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Abstract In this paper, we provide Fast Fourier Transform iterative schemes
to compute the thermal diffusivity of periodic porous medium. We consider
the fluid flow through a porous rigid solid due to a prescribed macroscopic
gradient of pressure and a macroscopic gradient of temperature. As already
proved in the literature, the asymptotic homogenization procedure is reduced
to the resolution of two separated problems for the unit cell: (i) the fluid
flow governed by the Stokes equations with an applied gradient of pressure,
(ii) the heat transfer by both convection and conduction due to an applied
macroscopic gradient of temperature. We develop new numerical approaches
based on fast Fourier transform for the implementation of the cell problems.
In a first approach, a simple iterative based on the primal variable (gradient
of temperature) is provided to solve the heat transfer problem. In order to
improve the convergence in the range of high values of the prescribed gradient
of pressure, we propose a more sophisticated iterative scheme based on the
polarization. In order to evaluate their capacities, these FF'T algorithms are
applied to some specific microstructures of interest including flows past parallel
pores (Poiseuille flows) and periodically or randomly distributed cylinders.

Keywords Porous media - Thermal diffusivity - Permeability - Fast Fourier
Transform

1 Introduction
Studying transport processes in porous media and determining their effec-

tive behavior are problems of fundamental interest. Using the volume aver-
age [15,24,41,42,48] or asymptotic homogenization [8,9,13,46], a large number
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of macroscopic models have been derived to capture successfully the phenom-
ena. For periodic media, effective properties can generally be proved to exist
uniquely and determined by solving the periodic boundary value problem on
the unit cell. Regarding the coupled fluid flow/heat transfer in porous media,
there are numerous works dedicated to the resolution of flow/thermal diffu-
sion in porous media. Standard numerical methods based on Finite Element
Method (FEM), Finite Volume Method (FVM) or Boundary element Methods
(BEM) have been often considered for the problem of Stokes flow in porous
media. For instance, [2,3,12,17,25] determined the effective permeability for
fluid flow past a regular array of cylinders. The computation of permeability
for 3D microstructures has been performed by [11] in the case of an array of
sphere and more recently by [30] on a real media imaged by microtomogra-
phy. The resolution with the FEM of the Stokes flow problems requires special
care, since classical interpolation based on piecewise linear function fails to
perform due to the flow incompressibility. In such situation, more sophisti-
cated interpolation known as "MINI element” must be used [6,7,19]. Thermal
dispersion in convective flow in porous media has been numerically investi-
gated for 2D problems constituted of regular arrays of cylinders, squared or
elliptic rods [5,28,35,45,47].

More recently, a new numerical method based on the fast Fourier Transform
(FFT) has been proposed to numerically evaluate the effective permeability
of porous media [29, 38,43] on the basis of the method first introduced by
Moulinec et al. [39] for elastic composites. The local cell problem for the fluid
flow is solved by means of an iterative scheme which uses the periodic Green’s
tensor and the images of the microstructures (which come from imagerie tech-
nics for instance). The method has significantly increased performance since
the memory needed for solving the problem is greatly reduced compared to
other methods.

In this paper we provide new FF'T based iterative schemes to handle the prob-
lem of thermal diffusion in porous media. In a first approach, we propose an
iterative formulated with the gradient of temperature. However, due to the
presence of the convective term, the rate of convergence is greatly reduced at
large values of the applied pressure gradient. This motivates an alternative
iterative scheme based on the polarization.

The paper is organized as follows. In section 2, we present the periodic bound-
ary value problems and we recall the definitions for effective permeability and
diffusivity. Section 3 is devoted to the implementation of cell problems with
FFT algorithms. After a brief recall on the resolution of the stokes problem
and the implementation of the local velocity (which appears in the convection
term), we focus our attention on the heat transfer problem by both conduction
and convection. In section 4, we provide some illustrations. First, we consider
the simple case of flows past parallel pores which has the advantage to provide
analytic expression of the conductivity which serves to evaluate the accuracy
of our numerical solutions. Hlustrations for 2D and 3D microstructures are
also provided. Particularly, the resolution of the heat transfer problem past
randomly oriented fibers is performed to show the capacity of the method.
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2 Effective transport properties for coupled heat transfer and fluid
flow problems

