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Abstract

A FFT-based iterative scheme is developed for fiber-made composite conductors
with a Kapitza thermal resistance between the matrix and the inclusions which
involves a jump of the temperature. To reach this objective, we propose to extend
the FFT methods to deal with Kapitza interface and to derive the size-dependent
effective conductivity of such composites conductors. In this paper, we solve the in-
plane problem leading to the identification of the transverse effective conductivity.
The original methods based on Fast Fourier Transform failed to solve efficiently
the problems with imperfect interface which is intrinsically attributable to the use
of Fourier series to describe the local fields. To reach this objective, we propose
to derive an iterative scheme obtained from the weak form of the boundary value
problem by considering a discretization along Fourier series and an enrichment with
functions which are null outside of the inclusions. By doing so, the latter introduce
explicitly the discontinuities at the interface. The stationarity point is computed by
means of an iterative which uses the classic periodic Green function and a modified
conductivity tensor that accounts for the interface thermal resistance. It is shown
that the rate of convergence of this new iterative scheme is almost equivalent to
that of the original method. The results for a composite with regularly distributed
fibers are compared with Finite Element solutions. Next, the size-dependent effective
conductivity is computed for random distributions of inclusions and compared with
analytic estimates coming from the homogenization theory.
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1 Introduction

Surface/interface effects have been introduced to account for the discontinu-
ity of the local fields across the interface between two regions having distinct
mechanical/physical properties. Generally, two kind of interface models are
considered involving the discontinuity on the primal or the dual variable. For
instance, in the case of elastic composites, the spring interface model intro-
duces a discontinuity of the displacement which is proportional to the traction
acting on the interface, see Goland and Reissner [11], Jones and Whittier [19].
Still in the context of elasticity, the interface model of Gurtin and Murdoch
[12,31] introduces a discontinuity of the traction but the displacement remains
continuous across the interface. The relation giving the jump of the traction
is given by a generalization of the Young-Laplace equation. In the context of
the thermal conduction, the Kapitza model introduces a discontinuity of the
temperature that is proportional to the flux acting on the interface. Initially,
the Kapitza model [20] has been introduced to account for the interfacial resis-
tance between a solid and a liquid and has been later considered at the frontier
of two solids [6]. In the case of composites, the interface effects are generally
attributed to the presence of a thin interphase or interfacial damage.
The determination of the effective properties of composites with imperfect
interfaces has been the subject of numerous works in the framework of the ho-
mogenization theory, in the context of elasticity by Hashin [14], Sharma and
Ganti [32], Chen et al. [7], Duan et al. [8], Lequang and He [15], Brisard et
al. [5] and in the context of the thermal conduction by Benveniste and Miloh
[2], Dunn and Taya [9], Torquato and Rintoul [35], Hashin [13], [16]. The most
remarkable result is that the effective properties of the composites depends on
the size of the reinforcements.
The boundary value problem of composites with imperfect interfaces can be
easily solved with the Finite Element Method by doubling the DOFs at each
nodes at the interfaces between the two regions to account for the displace-
ment/temperature discontinuity. Alternatively, the problem with a disconti-
nuity of the displacement (for elasticity problems) has been considered with
the Extended Finite Element Method (XFEM) based on Level Set Functions
and which has been initially introduced by Belytschko and Black [1], Moës
et al. [23] and Sukumar et al. [33] for applications to crack problems. The
application of the XFEM to composites with imperfect interfaces has been
proposed by Yvonnet et al. [36,37], Zhu et al. [38].
In this paper we propose a FFT-based iterative scheme to compute the effec-
tive conductivity of composites with Kapitza interface resistance. The method
based on FFT has been introduced by Moulinec and Suquet [27] in the con-
text of elasticity and has received various improvements [10,21,3,4,25,26]. The
method has been also extended to compute the transfer properties of porous
solids [24,29,34,17]. Particularly, in [24], a dual formulation based on the stress
field has been proposed to compute the Stokes flow problem with a sliding con-
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dition at the interface between the solid and the fluid phase. The skeleton of
the porous material being rigid, the sliding condition naturally introduces a
discontinuity of the velocity field. Note however that the method leads to pro-
hibitive time calculations and computer memory saving (this has been shown
in [28]) which makes the method inoperative for high dimension problems.
In this paper, we propose an alternative approach which is based on the dis-
cretization of the boundary value problem in a variational procedure with
Fourier series and additional local fields which explicitly introduce a discon-
tinuity at the interface between the matrix and the inclusions. The method
of resolution still uses an iterative scheme based on the Green operator and
the FFT algorithm. The convergence of the new iterative scheme is studied
in the case of a network of fibers with circular cross section and the solutions
are compared with FE solutions. Next, we apply the method in the case of
composites with randomly distributed fibers and the solutions are compared
with analytic solutions coming from the homogenization theory [16]. Finally,
the method is applied to a composite with a random distribution of fibers
which are different in size.

2 Homogenization problem and interface model

Consider a periodic composite made up of a matrix with the conductivity
k1 and inclusions having the conductivity k2. We denote by V1 the volume
of the matrix and by V2 the volume of the inclusions. The volume V2 can
be decomposed into P subdomains Ω1,...,ΩP corresponding to each isolated
inclusion. In this paper, the hypothesis of non-overlapping fibers is used. The
interface between these inhomogeneities and the matrix is denoted by Γi for
i = 1...P. The boundary value problem reads:





ε(x) = ∇u(x), ∀x ∈ V

σ(x) = K(x).ε(x), ∀x ∈ V

div(σ(x)) = 0, ∀x ∈ V

u−E.x periodic, σ.n antiperiodic, ∀x ∈ ∂V

(1)

where E is the macroscopic gradient of temperature defined by:

E =
1

V

∫

V
ε(x)dx+

i=P∑

i=1

∫

Γi

[u(x)]
s
⊗ ndx (2)
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where a
s

