=0 €
v=0 €8 (1)

with the periodicity conditions for the velocity and the pressure. Let us denote
by o, the stress defined by:

o =u(Vu+ Vi) —pl (2)

where I is the two order identity tensor.

The cornerstone of the FFT numerical method is the reformulation of the
system of partial differential equation in an integral equation which uses the
Green operator and the convolution product. Such formulation of the problem
is possible for the Stokes problem only by making a continuation by continuity
of the local fields within the porous medium. Particularly, we consider a null
velocity field within the solid phase. Alternatively, a null velocity field can
be also recovered by taking the Stokes equation within 2, and a dynamic
viscosity ps that is large enough behind that of the fluid. This viscosity can
be interpreted as a penalty coefficient in order to recover the condition v = 0
within €.

By doing so, the Stokes problem can be recast in an integral form [26]:

—~ ~

d=0.f-A": d(o) (3)
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where the notation with the "hat” indicates that we use the Fourier transform
of the corresponding quantity. In (3), d(o) represents the Fourier transform
of the strain rate tensor computed with the stress o. The strain rate being

defined by:

d(o) = A(z) x [0 — pl] (4)
with :
m@:%m@+i}m (5)

where I¢(x) and I5(z) are the characteristic functions of the fluid and the solid
phase. I¢(x) is equal to 1 if the point z belongs to the pore space and is equal
to 1 otherwise while I (z) = 1 — I¢(z).

In equation (3), A® is the complementary Green operator associated with
the reference medium of dynamic viscosity po. Both A and Q are explicitly
known in the Fourier space. The Green tensor A° is defined by:



A" =20 [k @kt + kTBE (6)

for n # 0 and Zg =0 for n = 0 and where k and k' are given by:

k=t K=T-k )

€7

The components of the third order tensor Q are:
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Il

In equation (3), f is given by:
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where ¢y and ¢, denote the volume fraction of the fluid and the solid phase
respectively.
S can be interpreted as a source term in the Stokes equation which is equal
to the the applied pressure gradient in the fluid phase. A constant value for f
is considered in the solid phase and can be interpreted as the drag force due
to the fluid flow around the solid €2,. This drag force is computed in order to
obtain the equilibrium of the force applied to the unit cell (see [26] for more
details).
The solution of the integral equation (3) is solved by means of the following
iterative process:

gt =" — A% d(o) (10)

which can be interpreted as a fixed point iterative method associated with the
linear system (3). The iterative scheme (10) is initialized with :

= =Q.

(11)

Once the convergence is achieved, one can compute the velocity field from the
strain rate tensor d:

[~

~

—d:Q (12)
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for all £ # 0. The velocity field is defined by its Fourier coefficients for all
values of § except for £ = 0. It means that the velocity field is defined up
to an added constant that represents its mean value over the volume of the
cell. This constant is identified by considering the condition v = 0 in the solid
phase. Let us denote by v* the velocity field computed from equation (12) for
any { # 0 and 0* = 0 for { = 0. This velocity field has a null volume average
over {2 and it is constant within 2,. The total velocity field v is then the sum
of v* and a constant velocity V which represents the average of v over the
volume €

<

=)

+ 7" (13)

Since v is null within €2, the macroscopic velocity field is given by V. = —v*

in Q. From a practical point of view, the condition v(z) = 0 is not rigorously
verified everywhere in ). The macroscopic velocity is then computed by con-
sidering one point taken within (), or by taking the average of v* over the
volume €2;. When one point in {2 is considered, this point must not be taken
so closed to the surface of the solid. Indeed, at the vicinity of the surface, the
occurrence of the Gibbs phenomenon, that is inherent with the use of Fourier
series, could affect the accuracy of the solution.

For the implementation of the iterative scheme we put 1/us = 0. Obviously a
very high value is considered for the penalty coefficient, however the numerical
application shows that with the value 1/us = 0 a good rate of convergence is
observed. Moreover, we choose (o = 2p that is optimal for the convergence of
the algorithm.