We consider a periodic porous medium saturated by a homogeneous Newtonian
viscous fluid with the dynamic viscosity ny. Both the fluid and the skeleton are
thermally conductive media with the diffusivity k; and ks respectively. By V,
we denote the total volume of the cell, by V¢ and V, the volume occupied by
the fluid and the solid respectively, where V, and V; are both interconnected
domains. The frontier between the fluid and the solid is denoted I". Due to the
fluid motion, the mass, momentum and energy can be transported along with
the stream currents, which results in the following set of local equations:

anv—szo in Vf
diveo=0 in Vy
_ (1)
v=0 on I’
T
%_t +o. VT =V.(kVT) inV

where v, p, T and k are respectively the velocity, pressure, temperature and
thermal diffusivity. In our problem, the Reynolds number is assumed to be
small Re < 1 and the fluid is incompressible and stationary. In writing (1),
the first three equations are valid for the fluid while the last equation is valid
for both the solid and the fluid by admitting a null velocity field in the solid
phase. The local diffusivity k is a piecewise constant function:

k =k, insolid phase, k==Fky in fluid phase. (2)

The periodic homogenization procedure is based on the existence of the two
following length scales: L the size of the porous medium and [ the size of
the periodic cell. The asymptotic expansion method in terms of the ratio e =
I/L < 1 has been used to determine the equations corresponding to every
orders of €*. The detailed derivation of the effective permeability, diffusivity,
etc... has been well documented in the literature [4,8,9,13].
The macroscopic description for the fluid flow in the porous medium is given
by the Darcy law:

v—_1BJ 3)

Ny

where V' is the macroscopic velocity, J the macroscopic pressure gradient and
B the permeability tensor.
The macroscopic equivalent description for the heat transfer is:

%—j; +V.E =div(K.E) (4)
where E is the macroscopic gradient of temperature and K is the effective
diffusivity tensor.

Finally, to find the homogenized permeability and diffusivity tensors of the
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porous medium, we must account for the periodicity conditions prescribed for
the variables v, T and p when solving (1). These conditions will be given in
the next. For the sake of clarity, two periodic boundary value problems will be
treated separately, as described in the following:

- Stokes flow problem:

nfAv —Vp—-J =0 inVy
diveo=20 in Vy (5)
v=20 on OVy

where v and p are V-periodic, i.e. they take the same values on two oppo-
site sides of the unit cell. J is constant in the cell and denotes the applied
macroscopic pressure gradient. Due to the linearity of the equations, the local
velocity is on the form:

v=AJ (6)

where A is the two-order localization tensor. It components A;; are determined
by solving Eq. (5) and by considering the component v; due to the applied
component of the pressure gradient J;.
The permeability tensor B is given by:

B=—77f<A>V (7)

2

where < e >y denotes the volume average of the quantity "e” over the volume
of the cell.

- Heat transfer problem:
V.[kVT|=vNVT - V.E (8)

where T'— E.x, in which & denotes the vector position, is V —periodic and v
is determined from the Stokes-flow problem. In other hand, the flux 3.n, with
7 = kVT and n is the outward normal unit vector taken on the boundary of
the cell, is antiperiodic that is the consequence of the thermal flux equilibrium
between the cell and its neighbors.

Another approximations could be derived for the macroscopic filtration law
considering the Forchheimer Law [18], Darcy-Brinkman Law [21,22] or Forchheimer-
Brinkman law [23]. The determination of such macroscopic law in the frame-
work of the asymptotic homogenization theory has been the subject of many
studies. The derivation of the Forchheimer or more complex non linear filtra-
tion law has been proposed by Mei and Auriault [31], Wodie and Levy [49],
Giorgi [20], Skjetne and Auriault [16] or Bahloff et al. [10] by accounting for
the inertial term which appears in the Navier-Stokes. Also the Brinkman equa-
tion can be derived from the asymptotic homogenization theory by accounting
for the higher order terms of the series [1]. Note that the present works focus
on the resolution of the Heat transfer problem and the algorithms developed
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in the present paper could be also used by considering a local velocity in the
convection term which accounts for such effects.

Denoting by e the temperature gradient, its average over the volume is the
macroscopic gradient of temperature E:

e=VT, E=/e)y. (9)

The solution of the heat transfer problem then depends on two forcing vari-
ables, the macroscopic gradient of temperature E and the gradient of pressure
J due to the presence of the convection term (see relation (6) giving the ve-
locity as function of J).
Due to the linearity of the problem in E, there exists a uniquely zero mean
function g satisfying to:

T=gE+T, (gv=0 (10)

where T is the average temperature. Note however that the local temperature
T has a non linear dependence with the applied pressure gradient J.
The effective diffusivity K is given by:

K= (kI +(kV'g) —((v-V)®g) (11)

where I is the identity for two order tensors. Note that the above definition for
the diffusivity tensor is non symmetric due to the presence of the dispersive
term ((v — V) ® g). However, the permeability tensor K is defined merely by
its inner product with the symmetric tensor VE in relation (4), so that only
the symmetric part K* of K has a contribution at the macroscopic scale. Note
also that, still due to the presence of this convection term, the diffusion tensor
K introduces a dependence with the macroscopic pressure gradient J.