⊗ b = (a⊗ b+ b⊗ a)/2 for any vector a and b.
In Eq. (1), K(x) represents the conductivity tensor of the heterogeneous
medium, given by:

K(x) = I1(x)K1 + I2(x)K2 (3)

in which I1(x) and I2(x) are the characteristic functions describing the volume
V1 and V2 respectively. The characteristic function I2(x) can be read:

I2(x) =
i=P∑

i=1

χi(x) (4)

where χi(x) for i = 1...P are the characteristic functions of the volume
Ω1,...,ΩP . We assume that the constituents are isotropic, K1 = k1I, and
K2 = k2I where I is the identity for two order tensors.
At the interface between the inclusions and the matrix, the temperature is
discontinuous and the jump of the temperature is given by:

[u(x)]Γi
= hsσ(x).n

∣∣∣∣
Γi

(5)

where [u(x)]Γi
represents the jump of the temperature across the interface Γi,

n is the normal unit vector taken on Γi oriented from Ωi to V1. hs is thermal
resistance of the interface. Particularly, hs = 0 corresponds to a perfect inter-
face (evolving the continuity of the temperature across Γi).
The effective conductivity of the composite is determined by computing the
macroscopic flux Σ from the classic average relation:

Σ =
1

V

∫

V
σ(x)dx (6)

The weak form of the boundary value problem (1) with the interface condition
(5) is:

Σ : E = min
u∈U

W (u) (7)

with:

W (u) =
1

V

∫

V
ε(u(x)).K(x).ε(u(x))dx+

1

V

i=P∑

i=1

∫

Γi

[u(x)]2

hs

dx (8)

and where U is the set of admissible temperature fields which are periodic,
continuous and differentiable in V1 and V2, and which satisfy to Eq. (2).
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3 Discretization of the problem

3.1 Discrete problem

The numerical homogenization method based on the FFT applied to elastic-
ity problems can be derived from the standard variational principle and a
representation of the local fields with Fourier series. This has been shown in a
recent work [26]. In order to extend the approach to composites materials with
imperfect interfaces we need to extend the space of discretization by adding
some fields which are discontinuous across each interface Γi for i = 1...P.
In the case of composites conductors with perfect interfaces, the temperature
is expanded along Fourier series:

u(x) =
n=N−1∑

n=−N

ûn exp(iξn.x) (9)

where ûn are the Fourier coefficients of the temperature u(x) and ξn denotes
the discrete wave vectors given by:

ξn = 2πnζ, n = −N..N − 1, ζi =
1

hi

(10)

and 2h1, 2h2, 2h3 are the size of the unit cell along each space directions. For
simplicity, only one indice ”n” is used for the discrete wave vector ξn while
three would be used for 3d problems.
In order to introduce the discontinuities of the temperature across the inter-
faces Γi, an enrichment of the space of discretization is introduced. We add to
the displacement (9) a finite number of fields U (i)(x) which are null outside
of Ωi but are different of zero inside Ωi, including the interface Γi. The total
temperature then reads:

u(x) =
n=N−1∑

n=−N

ûn exp(iξn.x) +
i=P∑

i=1

U (i)(x) (11)

Since each terms of the Fourier series are continuous, the jump of the temper-
ature across the interface Γi is:

[u(x)]Γi
= −U (i)(x)

∣∣∣∣
x∈Γi

(12)

By derivation, we have for any x ∈ V − Γi:

ε(u(x)) =
n=N−1∑

n=−N

ε̂n exp(iξn.x) +
i=P∑

i=1

ε(U (i)(x)) (13)
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where ε̂n is defined, ∀n 6= 0, by :

ε̂n = iûnξn (14)

The unknowns ε̂n could be substituted to ûn by accounting for the compati-
bility condition (14).
The temperature field must also comply with (2) in order to be kinematically
admissible. Owing to relation (12) we deduce that:

E = ε̂0 +
i=P∑

i=1

[
1

V

∫

Ωi

ε(U (i)(x))dx−
1

V

∫

Γi

U (i)(x)ndx
]

(15)

It is readily observed that the last two integrals in the above equation vanish
when using the gradient theorem to transform the volume integral over Ωi into
an integral over the surface Γi. It then remains:

E = ε̂0 (16)

Introducing the temperature (11) in (8), we obtain:

W (u) =
n=N−1∑

n=−N

m=N−1∑

m=−N

ε̂n.K̂(ξn − ξm).ε̂m + 2
n=N−1∑

n=−N

i=P∑

i=1

ε̂n.K2.D̂
(i)
n

+
i=P∑

i=1

Ψ(i)(U (i)(x), U (i)(x))

(17)

where ε̂n represents the conjugate of ε̂ and K̂(ξ) is the Fourier transform of
the conductivity tensor K(x). The first term in the above equation, involving
the double sum over n and m, is derived considering the Parseval theorem.
Also the second term in Eq. (17) is obtained with the Parseval theorem and
the following definition:

D̂(i)
n =

1

V

∫

V
ε(U (i)(x)) exp(−iξn.x)dx (18)

In the last term in Eq. (17), the function Ψ(i) is defined by:

Ψ(i)(u(x), v(x)) =
1

V

∫

Ωi

ε(u(x)).K2.ε(v(x))dx+
1

V

∫

Γi

u(x)v(x)

hs

dx (19)

In each subdomain Ωi the displacement is represented along a basis of inter-
polation functions:
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U (i)(x) =
j=Q∑

j=1

λ
(i)
j w

(i)
j (x)χ(i)(x) (20)

where λ
(i)
j are the unknown coefficients, w

(i)
j (x) are the interpolation functions

and χ(i)(x) are the characteristic functions of the domain Ωi for i = 1..P.
Introducing expression (20) in Eq. (18), it leads to:

D̂(i)
n =

j=Q∑

j=1

λ
(i)
j π

(i)
j (ξn) (21)

where the vectors π
(i)
j (ξ) for j = 1...Q are given by:

π
(i)
j (ξn) =

1

V

∫

Ωi

ε(w
(i)
j (x)) exp(−iξn.x)dx (22)

Introducing (20) in Eq. (19), it leads to:

Ψ(i)(U (i)(x), U (i)(x)) =
j=Q∑

j=1

k=Q∑

k=1

λ
(i)
j λ

(i)
k A

(i)
jk (23)

with:

A
(i)
jk = Ψ(i)(w

(i)
j (x),w

(i)
k (x)) (24)

It follows that W (u) reads:

W (u) =
n=N−1∑

n=−N

m=N−1∑

m=−N

ε̂n.K̂(ξn − ξm).ε̂m

+2
n=N−1∑

n=−N

i=P∑

i=1

j=Q∑

j=1

λ
(i)
j ε̂n.K2.π

(i)
j (ξn)

+
i=P∑

i=1

j=Q∑

j=1

k=Q∑

k=1

λ
(i)
j A

(i)
jkλ

(i)
k

(25)

3.2 The minimization

The stationarity point of W (u) given by Eq. (25) is computed by minimizing

with respect to ε̂n for n = −N..N −1 and λ
(i)
j for j = 1..Q and i = 1..P. Note
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that we have substituted to the true unknowns ûn the Fourier coefficients ε̂n of
the temperature gradient, so, when doing the minimization, the comparability
equation (14) must be accounted for.
The compatibility condition can be also written by considering two projectors
Pn and Qn already introduced by Milton [22]. The use of these projectors
is essential for the minimization procedure and also for the derivation of the
iterative scheme which leads to the computation of the solution at the station-
arity point.
These projectors are defined by:

Pn =
1

‖ξn‖2
ξn ⊗ ξn, Qn = I − Pn (26)

for any n 6= 0 and Pn = Qn = 0 when n = 0.
The compatibility condition (14) for the Fourier coefficients of the gradient of
temperature ε̂n is:

Qn.ε̂n = 0 (27)

or alternatively:

Pn.ε̂n = ε̂n (28)

for any n 6= 0.
Note that these two projectors can be also used to express the equilibrium of
the flux in the Fourier space. Indeed, by denoting σ̂n the Fourier coefficients
of a divergence free field σ, they satisfy to:

Pn.σ̂n = 0 (29)

or equivalently:

Qn.σ̂n = σ̂n (30)

The minimum of (25) with respect to ε̂n is:

Pn.



m=N−1∑

m=−N

K̂(ξn − ξm).ε̂m +
i=P∑

i=1

j=Q∑

j=1

λ
(i)
j k2π

(i)
j (ξn)


 = 0 (31)

where K2 has been replaced by k2I (we assume that the phases are isotropic).

The minimum with respect to λ
(i)
j is:
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n=N−1∑

n=−N

k2ε̂n.π
(1)
j (ξn) +

k=Q∑

k=1

A
(1)
jk λ

(1)
k = 0 for j = 1..Q,

n=N−1∑

n=−N

k2ε̂n.π
(2)
j (ξn) +

k=Q∑

k=1

A
(2)
jk λ

(2)
k = 0 for j = 1..Q,

...

n=N−1∑

n=−N

k2ε̂n.π
(P)
j (ξn) +

k=Q∑

k=1

A
(P)
jk λ

(P)
k = 0 for j = 1..Q

(32)

Introducing the inverse of A
(i)
jk by R

(i)
jk , we can eliminate the unknowns λ

(i)
j for

j = 1...Q and for i = 1..P from Eqs (31) and (32). The values at the minimum
for ε̂n with n = −N..N − 1 satisfy to:

Pn.
m=N−1∑

m=−N

Ln,m.ε̂m = 0 (33)

for n = −N..N −1 excepted for n = 0 for which ε̂0 = E and where the fourth
order tensor Ln,m is given by:

Ln,m = K̂(ξn − ξm)− k2
2

i=P∑

i=1

j=Q∑

j=1

k=Q∑

k=1

R
(i)
jkπ

(i)
j (ξn)⊗ πk

(i)(ξm) (34)

Introducing:

σ̂n =
m=N−1∑

m=−N

Ln,m.ε̂m, (35)

we deduce that the value of W (u(x)) at the stationarity point is:

W (u(x)) =
n=N−1∑

n=−N

σ̂n.ε̂n (36)

Moreover, σ̂n complies with Eq. (29) and ε̂n complies with Eq. (27), conse-
quently, σ̂n and ε̂n are orthogonal ∀n 6= 0. In the sum for n = −N..N − 1
between σ̂n and ε̂n, it then only remains the term corresponding to n = 0:

W (u(x)) = σ̂0.ε̂0 = σ̂0.E (37)

σ̂0 represents the macroscopic flux which satisfies to σ̂0 = Khom.E where
Khom is the homogenized or effective conductivity of the composite. The ef-
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fective conductivity is then determined by considering σ̂0 at convergence of
the iterative scheme.