3 Discretization of the problem

Following the approach developed for composite materials [27,35], the problem
is discretized along a regular grid consisting of N x N x N voxels. The nodal
variables are the components of the stress that depends on 6 independent
components. The constituents (the solid and the fluid) distribution within the
unit cell is accounted in the iterative process by the characteristic function I
which appears in relation (4). At each node of the regular grid, the value 0 or
1 is assigned depending on either this point is in the solid or it is in the fluid
phase. After discretization, the convolution product between Iy and the stress
is made by means of the FF'T algorithm. In equation (10), all the components
of the Green tensor are represented by their Fourier coefficients in the real
space in terms of the discrete wave vectors § given by

1
§,=2m¢ n=-N.N-1 (=- (14)
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and hy, ho, hs are the dimensions of the cell along each directions of the carte-
sian frame. Obviously, the problem is discretized along each space direction,
this would involve the use of two indices n; and ns for 2-D problems and three
for 3-D ones. However, only one indice n is used for simplicity. The product
between the components of the strain rate tensor and those of the Green oper-
ator just consists in the Hadamard product of tables of dimension N x N x N.
The discretized algorithm is:

1:  compute Iy, = If(z,)

2:  compute 2, = Q(¢ ) following Eq. (8)
3:  compute Al = Zo(ﬁn) following Eq. (6)
4 compute in = —éQIfn

5: f =FFT(f )

6: initialize o) = ann

7:  while test < € do

8: ol =FFT !(5!) (15)
9:  p,=tr(a},)/3

100 dy = Ip(oy, —piI)

11: di =FFT(d.)

12: o =d :Q,

13: test = /X, @, — 2, |1

14: &itl=g5i —A%.d,

15: end while

For simplicity, we have used the following notations for any variable F'(z) and
its Fourier transform F’(é) F, = F(z,) and F, = ﬁ’(§ ).

At step 7, we use a convergence test based on the norm of the difference be-
tween the local velocity computed at the iteration ¢ and 7 — 1 and we choose
€ = 107% It is noteworthy that another test has been considered in previ-
ous works to check the convergence of the FFT algorithms. For instance, a
convergence test based on the compatibility for the strain has been used [36].
However, since comparisons are provided with the solution obtained with the
FEM, we have chosen a convergence test applicable to both methods.

From a practical point of view, the permeability is computed by taking u =1

and we apply the pressure gradient G = —e; for i = 1,2,3 where (e, €5, €3)



is the unit vector of the cartesian basis. With this choice, the average of the
velocity field, V; =< v; >q is exactly V; = Kj; when G = —¢; is prescribed to
the system.

In any case considered in the next of the paper, the total number of nodes
is increased and the permeability is computed for different values of N in
order to evaluate the accuracy of the solution. Considering the maximum pos-
sible memory occupancy of our computer cluster, the resolution cannot exceed
1024 x 1024 x 1024 voxels when using the FFT method.

Calculations were performed using MATLAB 2011 on an AMD Opteron pro-
cessor, 2.5GHz, 1024GB RAM and 64 cores.

4 Benchmark problems

Stokes flow through arrays of cylinders and spheres has been often considered
in many studies in the literature. For instance, the permeability of porous me-
dia with cylinders has been investigated by Sparrow and Loeffler [37], Banerjee
and Hadaller [38], Sangani and Acrivos [6], Drummond and Tahir [39], Larson
and Higdon [40,41], Wang [9] and Idris [42]. The numerical implementation
of the Stokes problem through an array of rigid spheres has been provided
by Sangani and Acrivos [7], Barrere et al. [10], Chapman and Higdon [43],
Kadaksham et al. [44]. Note that some works deal with the extension of the
self-consistent in the field of periodic homogenization method to derive an-
alytic expressions for the permeability [45,46] but the formula are restricted
to some particular microstructures corresponding to porous media with rigid
cylinders or spheres. Obviously, a unit cell containing a rigid cylinder or sphere
cannot mimic realistically a porous solid and these two examples are only con-
sidered here as benchmark problems. The solutions obtained with the FFT
method are compared with the results obtained by Sparrow and Loeffler [37],
Wang [9] for the cylinder and those obtained by Sangani and Acrivos [7] for
the sphere. The computations are performed on a dimensionless unit cell (hav-
ing the dimension 1 along each direction), leading then to the computation
of a dimensionless permeability. For the FEM, we use cubic elements and the
interpolation is made with the MINI elements following a method previously
proposed [25]. In the cubic elements, the solid or the fluid phase is assigned. All
the solid voxels are eliminated in the resulting linear system which advanta-
geously reduce the size of the problem. The adherence condition on the surface
of the solid is then accounted with penalty coefficients. The total number of
voxels considered with the FEM is 192 x 192 x 192 voxels, which corresponds
to the maximum possible memory occupancy. A comparison with available
data is provided in the case of the flow through an array of rigid cylinders
or spheres, the corresponding unit is represented in Figure 1. The transversal
and longitudinal components of the permeability tensor are successively com-