The determination of the diffusivity then requires successively the resolution
of the Stokes flow problem and then the heat transfer problem. Since the
two problems are periodic, it is convenient to work with Fourier series and
the associated FFT technique. Considering a parallelepipedic unit cell V', a
V —periodic function ¢ admits the following representation:

P(x) = Z a(gn) exp(i&n.x) (12)
where i = —1 and 4’5(5) denotes the Fourier transform of ¢(x) given by:
6(€) = F(d(@)) =< d(x) exp(~i.x) >v (13)
where &,, are the wave vectors given by:
&, =2mm¢, n=0,%1,...+00, Q:% (14)

and where hy, ha, hs are the dimensions of the cell. In Eq. (13) and in the next,
we shall use the notation ¢,,, a quantity symbol ¢ associated with wave vector
&, to refer to the discrete Fourier transform of ¢(a) which is associated with
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the real variable . When dealing with Fourier series representation, it is con-
venient to use the FFT based iterative schemes which use exact expressions of
the Green operator in the Fourier space. These methods, initially introduced by
Moulinec and Suquet [39,40] for composite materials, are particularly adapted
when dealing with unit cell elementary problems with periodic conditions.

3 Resolution of cell problems with FFT
3.1 Resolution of Stokes problem

The description of the FFT method dealing with this problem have been pre-
sented in [38,44] and will be recalled briefly for completeness. Generally, we
can make use of the analogy between the Stokes equations and the elastic-
ity problem of composites to formulate the integral equation in the sense of
Lippmann-Schwinger-Dyson [14,33,34]. However, there are some details of vis-
cous flow problem that render the problem different from the original approach
developed for elastic composites. The unit cell of the porous medium can be
assimilated to an elastic composite reinforced by perfectly rigid inclusions. For
such class of problems a stress formulation is more suitable since it uses the
compliance that is null within the inclusion while a strain based approach uses
the rigidity that is singular in the inclusion. The compliance reads:

(@) = 5, L@k (15)

in which the fourth order tensor K is defined by:

1

K=I-J, J=2I®L (16)
In the above equation, I is the two order identity tensor, I is the fourth order
identity tensor. J and K are fourth order projectors. The action of K on a
two order tensor provides its deviatoric part while the action of J provides the
spherical part. Moreover, I¢(x) is the characteristic function of the volume V;
given by:

1 inVy

If(z) = , (17)
0 in Vj

The main difference with the problem of elastic composite lies in the forcing
term, which could be represented here by the body force f which takes the
value:

f=—J nVy, f=F+CAx inV,. (18)

The body force in the solid phase represents the drag force due to the flow
through the rigid skeleton. F' is prescribed in order to makes null the trans-
lation while C' is added to makes null the rotation of the solid. F and C
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physically represents the drag force due to the fluid motion. Introducing a ref-
erence medium of compliance S, it has been shown (see [38]) that the stress
field is solution of the integral equation (written in Fourier space):

o~

Gn=80Fn—An:|Spx5,—S": 5, (19)

where A, = AA(fn) is the Green tensor for the stress whose expression can
be found in [38]. The symbol "+” represents the discrete convolution product
defined by:

S %G => S(& —&m) 1 5(&m). (20)
In Eq. (19), £2,, = £2(&,) where the components of the third order tensor £2(£)

are:

i

€l

Qi (€) = = [26,6,€, — 6,5€, — 0k, — &), €= ¢€/|I€ll (21)

it € # 0 but 2;;x(&) =01if £ =0. In Eq. (21), ||€]| denotes the norm of &€. The
solution of the integral equation is computed with the following recurrence
relation:

Gitl =5 — A, [@n * a;} (22)

n

which starts from the following first term:

~

ol =02,.fn. (23)

At convergence of the iterative scheme, we compute the strain rate (in:

o~

d, = §n x o (24)

and then the velocity field v,,, obtained by the integration of the strain rate
in the Fourier space:

By = f&@.gn VE #0. (25)

The velocity field is defined by its Fourier coefficients for all values of &,, except
for n = 0. It means that the velocity field is defined up to an added constant
which represents the mean velocity field V. The latter is identified by the
condition v = 0 in the solid phase.
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3.2 Resolution of heat transfer problem
3.2.1 Preliminaries

Consider a field j in real space which is in equilibrium with a source term ¢:
V.j+q¢=0 (26)

and a curl free field e:
VAe=0. (27)

We denote by €, 371 and ¢, the Fourier coefficient of e, j and ¢ respectively. To
read the conditions (26) and (27) in Fourier space, it is convenient to introduce
the projectors P,,, Q,, and the vector w,, defined, for n # 0, by:

£ ®&n - &n
Pnzia Qn:I*Pna Wy = U775 (28)
1€ 12 [1€nlI2
and:
Py=Qy=0, wo=0. (29)

P, and @n are two projectors introduced by Milton [34]. Tensor @,, is also
considered due to the presence of the source term in (26). In the Fourier space,
equations (26) and (27) read:

ﬁn.}\n + anan =0, Qnén =0. (30)

When the last condition is verified, e derives from the temperature 7', whose
Fourier coefficients are obtained from:

o~

T, = G, (31)

In the next, two FF'T based iterative schemes are proposed to solve the heat
transfer problem.