3.3 Resolution with an iterative scheme

The solution of the Eq. (33) can be computed by means of the following
iterative scheme:

ε̂r+1
n = ε̂rn − Γ̂0

n.



m=N−1∑

m=−N

Ln,mε̂
r
m


 (38)

where ε̂rn is the value of ε̂n computed at iteration ”r”. The iterative scheme is
initialized with the macroscopic gradient of temperature E:

ε̂1n =




0 ∀n 6= 0

E for n = 0
(39)

In Eq. (38), Γ̂0
n are the Fourier coefficients of the Green tensor associated to

a reference medium of conductivity k0. Its components are:

Γ̂0
n =

1

k0
Pn (40)

where k0 can be interpreted as a preconditioner that is adjusted in order to
obtain the best convergence of the iterative scheme. Its value is discussed in
section 4.2. Comparatively to the original method of Moulinec and Suquet
[27], the discontinuity of the temperature is introduced with the extra term

”R
(i)
jkπ

(i)
j (ξn)⊗π

(i)
k (ξm)” in the definition of Ln,m given by Eq. (34). In Eq. (38),

the discrete convolution product between K̂(ξn − ξm) and ε̂rm is effected with

the FFT algorithm. In the other hand, the product ”R
(i)
jkπ

(i)
j (ξn) ⊗ π

(i)
k (ξm)”

with ε̂rm is local in the Fourier space. The sum over the indice m between

π
(i)
k (ξm) and ε̂rm just consists of a Hadamard product between two tables and

by summing all the components.
As in the original method, the implementation of the problem only requires
the storage of tables of dimension Nt = (2N)2 in 2d case and Nt = (2N)3 for
3d one. Note that Nt represents the total number of Fourier components of
the temperature (see Eq (9)) and then the degree of Freedom (DOFs) for the
problem of composite with perfect interfaces. In the case of imperfect interface,
the DOFs is Nt plus the total number of interpolation functions that is P×Q.
In the original FFT method applied to composite conductors with perfect
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interfaces, the implementation requires the storage of tables of dimension Nt

that is the components of the gradient of temperature ε̂rn (that is 2 tables),
the flux σr

n (that is 2), the local conductivity k(xn) (that is 1 for isotropic
constituents) and finally the components of the Green tensor (that is 6). In
the version of the method which uses the shape function, the storage of χ(ξ)
is used instead of k(xn). So the total number of tables of dimension Nt is
2+2+1+6 = 11. The algorithm developed here for imperfect interfaces requires
the storage of P ×Q additional matrices: π

(i)
j (ξn) for i = 1..P and j = 1..Q.

Obviously, the method is numerically interesting only if the dimension of the
space of discretization of the functions U (i)(x), defined by Q, is not too large.
As shown in the next of the paper when all the inclusions are identical in
shape and size the total number of tables reduce to Q instead of P ×Q.

4 Application to a composite with regularly distributed fibers

We apply the method to the case of a composite reinforced by long fibers
aligned in the direction Ox3. The fibers are regularly distributed in the direc-
tions Ox1 and Ox2. The unit cell contains one fiber as illustrated in Fig. 1.
The case of a population of P inclusions in the unit cell is studied in the next
section.

x1

x2

1

1

Fig. 1. Unit cell of a composite with regularly distributed fibers.

4.1 The choice of the interpolation functions

In the case of a composite with aligned cylindrical fibers with the radius R,
the Fourier transform of the characteristic function of the inclusion χ(x) has
a close-form expression in the Fourier space. This expression can be found in
the book of Nemat-Nasser [30] and has been used to formulate estimations
of the effective elastic properties of composites. This exact expression, called
shape function in [30], has been also used in [3] to improve the solutions of
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standard FFT-based iterative schemes. Later, in [26], it has been proved that
the use of the shape functions in the FFT-based iterative schemes provides
rigorous bounds of the effective elastic properties of the composites. Note that
the approach developed in the present paper is also based on a variational
procedure which garante the upper bound character of the numerical solution.
The derivation of a lower bound is out of reach of this work.
Considering the particular case of a cylinder of radius R, the associated shape
function is:

χ̂(ξ) =





2c

R‖ξ‖
J1(R‖ξ‖) ∀ξ 6= 0

c ξ = 0

(41)

where c = πR2/V and V = 4h1h2 where it is recalled that 2h1 and 2h2 denote
the dimensions of the cell along the directions Ox1 and Ox2 respectively that
is equal to 1 in this example. In the above equation, ‖ξ‖ is the norm of the
wave vector ξ and Jn for n = 0, 1, 2, ... are the bessel functions of the first
kind.
Since the unit cell contains only one inclusion, the superscript ”(i)” can be
omitted in this section. In the inclusion (the domain Ω), we use orthogonal
polynomials for the interpolation functions. Assuming that the inclusion is
centered at x = 0, the first nine interpolation functions are:

w1(x) = x1

w2(x) = x2

w3(x) = x2
1 + x2

2 −R2

w4(x) = x1x2

w5(x) = x2
2 − x2

1

w6(x) = x1(x
2
1 − 3x2

2)

w7(x) = x2(x
2
2 − 3x2

1)

w8(x) = x1(x
2
1 + x2

2 − R2)

w9(x) = x2(x
2
1 + x2

2 − R2)

(42)

Interestingly, it can be observed that:
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1

V

∫

Ω
xi...xj︸ ︷︷ ︸
n times

exp(−iξ.x)dx = (−i)n
∂

∂ξi
...

∂

∂ξj
χ̂(ξ) (43)

It follows that all the vectors πj(ξ) defined by Eq. (22) can be expressed in
term of the derivatives of the shape function χ̂(ξ):

π1(ξ) = χ̂(ξ)e1

π2(ξ) = χ̂(ξ)e2

π3(ξ) = −2iχ̂,1(ξ)e1 − 2iχ̂,2(ξ)e2

π4(ξ) = −iχ̂,2(ξ)e1 − iχ̂,1(ξ)e2

π5(ξ) = −2iχ̂,2(ξ)e2

π6(ξ) = 3[χ̂,22(ξ)− χ̂,11(ξ)]e1 + 6χ̂,12(ξ)e2

π7(ξ) = 6χ̂,12(ξ)e1 + 3[χ̂,11(ξ)− χ̂,22(ξ)]e2

π8(ξ) = −[3χ̂,11(ξ) + χ̂,22(ξ) +R2χ(ξ)]e1 − 2χ̂,12(ξ)e2

π9(ξ) = −2χ̂,12(ξ)e1 − [χ̂,11(ξ) + 3χ̂,22(ξ) +R2χ(ξ)]e2

(44)

where χ̂,i represents the derivative of χ̂(ξ) with respect to ξi. These relations
give the vectors πj(ξ) for any ξ 6= 0. For ξ = 0, the values of π1(ξ) and π2(ξ)
are equal to ce1 and ce2 where e1 and e2 are the unit vectors taken along
directions Ox1 and Ox2 respectively. Vectors πj(ξ) for j = 3, 4, ... are null for
ξ = 0.
The matrix Rij is diagonal and its components are:

R11 = R22 =
1

ck2

α

1 + α

R33 =
1

2ck2R2
, R44 =

4

ck2R2

α

1 + 2α

R55 =
1

ck2R2

α

1 + 2α
, R66 = R77 =

1

ck2R4

α

1 + 3α

R88 = R99 =
3

2ck2R4

(45)

where we have introduced the non dimensional parameter:
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α =
k2hs

R
(46)

that is null for a perfect interface.
Moreover, since the matrix Rij is diagonale the double sum over j and k is
replaced by a simple sum over j:

Ln,m = K̂(ξn − ξm)− k2
2

j=Q∑

j=1

Rjjπj(ξn)⊗ πj(ξm) (47)

For instance, considering only w1(x) and w2(x), in the computation of Ln,m,
we obtain (after some elementary simplifications):

Ln,m = K̂(ξn − ξm)−
k2
c

α

1 + α
χ̂(ξn)χ̂(ξm)I (48)

It must be observed that for the cylindrical shape some interpolation functions
do not generate a discontinuity of the temperature across the interface. These
functions are w3(x), w8(x) and w9(x) which are proportional to x2

1 + x2
2 −R2

that is null at the interface. A consequence is that the corresponding compo-
nents of the matrix Rij are independent of α. The use of these interpolation
functions for the description of the interface discontinuity of the temperature
is not pertinent and can be eliminated. However, for other inclusion shapes
(rectangular inclusion for instance) these fields must be kept.
The geometry of the unit cell and the applied loading indicates that the gra-
dient of temperature into the inclusion must be an even function with respect
to the components of the position vector x. This suggests that the function
w4(x) and w5(x) can be also omitted in the computation of the linear opera-
tor Ln,m. Finally, only w1(x), w2(x), w6(x) and w7(x) are considered in this
application.
Higher order polynomials are provided in appendix A and are used later for
comparison with FE solutions. The solution which uses the polynomials of first
degree, i.e. w1(x) and w2(x) (that leading to the linear operator (48)) is de-
noted FFT-P1. The solution based with polynomials of third degrees, w1(x),
w2(x), w6(x) and w7(x) is denoted FFT-P3. Since the functions of even de-
gree are not considered, there is no FFT-P2 solution. Higher order polynomials
are also investigated in order to check the accuracy of the FFT-P3 solution.
Polynomials of fourth degree are not considered still due to the symmetry of
the problem. However, the FFT-P5 solution is considered, using fifth degree
polynomials given in appendix A.
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4.2 Analysis of convergence

A crucial point in the application of the FFT-based iterative schemes concerns
their analysis of convergence. The rate of convergence of the iterative schemes
depends on the choice of the reference material k0 which can be interpreted as
a preconditioner associated with the linear system (33). The convergence of
the standard FFT-based iterative scheme for elastic composites and composite
conductors has been studied by Moulinec and Suquet [27], Michel et al. [21],
Milton [22] by minimizing the spectral radius of the linear operator involved
in the recurrence relation. In the case of a two-phases composites conductors,
the convergence is guaranteed if:

k0 >
1

2
max(k1, k2) (49)

The minimization of the spectral radius leads to the following optimal con-
ductivity of the reference material:

k0 =
k1 + k2

2
(50)

The case of composites conductors with imperfect interfaces introduces a third
parameter, the interface resistance hs. The method introduced in [27,21] con-
sists to bound the spectral radius of the linear operator involved by the re-
currence relation but is not applicable here due to the enrichment with the
interpolation functions.

15



5 5.5 6 6.5 7
10

15

20

25

30

35

k
0

nu
m

be
r 

of
 it

er
at

io
ns

 

 
FFT−P1
FFT−P3

5 5.5 6 6.5 7
16

17

18

19

20

21

22

23

k
0

nu
m

be
r 

of
 it

er
at

io
ns

 

 
FFT−P1
FFT−P3

5 5.5 6 6.5 7
30

32

34

36

38

40

42

44

k
0

nu
m

be
r 

of
 it

er
at

io
ns

 

 
FFT−P1
FFT−P3

5 5.5 6 6.5 7
38

40

42

44

46

48

50

52

k
0

nu
m

be
r 

of
 it

er
at

io
ns

 

 

FFT−P1
FFT−P3

h
s
=0 h

s
=0.2

h
s
=0.5 h

s
=1

Fig. 2. Number of iteration at convergence of the iterative scheme as function of k0
for k1 = 1, k2 = 10 and R = 0.5.