puted by applying a pressure gradient parallel or orthogonal to the cylinder
axis. The results for the transversal and longitudinal permeability are shown
in figures 2 and 3, respectively. The FF'T solutions are compared with those
of Wang [9], Sparrow and Loeffler [37]. A good agreement is observed between
our numerical values and those reported in the literature.

Y

Fig. 1. Unit cell containing a rigid cylinder or sphere
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Fig. 2. Dimensionless transversal permeability for the flow through a regular array of
cylinders. Comparison of the FFT solution, the FEM solution and with the results
obtained by Wang [9]. R is the radius of the cylinder or the sphere, and L is the
half-length of the unit cell.



Radius | FFT (512%) | FFT (128%) | FEM (1283)
0.1 0.134310 0.133383 0.131609
0.2 0.081148 0.080984 0.079120
0.3 0.051926 0.051386 0.051078
0.4 0.032864 0.032476 0.032255
0.5 0.019855 0.019600 0.019366
0.6 0.010921 0.010692 0.010769
0.7 0.005143 0.005049 0.004966
0.8 0.001812 0.001699 0.001782
0.9 0.000308 0.000279 0.000302

Table 1
Comparison of the intrinsic permeability of transverse flow through array of cylin-
ders computed with the FFT method and the FEM.
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Fig. 3. Dimensionless longitudinal permeability for the flow through a regular array
of cylinders. Comparison of the FFT solution with the results obtained by Sparrow
and Loeffler [37], and Wang [9].

The results obtained with the FF'T method and the FEM are now qualitatively
compared on figures 1 for the transverse flow through the array of cylinders
and for various values of the Radius. The FFT-based data are provided for the
resolution 128 x 128 x 128 and for 512 x 512 x 512 while, the results obtained
with FEM are given for the resolution 128 x 128 x 128.

We now consider numerical applications in the case of a regular array of
rigid spheres. The convergence of the FF'T solution with the grid refinement is
provided in figure 4 for the radius R = 0.15, R = 0.25 and R = 0.35, and it is
also compared with FEM solutions. A good agreement between the FFT and
the FEM methods is observed for the largest value of the radius (R = 0.35).



There is a slight difference for the radius R = 0.25, that is more significant
for R = 0.15. These differences are essentially attributed to the discretization
error. Indeed, the sphere being approximated by means of cubic elements, the
error is higher for the smaller radius. This is a well known limitation of the
methods which use a regular grid.

0,24
R=0.15 s & o &
o % b4 X b R b X X X X
3 0,16
s o FFT based solutions
g X FEM solutions
[
Qo
T
(5]
% 0.08| R=0.25
’ x X X X X X X X R %
E g %
)
z R=0.35
x X X X X X X X X X X X
0,00 : .
0 40 80 120 160 200

Resolution

Fig. 4. Dimensionless permeability for the flow through a regular array of sphere of
radius R = 0.15, R = 0.25 and R = 0.35. Comparison between the FFT and the
FEM solution.