3.2.2 A primal iterative scheme

In this section we provide a simple iterative scheme to compute the solution
of the heat transfer problem. It is formulated with the primal variable: the
gradient of temperature e (the associated dual variable being the flux 7).
Introducing in Eq. (8) a reference medium of diffusivity ko, it leads to:

V.(koVT +7)+q=0 (32)
where we have introduced:
7= (k—-ko)VT, ¢g=V.E—v.VT. (33)
Eq. (32) can be also read in Fourier space (using Eq. (30)):

P, (ko€ + Tn) + @nn =0, Qn.€, =0. (34)
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The first relation expresses the equilibrium of the flux with the applied polar-
ization 7 and the source term ¢. The second relation is the compatibility for
the gradient of temperature e.

Considering that 75, and @, are applied to the system, the solution for €, is:

e, = fé%,(?-n + ©nGn) forn#0, eg=FE (35)
where:
~0 1 ~
G’=—P, (36)
ko

is the Green function of the reference medium of diffusivity kg.
Replacing 7,, and ¢, by their expressions as function of €, we obtain:

en=—GO (k% €, — ko€n — Wn(Dp % €,)) forn#0, eg=E  (37)

where the definition for the discrete convolution product ”” has been already
given in Eq. (20). The solution of this equation is expanded along Neumann
series, each term of this series being computed from the following iterative
scheme:

&, = —G).(ky * €, — ko€, — Bu(B,+€,)) forn#£0, &' =E. (38)

A simplification of the above iterative scheme is possible by accounting that
for any curl free field e we have:

¥n#0 GY.(kee),) = €, (39)

and R _
GO .(ko€l) =0 (40)

n
if n=0.
Using this simplification, we obtain for the iterative scheme:

et =&l — GOk 8, — Gu(6n <€) i

and which starts from the first term:
e. =0 forn#0, e, =E. (42)

At convergence, one can compute the temperature by:

~

Ty = .6 (43)

that leadings to g and then the effective diffusivity (see Eq. (10) and Eq. (11)).
In Eq. (41), the convolution product between kn and e’ also v, and €', are
effected by means of the FFT algorithm. This means that one inverse FFT and
two FFT are needed at each iteration. One inverse FFT is needed to compute
€', in real space. Therefore, the product of e, with k, and v, is made in
real space, in which the product is local. Thereafter two FFT are applied to
compute ke and v.e in Fourier space and to apply the product with the Green

tensor.
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In (41) the velocity field v is computed by solving the Stokes problem for which
the stress based iterative scheme (22) is used together with (24) and (25). The
velocity field being known in Fourier space from (25), the inverse FFT is taken
to obtain v in real space and is thereafter stored to make the product with e
at each iteration in (41).

The details about the numerical integration of the algorithm are given below:

Initialization: €, =0 forn#0, e, =FE
Iteration: e’ is known
¢h = FFT1(})
gn = knej, (44)
Gn = —Un.€,
Jn = FFT(]n)

Z]\n = FFT(Qn)

I~

é\z;rl = g% - G%(Jn + ‘:’nZ]\n)

The iterative scheme is stopped when the convergence criterion is satisfied.
This criterion is based on the equilibrium of the flux:

1/2
S IPugn+Gndl®|  <e (45)
n

where € is the precision chosen equal to 10~2 in our calculations. This criterion
represents a measure of the residue of the linear equation which have to be
solved.

As shown in [32,36] for the case of elastic composite or [37] for the case of
conductivity, basic schemes based on primal or dual variables encounter con-
vergence rate problems at high contrast. Furthermore, with the presence of
the convection term in the integral equations, the basic scheme may also di-
verge by increasing the value of pressure gradient. Indeed, the convergence is
ensured if all the eigenvalues of the linear operator giving €51 as function of
€' in Eq. (41) are comprised between —1 and 1. The recurrence relation (41)

en
can be put into the form:

et =3 [bmnl — G Zum| &, (46)
where R
Znm = k(&n - €m)I - ‘:’n & a(E’ﬂ - ém) (47)

and &y, is the Kronecker symbol. Since €!, is compatible, it is invariant by
the transformation e, — P,.e’, for any n # 0. Moreover, the Green operator

é% is proportional to the projector P, with the constant 1/kq. It follows that
Eq. (46) can be rewritten into the equivalent form:

. 1 )
et =p.y {5%1 - k—oznm] & Vn#0 .