Due to the incapacity to determine the condition giving the convergence from
a theoretically point of view, we study the rate of convergence of the iterative
scheme numerically. We consider a fiber with the radius R = 0.25 (the size
of the unit cell in each space direction is taken as 1). The conductivity of the
matrix is k1 = 1, the conductivity of the inclusion is k2 = 10. In the case of
a perfect interface, the convergence is guaranteed if k0 > 5 (owing to relation
(49)) and the optimal value corresponds to k0 = 5.5 (owing to relation (50)).
On Fig. 2, we represent the number of iterations at convergence of the iterative
scheme as function of k0 for hs = 0, hs = 0.2, hs = 0.5, hs = 1. The calcu-
lations are performed with 128 wave vectors along each space directions. For
hs = 0 (case of a perfect interface), the curve has a minimum at k0 = 5.5 that
corresponds to the theoretical value given by Eq. (50). For other values of hs,
there is no minimum, the number of iterations monotonically increases with
k0 and diverges when k0 < 5. From a practical point of view, we consider the
value of the conductivity of the reference medium given by Eq. (50) whatever
the value of hs and for all the applications proposed in the next of the paper.
Also, it must be noted that the rate of convergence is the same for FFT-P1
and FFT-P3.
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On Fig. 3 is represented the variations of the number of iterations at con-
vergence as function of the phase contrast. The conductivity of the matrix is
k1 = 1 and we increase the conductivity of the inclusion from 1 to 100. Three
values of the interface coefficient are considered: hs = 0, hs = 0.5 and hs = 1.
The results show that the number of iterations has an affine relation with
the contrast but the slope of each curves remains independent of the interface
resistance hs.
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Fig. 3. Number of iterations at convergence as function k2 for k1 = 1, R = 0.25 and
hs = 0, 0.5, 1.

The variation of the number of iterations at convergence as function of hs is
now provided on Fig. 4. The conductivity of the matrix and the inclusions
are k1 = 1 and k2 = 10 respectively. The radius of the fiber is R = 0.25.
The number of iterations monotonically increases with hs and saturates at
higher values of this parameter. This result shows that the rate of convergence
is not strongly affected by hs. At finite values of the contrast between the
phase, the iterative scheme converges whatever the value of hs. Obviously, by
increasing the contrast, the rate of convergence decreases, that is the main fault
of the FFT-based iterative scheme formulated with the strain. The particular
case of a rigid inclusion with a Kapitza interface cannot been handled with
the present approach and could probably solved by adapting the accelerated
scheme based on the polarization [25]. It must be noted that the Kapitza
interface can be interpreted as a third thin phase with very low conductivity
(see for instance [13]), as consequence, it is not really surprising that the rate
of convergence is not significantly affected. However, a dual approach which
consists to formulate the iterative scheme with the flux and the resistivity
(inverse of the conductivity) is not divergent since the resistivity in the third
phase tends to infinity, this has been shown in [28]. Note also that the primal
approach based on the gradient of temperature delivers an upper bound for
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the effective conductivity but it is then not possible to obtain the lower bound
by the dual formulation.
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Fig. 4. Number of iterations at convergence as function hs for k1 = 1, k2 = 10 and
R = 0.25.

4.3 Comparison with Finite Element solutions

The effective conductivity of the composite is represented on Fig. 5 as function
of the fiber radius R for k1 = 1 and for various values of hs and k2. The results
obtained with FFT-P1 and FFT-P3 are compared with Finite Element (FE)
solutions. The FE solution is computed with 15098 triangular elements, linear
interpolation functions in each element and by doubling the temperature at
each nodes located at the interface in order to introduce the discontinuity.
One observes a good agreement between the FFT and the FE solutions. It
is however observed a slight discrepancy of the FFT-P1 solution when the
inclusion radius is close to R = 0.5. When hs = 0.5 we observe that the
two curves decrease, reach a minimum and then increase. This illustrates a
competition between the interface and the inclusion effects on the effective
conductivity. Indeed, the inclusion, which is more conductive that the matrix,
increases the effective conductivity while the discontinuity at the interface
decreases the effective conductivity.
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Fig. 5. Variations of the effective conductivity with the fiber radius R. Comparison
between the FFT solutions with the FE one.

A qualitative comparison with the FE solutions is provided on tables 1 and 2
for the radius R = 0.2 and R = 0.4 respectively. For each value of the radius,
we consider for the thermal resistance: hs = 0.2, hs = 0.5 and hs = 1 while
the conductivity of the inclusion is k2 = 10 and k2 = 100. Considering the
case R = 0.2, the results obtained with FFT-P1, FFT-P3 and FFT-P5 are
the same at a given value of the resolution excepted for hs = 1 and k2 = 100
for which FFT-P3 and FFT-P5 give a slightly more refined estimation. For
R = 0.2, the FFT-P1 solution is accurate and the consideration of higher order
polynomials is not required. In the case R = 0.4, one observes a significant
difference between FFT-P1 and FFT-P3. However the solutions computed
with FFT-P3 and FFT-P5 are identical. This suggests that the use of third
order polynomials is sufficient to reproduce the discontinuity at the interface.
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hs = 0.2 hs = 0.5 hs = 1

contrast = 10 100 10 100 10 100

64× 64

FFT-P1 0.9881 0.9988 0.8952 0.8989 0.8462 0.8486

FFT-P3 0.9881 0.9988 0.8952 0.8989 0.8462 0.8486

FFT-P5 0.9881 0.9988 0.8952 0.8989 0.8462 0.8486

128 × 128

FFT-P1 0.9881 0.9988 0.8948 0.8983 0.8454 0.8471

FFT-P3 0.9881 0.9988 0.8948 0.8983 0.8454 0.8471

FFT-P5 0.9881 0.9988 0.8948 0.8983 0.8454 0.8471

256 × 256

FFT-P1 0.9881 0.9988 0.8946 0.8980 0.8450 0.8464

FFT-P3 0.9881 0.9988 0.8946 0.8980 0.8449 0.8463

FFT-P5 0.9881 0.9988 0.8946 0.8980 0.8449 0.8463

FEM 0.9881 0.9987 0.8944 0.8976 0.8446 0.8456

Table 1
Comparison of the effective conductivity computed with the FEM and the FFT for
R = 0.2