The FFT solution (with 512 x 512 x 512 voxels) and the FEM one (with
192 x 192 x 192 voxels) are compared with the data provided by Sangani
and Acrivos [7] in Table 1. Various values of the radius of the sphere have
been considered in the range [0.1,1]. It is observed that the FFT solutions
are in a better agreement with the data of Sangani and Acrivos [7] than the
FEM solution. The error between the FF'T method and the results of Sangani
and Acrivos [7] vary from 0.6% (in the case R = 0.1) to 0.13% (in the case
R =1). This was expected, since the FFT solution was computed with a more
refined grid than the FEM solution. Obviously, the results would be compared
with the same discretization, however here we compare the solutions obtained
by these two methods and the maximum possible memory occupancy of the
computer. This clearly shows that the FFT is computationally more attractive
for reducing the memory and hence its application to the problems of high
dimensions. Such comparison has been already provided in the literature but
in the context of composite materials [28]. The calculation times needed for
solving the FFT method are provided on table 3. The calculation time depends
on the number of iterations needed to obtain the convergence. Particularly, it
must be observed that for the flow around the rigid sphere, the number of
iteration increases with the radius of the sphere.
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R FFT FEM | Sangani and Acrivos [7]
0.1 | 0.905109 - 0.911070
0.2 | 0.380631 - 0.382190
0.3 | 0.207387 | 0.196734 0.208050
0.4 | 0.122899 - 0.123270
0.5 | 0.074448 | 0.070996 0.074668
0.6 | 0.044340 - 0.044501
0.7 | 0.025136 | 0.024461 0.025246
0.8 | 0.013121 - 0.013197
0.85 | 0.009098 - 0.009151
0.9 | 0.006140 - 0.006153
0.95 | 0.003980 - 0.004003

1 0.002487 - 0.002520

Table 2

Dimensionless permeability for the flow through a regular array of sphere with radius
lying in the range [0.1, 1]. Comparison between the FFT solution, the FEM solution
and the results of Sangani and Acrivos [7].

Radius | Time(s)

0.1 869 (~ 14 min )
0.2 1001 (~ 17 min)
0.3 1126 (~ 19 min)
0.4 1139 (~ 19 min)
0.5 1190 (~ 20 min)
0.6 1404 (~ 23 min)
0.7 1691 (~ 28 min)
0.8 2002 (~ 33 min)
0.9 2020 (~ 49 min)

Table 3
Computation time (in seconds) with the FFT-based algorithm in the case of the
flow around the rigid sphere of R.

5 Advanced numerical results

In this section, we consider more realistic porous cells which can mimic for
instance metal foams or porous polymer solids [29]. Various configurations are
obtained by an assembly of overlapping spherical pores. For most studies on
composite materials, the hypothesis of non-overlapping inclusions is consid-
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ered, while in the present case, it is necessary to consider overlapping spheres
in order to obtained a network of interconnected pores. In this section we are
only interested by the evaluation of the capacity of the FFT method to handle
the Stokes flow problem through complex porous microstructures and to pro-
vide some comparisons with the FEM method. The next step will concern the
application to idealized reconstructed unit cells or to digital images obtained
from microtomography. As for example, polymeric PHEMA-based porous ma-
terials are elaborated with spherical particulates and the porosity is generated
with porogenic solvents (see for instance Le Droumaguet et al. 2014). These
porous materials have demonstrated some potential or promising results in
the development of devices for drug delivery or scaffolds for tissue engineer-
ing applications (see for example Liu et al. 2004, Lee et al. 2007). The use of
idealized tridimensional porous cell made up of overlapping spherical pores is
adapted for this kind of materials and the mass transfer properties must be
studied on reconstructed porous cell knowing some the characteristic size of
the particulates and the porosity. As another example, the acoustic proper-
ties of metal foams are studied can be studied by performing calculations on
idealized unit cells (see for instance Hoang and Perrot [32,33]). Metal foams
are often used to increase sound absorption in aeronautics and building con-
struction. The determination of the dynamic permeability is the cornerstone
of the acoustic approaches of porous media and can be determined using the
FFT approach developed in Nguyen et al. [34].

As a first example, we represent, in figures 5 and 6, a regular array of spherical
overlapping voids arranged along a cubic lattice. Figure 5 represents, at the
left, a unit cell having the dimension 2 and containing a body-centered cubic
(BCC) array of spherical cavities with the radius R = 0.5. Each spheres in-
tersect another one along the diagonals of the cube. The resulting irreducible
unit cell of the porous medium is represented in figure 5, at the right. The
porosity for the BCC array is ¢ = 0.939.