Sl o
€ =€
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A sufficient condition for having the convergence of the iterative scheme is that

the operator

1

ko
has a norm less than 1. In the case of conductive phase (the convection term
being zero), the convergence has been already examined in [34]. It has been
proved that the above condition is ensured for:

1
k'O > 5 kma:c (50)

where kyq. is the higher value taken by the diffusivity (here the higher value
between the diffusivity of the fluid and of the solid). The following value for
ko can be chosen in order to obtain the better rate of convergence:

o = 5 (ky + ko) (51)

where ky and ks denote the diffusivity of the fluid and of the solid respectively.
The rate of convergence decreases by increasing the contrast (defined as the
ratio between the diffusivity of the phases) and for infinity values of the con-
trast the iterative scheme diverges. For the dispersive heat transfer problem,
the derivation of convergence conditions is more difficult due to the presence
of the velocity which depends on the microstructure geometry. Obviously, the
eigenvalues of the operator Z,,,, could be evaluated numerically. However the
computation of Z,,, is very long and memory costly (particularly for high
dimension problems such as 3D microstructures). In (44), this operator is not
computed since the product between Z,,,, and €, is effected in the real space
in which this product becomes local.

Despite this incapacity to obtain simple convergence conditions, the optimal
reference modulus kg can be determined numerically on a lower grid. Note
however that the velocity field, which enters in the recurrence relation, lin-
early depends on the pressure gradient. This suggests that the case of high
values of the gradient of pressure is comparable to that of high values of the
contrast for which the iterative scheme leads to large number of iterations. To
improve the convergence issue, we propose in the next section a more sophis-
ticated iterative scheme based on the polarization.

3.2.8 A polarization based iterative scheme

A polarization based iterative scheme has been provided in [36,37] in the case
of elastic composites. It improves the convergence of simple iterative schemes
based on the strain or stress in the domain of high contrasts. In this section
we propose to adapt this approach for the heat transfer problem. To this end,
let us first introduce the polarization:

T=(k—koe. (52)
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It follows that the gradient of temperature and the flux are given by:
e=(k—ko)'r, j=T7+koe (53)

The equilibrium of the flux with the convection term can be read:

~

GO [Gu +80da] =0 (54)
while the compatibility for e can be also read:
D%e, =0 (55)

where DV is the dual Green operator whose coefficients are given, for n # 0,
by: R R

D! = kyQ, (56)
where @n is defined in (28) and 132 = 0 when n = 0. Additionally, the average
of gradient of pressure must be equal to E, which reads in Fourier space:

é=F (57)

To summarize, we search the value of the polarization 7 which comply to
relations (53) with the conditions (54), (55) and (57). The polarization must
then be computed with the following iterative process:

Initialization: 7! =0

~
-~

n
Iteration: T, is known
7 =FFT~ (7))
e = (k— ko) 7
dt, = i+ kel
4y, = —Un.€ (58)

&, = FFT(e!)
ji, = FFT(j})
¢, = FFT(q,) R

7l —aK°G.(5E + &)
7t = +aD) @,

=1 +aK (e, - E), forn=0

, forn#0

When the convergence is reached, that corresponding to 77! = 77, the condi-
tions (54), (55) and (57) are recovered for the flux and gradient of temperature.
This new iterative scheme uses one inverse FFT and three FFT at each itera-
tion that is one FFT more than the simple one based on the primal variable.
However, it is expected to reduce significantly the number of iterations at con-
vergence with this new algorithm. The capacity of these methods of resolutions
is evaluated in the next section.

Let us now discuss about the choice of ky and coefficients . When the con-
vection term is null (that corresponding to J = 0), the convergence of the
algorithm is guaranteed if (see [37]):

a €]0,2[, ko €] —o00,0] (59)
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Considering now the convection term, the analysis of convergence encounters
the same difficulties that for the simple iterative scheme and it is some not
guaranteed that the conditions (59) are still valid when the convection term is
added. Consequently, the optimal choice of ky must then be evaluated numer-
ically.

For the accelerated scheme, three conditions are tested to stop the iterations:
(i) a first for the equilibrium of the flux, (ii) a second for the compatibility
of the gradient of temperature and (iii) a condition is written for the equality
between the applied macroscopic gradient of temperature and the average of
the local gradient of temperature.

1/2
(i) [ann.jﬁanaw] <e
n

1/2
(i) [Z ||©n.an|2] <e

(i) [l — Bl < e

(60)

Note that the conditions (ii) and (iii) are verified at any step of the primal
iterative scheme. For the polarization iterative scheme the iteration is stopped
when the three conditions (i), (i) and (iii) are satisfied.