hs = 0.2 hs = 0.5 hs = 1

contrast= 10 100 10 100 10 100

64× 64

FFT-P1 1.2897 1.3958 0.8613 0.8912 0.6384 0.6493

FFT-P3 1.2880 1.3919 0.8607 0.8908 0.6342 0.6448

FFT-P5 1.2880 1.3919 0.8607 0.8908 0.6342 0.6448

128 × 128

FFT-P1 1.2894 1.3944 0.8612 0.8911 0.6378 0.6482

FFT-P3 1.2876 1.3907 0.8606 0.8907 0.6336 0.6438

FFT-P5 1.2876 1.3907 0.8606 0.8907 0.6336 0.6438

256 × 256

FFT-P1 1.2892 1.3937 0.8612 0.8910 0.6375 0.6476

FFT-P3 1.2874 1.3901 0.8606 0.8907 0.6333 0.6432

FFT-P5 1.2874 1.3901 0.8606 0.8907 0.6333 0.6432

FEM 1.2869 1.3890 0.8605 0.8905 0.6329 0.6426

Table 2
Comparison of the effective conductivity computed with the FEM and the FFT for
R = 0.4

In order to assess the accuracy of the local fields, the jump of the temperature
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field across the interface is represented on figures 6 to 8 for R = 0.2, R = 0.4
and R = 0.49 respectively. The jump distribution is represented as function of
the angle coordinate θ which vary from 0 to 2π. The contrast is 100 and the
thermal resistance of the interface is hs = 1. We compare FFT-P1 and FFT-
P3 solutions with the FE one. A very good agreement for the temperature
jump distribution is observed for FFT-P1 and FFT-P3 solutions when the
radius is R = 0.2. Also for R = 0.4 the FFT-P1 is still closed to the FE
solution but the FFT-P3 one leads to a better approximation. For R = 0.49,
that corresponding to almost touching inclusions, the discrepancy between the
FE and FFT-P1 solutions is more significant. Also, differences are observed
between FFT-P3 and FE solutions. Obviously, the good comparisons between
the FFT solutions and the FE one is due to cylindrical shape which has a very
smooth interface. Comparisons would be provided for other inclusions shape
to evaluate the accuracy of the method by considering, for example, the case
of a rectangular inclusion shape.
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Fig. 6. Variations of the temperature jump as function of the angular coordinate θ

for R = 0.2, hs = 1 and a contrast of 100.
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Fig. 7. Variations of the temperature jump as function of the angular coordinate θ

for R = 0.4, hs = 1 and a contrast of 100.

21



0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

0.4

0.6

θ

te
m

pe
ra

tu
re

 ju
m

p

 

 

FFT−P1
FFT−P3
FEM

Fig. 8. Variations of the temperature jump as function of the angular coordinate θ

for R = 0.49, hs = 1 and a contrast of 100.

5 Unit cell with a population of fibers

Consider now a unit cell containing P fibers of radius R randomly distributed
(see Fig. 9). The position of each fiber is defined by X(i) for i = 1..P. Since
all the inclusions have the same radius, the coefficients Rij , given by Eq. (45),

are the same for each fibers. Vectors π
(i)
j (ξ) depend on the position X(i) and,

by making use of the translation property of the Fourier transform, they are
computed from the following relation:

π
(i)
j (ξ) = π0

j (ξ) exp(iξ.X
(i)) (51)

where π0
j (ξ) with the superscript ”0” is associated to a fiber located at x = 0

whose expressions for j = 1..Q are given by Eq. (44).
As in the last example, the interpolation functions w3(x), w8(x) and w9(x)
are omitted since they do not introduce a discontinuity at the interface. All
other interpolation functions are now considered in the computation of the
linear operator Ln,m. In this example, the interpolation functions w4 and w5

must kept due to the inclusion interactions. However, the results show that
the influence of these two functions is negligible and could omitted. Then, only
functions w1(x), w2(x), w6(x) and w7(x) are used. So, the total number of
interpolation functions remains Q = 4.
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Fig. 9. Unit cell

The unit cells of the random microstructures are illustrated on Fig. 9. Four dif-
ferent microstructures are shown with P = 30 inclusions. The volume fraction
of reinforcements is PπR2/L2 = 0.236. In this example, we study the size-
dependence of the effective thermal conductivity of the composite. The ther-
mal conductivity of the matrix and the inclusion are k1 = 1Wm−1K−1, k2 =
10Wm−1K−1 while the thermal resistance of the interface is hs = 10−5m2K/W
(here we use some values considered in [15]). The calculations are performed
with dimensionless parameters. A unit cell having the dimension 1 along each
space directions is considered containing P inclusions with the dimensionless
radius:

R∗ =
R

L
(52)

and the dimensionless Kapitza resistance:

h∗
s =

hs

k1L
(53)

Eliminating L in Eqs (52) and (53), one obtains for the dimensionless Kapitza
resistance:

h∗
s =

hsR
∗

k1R
(54)

From a practical point of view, the size-dependency of the effective conduc-
tivity is studied by decreasing the radius of the inclusions R, and then, by in-
creasing the dimensionless Kapitza resistance h∗

s. In this example, the radius
R of the inclusion vary from 0.02µm to 250µm. The values of the effective
conductivity for each occurrences are represented on Fig. 10 for R = 250µm
and on Fig. 11 for R = 0.1µm. The cumulated average value of the effective
conductivity is also computed for each inclusion radius.
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Fig. 10. Unit cells of random microstructures.
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Fig. 11. Statistical convergence of the effective conductivity for R = 250µm
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Fig. 12. Statistical convergence of the effective conductivity for R = 0.1µm

On Table 3, we compare the cumulated average value of the effective con-
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ductivity obtained with FFT-P1 and FFT-P3 for 20 occurrences. It can be
observed that solutions are very closed whatever the value of the inclusion ra-
dius R. The maximum difference is observed for R = 0.02µm and the relative
difference is 0.08%.