Another example is given in figure 6. At the left, we represent a face-centered
cubic (FCC) structure of spherical voids. At the right, the irreducible unit cell
of the porous medium is represented for the FCC structure. The radius of the
spherical voids is R = 0.375. The porosity for the FCC array is ¢ = 0.858.
The results for the permeability are shown in figure 7 and 8. The permeability,
computed with the FFT method and the FEM, is plotted as function of the
grid refinement.

12



Fig. 5. Body-centered array of spherical voids. At the left: the voids distribution, at
the right: the rigid porous solid.

Fig. 6. Face-centered array of spherical voids. At the left: the voids distribution, at
the right: the rigid porous solid.
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Fig. 7. Dimensionless permeability for the flow through a body-centered array of
spherical voids.

0,0040

—s— FFT solutions
0,0035 |- FEM solutions

-
=
=
[0}
Q
£
| .
2 0,003 |
o]
Q
N
©
E
5 0,0025 |
Z
0,0020 1 1 1 1 1

0 100 200 300 400 500

Resolution NxNxN (voxels)

Fig. 8. Dimensionless permeability for the flow through a face-centered array of
spherical voids.

We now consider a more complex porous medium (Fig. 9) defined by spherical
voids with different sizes : a larger void located at the center of the cubic cell
having the radius R; = 0.52 and 376 smaller voids having the radius Ry, = 0.06.
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Each smaller void overlaps with its neighboring void and some small voids also
overlaps the larger one. By doing so, the fluid domain is then ensured to be
interconnected. The porosity for this microstructure is ¢ = 0.915. In figure
10, we consider a second example corresponding to a random distribution of
the smaller voids. The unit cell contains 536 voids with a radius comprised
between 0.06 and 0.08 randomly distributed, and a large void still located at
the center of the cell and having the radius R = 0.52. The porosity for this
last example is ¢ = 0.871.

The process used to construct the unit cell is the following: We build one
eighth of the unit cell that we duplicate by symmetry with respect to three
orthogonal planes (Ox1x2, Ox1x3 and Ox2x3 in the cartesian frame). By do-
ing so, the resulting microstructure is then periodic. The construction of the
eighth of the unit cell is made in two steps. In the first one, we put the larger
sphere of radius R = 0.52 at the center of the unit cell. In the second step
we put all the smaller voids and we use numerical tests. The radius of each
small void is randomly considered in the range [0.06,0.08] and its position is
randomly chosen in the range [0,0.5] x [0,0.5] x [0,0.5]. Numerical tests are
used to ensure that for each occurrence, the smaller void cross at least one
other smaller void or the larger void. This verification is needed in order to
obtain an interconnected microstructure.

The dimensionless permeability for these two microstructures is represented
in figures 11 and 12. In the case of the regular arrangement of smaller voids
(and also for the BCC and the FCC arrays), the permeability is isotropic
and is defined by only one coefficient. However, in the particular case cor-
responding to random distribution of smaller voids, the permeability tensor
is anisotropic. In fact, in figure 12, we only represent the component Ki; by
applying a pressure gradient along the direction Ox;. The microstructure is
however quasi-isotropic, the off-diagonal coefficients of the permeability tensor
are close to 0 and the terms on the diagonal take very close values. The lower
convergence observed on figure 12 will probably be attributed to the tortuosity
of the porous medium with random pores compared to the case of regularly
aligned pores. This tortuosity would introduce some complexity in the local
field that an accurate description would require higher order Fourier series
expansions (that is obtained by increasing of the resolution of the image). The
application of the FEM to the case of random distributions of overlapping
sphere fails due to the voxelization of the image. Indeed, for such microstruc-
ture the smaller voids must contain a sufficient number of voxels such that
the problem would be numerically solved. If a least the number of vowels is
not sufficient, the fluid flow circulation is blocked in the smaller voids. When
the FFT method is used, the results are only provided for a resolution equal
or higher than 128%. When the FEM is used the resolution of the linear sys-
tem is made with an iterative method whose convergence greatly depends on
the geometry of the porous medium. Particularly, for the porous cell with a
random distribution of spherical voids, the time computation has found to be
prohibitive.
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Fig. 9. Porous material with 376 regularly aligned small voids and one larger void
located at the center of the unit cell. At the left: the pore positions, at the right:
the rigid porous solid.