4 Applications
4.1 The flow between two parallel planes

We consider a benchmark problem where the porous media is constituted
of parallel pores of height h regularly distributed along the direction Ox.
The volume fraction of the pores is denoted f. The fluid flow is generated
by applying the pressure gradient J; along the direction Ox;. An analytic
solution is given in appendix A and is used to evaluate the accuracy of the FFT
numerical solutions. For the numerical implementation with FFT, a squared
unit cell of dimension 2H = 1 along each space direction is considered and a
rectangular pore is centered at the origin (see Fig. 1). The volume fraction is
of the poresis f = h/H.
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\ 2H \

solid phase

X2
2H T—» X1 2h

fluid phase

solid phase

Fig. 1 Unit cell of the periodic porous solid with parallel pores.

For the applications, we put f = 0.5 and the diffusivity contrast is ky/ks =
10. First of all, we analyse the convergence of the two FFT based iterative
schemes: the basic scheme formulated with the gradient of temperature (cf.
(44)) and the accelerated scheme based on the polarization (cf. (58)). As al-
ready mentioned in the last section, the convergence of these iterative schemes
depends on the contrast between the phase diffusivity but also depends on the
value of the applied pressure gradient. Unfortunately, it has not been possible
to derive the conditions giving the convergence for the reference diffusivity ko,
the latter must be determined numerically. Since the optimal value of kg is
nearly independent on the number of wave vectors, it can be determined on a
lower size grid. In the present example, we use kg = 12 for the basic scheme
and ko = —3 for the accelerated scheme. Also, the value a = 3/2 considered
in [37] has been taken. With these choices, it possible to solve the thermal
diffusion problem on a large range of pressure gradients. In this section and in
the next parts of the paper, we work with the dimensionless pressure gradient
J* defined by:

2H)3

S
nfks

J (61)

On Fig. 2, we represent the number of iterations as function of the applied
gradient of pressure J; for the basic and the accelerated scheme. Although for
low values of J} the number of iterations at convergence is lower for the basic
scheme, it can be observed that the accelerated scheme has a better rate of
convergence for higher values of J;. Also, it must be noted that the number
of iterations with the basic scheme linearly increases with the applied gradient
of pressure J; (in the log frame). However, with the accelerated scheme, the
number of iterations is quasi independent of the gradient of pressure. Since it
has a better rate of convergence, only the accelerated scheme is used for the
applications provided in the next sections of the paper.
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Fig. 2 Number of iterations at convergence of the iterative schemes as function of the
applied (dimensionless) pressure gradient J; . The volume fraction is f = 0.5 and the contrast
is k f/ k‘s = 10.

On Fig. 7?7 we represent the effective diffusivity K71 (re-scaled by kg) as
function of the gradient of pressure J;* obtained with the basic and accelerated
scheme. The results are compared with the exact solution. Note that for the
numerical implementation, N = 64 wave vectors are considered along each
space direction. Note also that the effective diffusivity K11 displays two regimes

— at low values of the pressure gradient, the effective diffusivity is not influ-
enced by the pressure gradient and is equal to that computed at J; = 0.

— in the range of higher values of pressure gradient (J; > 10%), the convective
term becomes predominant in the heat transfer problem. The dependence
of the effective diffusivity with the applied gradient of pressure Ji is linear
in the log-log frame.

This suggests that only two points must be computed to determine the asymp-
totic behavior in the domain of high pressure gradient. Since the three curves
are very closed on Fig. (3), a zoom is provided to display their differences. A
good agreement between the exact and the numerical solution is observed.



16 Viet-Thanh To et al.

Kitks

—F— basic scheme
—&— accelerated scheme

100 r'| —k— exact solution S AR A

10 10 10° 10
gradient of pressure J*

Fig. 3 Effective diffusivity of the porous medium with parallel pores. The volume fraction
is f = 0.5 and the contrast is k¢ /ks = 10. Comparison of the FFT solutions with the exact
one.

The differences observed with the exact solution can be reduced by increas-
ing the number of wave vectors. For completeness, we then provide, on tables
1 and 2, the values of effective diffusivity Ki;1/ks computed with the applied
gradient of pressure J; = 1000 and J{ = 10000 and for various values of the
number of wave vectors. Table 1 displays the results obtained with the basic
scheme while table 2 provides the same results computed with the accelerated
scheme. In each table, we also provide (in the last line) the exact value of the
effective diffusivity. The errors in percents, are given between the parenthesis.
It can be noted that the numerical solutions converge uniformly to the exact
solution by increasing the number of wave vectors.