R (in µm) 250 50 12.5 2.5 0.5 0.1 0.02

FFT-P1 1.4526 1.2993 1.0252 0.7541 0.6565 0.6336 0.6289

FFT-P3 1.4527 1.2994 1.0252 0.7543 0.6569 0.6341 0.6294

Table 3
Cumulated average value of the effective conductivity obtained with 20 occurrences.
Comparison between the FFT-P1 and FFT-P3 solutions.

The variations of the effective conductivity with the size of the inclusions are
presented on Fig. 13. The discrete points corresponds to the FFT-P3 solu-
tions. Also, analytic estimates of the size-dependent effective conductivity are
provided on this figure: the dilute scheme, the Mori-Tanaka scheme and the
self-consistent scheme (these estimates being derived in [15]). The size depen-
dency with the inclusion radius is clearly observed. Also, it can be noticed
that the numerical results obtained for this microstructure are very closed to
the Mori-Tanaka estimate.
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Fig. 13. Variations of the effective conductivity with the radius size for of the com-
posites with random distribution of fibers.

The case of a unit cell containing 80 fibers which are different in size is now
considered and illustrated on Fig. 14. The radii of the inclusions are randomly
chosen in the range R = [10µm, 40µm]. The values of k1, k2 and hs remains
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unchanged. We still use the FFT-P3 approximation for computing the effec-
tive conductivity. The shape functions of the fibers are all different, they are
computed and stored before the iteration process. The convergence of the ef-
fective conductivity with the number of wave vectors is provided on Fig. 15.
The computation time are compared on Fig. 16 for: a unit cell is one inclusion
(Fig. 1), a unit cell with 30 inclusions with the same radius (Fig. 10) and a
unit cell with 80 inclusions with different radii. It is observed that the compu-
tation time linearly depends on the number of wave vectors N in the log-log
frame. Also, the computation time increases with the number of inclusions.
The reason is that in the computation of Ln,m, given by (34), an iteration over
the total number of inclusions P is required.

Fig. 14. Unit cell with 80 different inclusions in size.

0 500 1000 1500 2000
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

number of wave vectors N

e
ff

e
ct

iv
e

 c
o

n
d

u
ct

iv
it

y

 

 

Fig. 15. Convergence of the effective conductivity with the number of wave vectors
N in the case of 80 different inclusions in size
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6 Conclusion

In this paper we extend the method based on FFT to compute the effective
conductivity of composites with imperfect interfaces. For this purpose, the
Kapitza model has been considered at the interface between the matrix and
the cylindrical inclusions. The Kapitza model involves a discontinuity of the
temperature across the interface that is proportional to the flux acting on the
interface, the latter remaining continuous across the interface. The principle
of the approach is to consider, in a variational procedure, Fourier series and
additional temperature fields which are null outside the inclusions. A represen-
tation of these functions with polynomial interpolation functions is proposed
and the method is applied to fiber reinforced composites. The resulting iter-
ative scheme is similar to that already derived by Moulinec and Suquet [27]:
it uses the exact expression of the periodic Green tensor and the FFT algo-
rithm to compute the Fourier transform and it inverse. The surface effects
are captured by a modified conductivity tensor which account for the thermal
resistance of the interface. The case of a composite with regularly distributed
inclusions is considered and the rate of convergence of the algorithm is first
studied. The results show that the convergence is not significantly modified as
compared to the case of composites with perfect interfaces. In order to check
the accuracy of the method, we provide comparisons with finite element so-
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lutions, still in the case of a regular array of fibers. Also, the accuracy of the
FFT solution is investigated by comparing the distribution of the tempera-
ture jump across the interface with the FE solution. The results show that
the enrichment with a third order polynomial is sufficient to obtain a good
accuracy. Next, we apply the method for composites with random distribution
of fibers and we compare the results with analytic solutions coming from the
homogenization theory. The results show the ability of the method to account
for the size-dependency of the effective conductivity of the composite with the
inclusion radius. The application of the method to 3D problems and other
inclusions shape is in progress. Particularly, for more complex geometries of
the inclusions, the approach could surely be performed in tandem with the
use of Level Set functions as already used by the XFEM method (see for in-
stance [36]). The method could be also extend to other mechanical or physical
problems involving surface discontinuities.
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[28] Nguyen T.-K. Homogénéisation numérique des structures périodiques par
transformée de Fourier : applications aux composites et aux milieux poreux.
PhD thesis. University Paris-Est Marne-la-Vallée. 2010.

[29] Nguyen T.-K., Monchiet V., Bonnet G. A Fourier based numerical method
for computing the dynamic permeability of porous media. European Journal of
Mechanics B/fluids. 37:90-98, 2013.

[30] Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of
Heterogeneous Materials. North- Holland, Amsterdam, 1999.

[31] Povstenko Y.Z. Theoretical investigation of phenomena caused by
heterogeneous surface tension in solids. J. Mech. Phys. Solids. 41:1499-1514,
1993.

[32] Sharma P., Ganti S. Size-Dependent EshelbyŠs Tensor for Embedded
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A Expressions of higher order polynomials

Fourth order polynomials are:
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Fifth order polynomials are:

w15(x) = x1(x
4
1 − 10x2

1x
2
2 + 5x24) (A.6)

w16(x) = x2(x
4
2 − 10x2

1x
2
2 + 5x14) (A.7)

w17(x) = x1(x
2
1 + x2

2 − R2)(2x2
2 + 2x2

1 −R2) (A.8)

w18(x) = x2(x
2
1 + x2

2 − R2)(2x2
2 + 2x2

1 −R2) (A.9)

w19(x) = x1(x
2
1 − 3x2

2)(x
2
1 + x2

2 −R2) (A.10)

w20(x) = x2(x
2
2 − 3x2

1)(x
2
1 + x2

2 −R2) (A.11)

31