a

Fig. 10. Porous material with 536 randomly distributed small voids and one larger
void located at the center of the unit cell. At the left: the pore positions, at the
right: the rigid porous solid.
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Fig. 11. Dimensionless permeability for the flow through the microstructure given
in Fig. 9
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Fig. 12. Dimensionless permeability for the flow through the microstructure given
in Fig. 10

For completeness, in Tables 2-5, we also provide the values of the permeability
for the flow through different microstructures depicted in figures 5, 6, 9 and 10
and for the values of resolution 1282, 2563, 3842 and 5123. Just as indication,
we also provide the relative error along formula given in Table 2, to evaluate
the accuracy of the solution and the rate of convergence with respect to the
resolution. It is observed that the relative error decreases when the resolution
increases, that is expected. However, at a given spatial resolution, the error
significantly differs from one microstructure to another. In particular, the the
relative error is the lowest for the BCC array of pores (see Fig. 5) that is
close to 0.1 percent for the spatial resolution of 5123. The relative error is the
highest for the last example corresponding to the random distribution of small
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Table 4

Values of permeability and relative error as function of the resolution for the BCC

resolution | permeability relative error
1283 0.010398 -
2563 0.010169 ARl — 0.01113
3843 0.010104 | fA—fae2 — 0,00321
5123 0.010072 fa—fase — 0.00159

array of spherical pores

Table 5

Values of permeability and relative error as function of the resolution for the FCC

Resolution | permeability | relative error
1283 0.003009 -
2563 0.002837 0.02942
3843 0.002768 0.01231
5123 0.002737 0.00563

array of spherical pores

Resolution | permeability | relative error
1283 0.006313 -
2563 0.004314 0.18811
3843 0.004170 0.01697
5123 0.004078 0.01115

Table 6
Values of permeability and relative error as function of the resolution for the problem
with a large pore and smaller aligned pores

voids depicted on Fig. 10 that is close to 1.2 percents for the spatial resolution
of 5123. It is also interesting to note that that the relative error given on table
4 and 5 are quite similar, even though the results corresponds to a regular or
a random distribution of spherical voids. It seems that the tortuosity, which
is more important for the random distribution, do not really affect the rate of
convergence with the spatial distribution. The calculation times needed are
provided on table 8 for the resolution 512 x 512 x 512.

6 Conclusion

In the present paper, we have employed a numerical FFT-based method for
computing the permeability of periodic porous media from digital images
which come from modern imagery devices. Different configurations have been
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Resolution | permeability | relative error
1283 0.009423 -
2563 0.007296 0.12722
3843 0.007032 0.01842
5123 0.006856 0.01267

Table 7
Values of permeability and relative error as function of the resolution for the problem
with a large pore and smaller randomly distributed pores

Configurations Time(s)

BCC 144149 (~ 1.7 day)
FFC 81317 (~ 0.94 day)
376 regularly aligned 163826 (~ 1.9 day)
536 randomly distributed | 643283 (~ 7.44 days)

Table 8
Computation time (in seconds) with the FFT-based algorithm and for the different
problems and with the resolution 512 x 512 x 512 voxels

tested to show the capacity of the method and the accuracy of its solution.
First, benchmark problems, consisting of regular arrays of rigid cylinders or
spheres have been considered. The results have been compared to those com-
ing from the literature and show a good accuracy of the FFT-based solu-
tion. Advanced numerical results have been then considered. Some microstruc-
tures are constructed with an assemblies of overlapping spherical voids that
can mimic more realistically the real microstructure of some human-made
porous materials. First, porous media are obtained by considering regularly
distributed spheres along a body-centered cubic (BCC) or face-centered cubic
(FCC) structures. More complex microstructure are then studied by consid-
ering porous media having different pore size which are regularly or randomly
distributed. In each case, the results show a good convergence with the grid
refinement used by the FFT algorithm.
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