It is observed that for the lower values of the applied pressure gradient, the
primal iterative scheme gives a better estimation of the effective permeability
(see table 1 and 2 for J; = 10%) whereas at higher values of the applied pres-
sure gradient (see 1 and 2 for J; = 10%) the accelerated scheme provides a
more accurate solutions. In the case of elasticity, a hierarchization of the FFT
solutions has been proved in [?]. It has been show that the iterative schemes
based on the primal or dual variables always provide a more accurate solution
than that obtained with an accelerated scheme. This is also true for the heat
transfer problem without the convection term. When this term is accounted
in the computation of the macroscopic diffusivity, the hierarchization of the
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FFT solutions is uncertain and depends on the velue of the applied pressure

gradient.

Ji = 1000 Ji = 10000
64 x 64 6.8091  (0.73%) | 137.0031 (3.1%)
128 x 128 | 6.8305  (0.42%) | 139.1757  (1.6%)
256 x 256 | 6.8414  (0.27%) | 140.2743  (0.83%)
512 x 512 | 6.8468  (0.19%) | 140.8266  (0.44%)
exact 6.8596 141.4566

Table 1 Effective diffusivity K11/ks computed with the basic scheme as function of the
gradient of pressure J; and the number of wave vectors. Solutions obtained with the simple

FFT scheme.

Ji = 1000 Ji = 10000
64 x 64 6.7886 (1.0%) 139.1980 (1.6%)
128 x 128 | 6.8159  (0.64%) | 140.2881  (0.83%)
256 x 256 | 6.8296  (0.44%) | 140.8360  (0.44%)
512 x 512 | 6.8364 (0.34%) | 141.1106  (0.24%)
exact 6.8596 141.4566

Table 2 Effective diffusivity K11/ks computed with the accelerated scheme as function of
the gradient of pressure J; and the number of wave vectors. Solutions obtained with the
accelerated FFT scheme.

4.2 Flow past an array of cylinders

We now consider the flow through a periodic network of cylinders with circu-
lar cross section aligned in the direction Oxz. The radius of the cylinders is
denoted R. For the numerical implementation of the FFT schemes, a squared
unit cell of dimension 2H = 1 and containing a circle of radius R located at
the origin has been considered (see figure 4). The problem is two dimensional
and N = 256 wave vectors are considered in each space directions. Also, only
the accelerated scheme has been considered for this application.
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Fig. 4 Unit cell of the periodic porous solid with aligned cylinders of circular cross sections.

On Fig. 5 we represent the variations of the effective diffusivity K1 as
function of the ratio R/ H . In this illustration, the flow is generated by imposing
the gradient of pressure J;. The contrast in the local diffusivity of the solid
cylinder and the fluid is ky/ks = 10 where ks and k; referred to the solid and
the fluid respectively. The computation are performed by considering various
values of the gradient of pressure J;. It can be observed that, for any value of
the applied pressure gradient, the effective diffusivity decreases by increasing
the radius of the cylinder, since its diffusivity is lower that of the fluid. Also, the
gradient of pressure increases the effective diffusivity of the porous medium.
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Kll/ks
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—6— J*=300 ||
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0.1 0.2 0.3 04
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Fig. 5 Effective permeability (re-scaled by ks) as function of the radius of the cylinder for
a contrast ky/ks = 10 and for various values of the dimensionless pressure gradient J.

Now, we investigate the dependence of the effective diffusivity K1, with the
direction of flow. Indeed, in the last example, the diffusivity K71 is computed
by imposing the macroscopic gradient of temperature F; and a gradient of
pressure in the same direction. Now, the macroscopic gradient of temperature
FE is still applied to compute K77 but the flow is generated along different
directions in the plane Oxjxo. To this end, we put for the component of the
gradient of pressure:

Ji = J*cos(0), Ji = J"sin(h) (62)

where J* is the norm of the applied pressure gradient J* and 6 lies in the
range [0, 27r]. From Fig. 6 to Fig. 8 we provide the variations of the effective
diffusivity with the direction of flow in a polar frame. On each figures various
values of the norm of the pressure gradient J* have been considered. It must
be observed that the diffusivity is affected by the flow direction, particularly
when the flow is parallel to the applied gradient of temperature. When the
gradient of pressure is applied in the direction transverse to the temperature
gradient (6 = 90°) the effective diffusivity is not affected by J*. It must be
also noted that the influence of the flow direction is more important when the
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radius of the cylinder is small. For larger values of the cylinder (for instance,
R/H = 0.8 on Fig. 8) these effects are greatly reduced.

—e— J*=2000
—— J*=1500

—&— J*=1000

270

Fig. 6 Variations of the effective diffusivity with flow direction for R/H = 0.2
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——— J*=1500

—&— J*=1000

270

Fig. 7 Variations of the effective diffusivity with flow direction for R/H = 0.5



22 Viet-Thanh To et al.

—e— J*=2000
—s— J*=1500 | 180} '@

——&— J*=1000

270

Fig. 8 Variations of the effective diffusivity with flow direction for R/H = 0.8

4.3 Porous cell with randomly distributed and oriented fibers

In this section, we apply the method to 3D microstructures made up of inter-
connected random fibers. One example of such microstructure is provided on
Fig. 9. To investigate the dispersion effect, the effective diffusivity is computed
for various microstructure realization. The total number of fibers is N = 10
with the radius R/H = 0.05 (where 2H is the dimension of the cubic unit cell).
In order to obtain an interconnected porous medium, each cylinder intersects
another by their respective axes but the orientation and position of the cylin-
ders are chosen arbitrarily. The total volume of the solid is then uncontrolled
and this also implies some dispersion in the porosity value.

The calculations are performed by taking 256 wave vectors along each space
directions. For the Stokes flow problem, a stress based iterative scheme is used,
this involving 6 x 256 x 256 x 256 ~ 100.105 DOFs. For the heat transfer prob-
lem, the method of resolution uses the polarization that is a vector, the total
number of DOFs is 3 x 256 x 256 x 256 ~ 50.10°. A contrast ky/ks = 10 is
taken as in previous examples. A gradient of pressure J5 is prescribed in order
to generate the flow in direction Oxs. The effective diffusivity K33 is computed
by imposing the gradient of temperature Fs.
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Fig. 9 Exemple of a unit cell of the porous medium with randomly distributed and oriented
fibers

The results are presented on table 3 and on Figs. 10 and 11. The values of
effective diffusivity K33 (normalized by ks) are provided on table 3 for three
values of the pressure gradient. In the last column, are provided the values of
the porosity. The values computed for the effective diffusivity are also given
on Figs. 10 and 11 on which is also provided the cumulated average value of
K33 /ks. It is observed that the dispersion in the results are greatly increased
with the value of the gradient of pressure. This effect will be attributed to
both the low value of porosity and the fibers distribution influence. Indeed
at higher values of gradient of pressure it has been already found in previous
examples that the convection has a prominent influence on effective diffusivity.
The dispersions in the results are then greatly increased between the different
occurrences. A finely analysis of these uncertainty and on the choice of the
representative volume element would be performed following [26,27]. This is
not the main goal of the present application.



24 Viet-Thanh To et al.

NO K33 /ks Volume fraction
JE=10 Ji=1000 J = 2000
1 1.1257 4.2988 12.5952 0.0311
2 1.1087 4.1956 12.4108 0.0308
3 1.1291 5.3233 17.2091 0.0314
4 1.1305 2.6669 6.7024 0.0321
5 1.1200 3.5004 9.6789 0.0316
6 1.1114 4.4589 13.3691 0.0306
7 1.1297 5.9579 19.3942 0.0314
8 1.1138 3.0092 8.1635 0.0293
9 1.1294 2.9117 8.0133 0.0319
10 1.1442 2.4569 5.8313 0.0323

Table 3 Effective diffusivity for random fibers and for different occurrences. The number
of fibers is N = 10 and the contrast is kf/ks = 10

K33/ks

—@— Value at each test
L —4@— Cumulated average value |

1 2 3 4 5 6 7 8 9 10

Number of occurences
Fig. 10 Effective diffusivity for random fibers and for different occurrences (line with circles)

and cumulated value of effective diffusivity (line with diamonds) for J§ = 10. The number
of fibers is N = 10 and the contrast is kf/ks = 10
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10
9L i
—@— Value at each test

8 —4@— Cumulated average value | |
7 L i
6

5

4

3

2L A
1L i
O i i i i i i i i

1 2 3 4 5 6 7 8 9 10
Number of occurences

Fig. 11 Effective diffusivity for random fibers and for different occurrences (line with circles)
and cumulated value of effective diffusivity (line with diamonds) for J§ = 1000. The number
of fibers is N = 10 and the contrast is kf/ks = 10

5 Conclusion

This paper provides a numerical method to compute the effective diffusivity
of porous material saturated by a viscous fluid. The diffusivity is evaluated in
the framework of periodic homogenization and consists in solving two unit cell
problems successively: the Stokes flow problem under an applied pressure gra-
dient, the heat transfer problem due to both conduction and convection. The
resulting effective diffusivity then depends on the applied gradient of pressure.
Two methods of resolution based on FFT and Green operators are provided
to solve the heat transfer problem. A first simple one, is based on the gradient
of temperature and uses the associated primal Green tensor. An accelerated
scheme based on the polarisation and using both the primal and dual Green
tensors is also proposed to increase the rate of convergence.

The accuracy and capacities of these two iterative schemes are evaluated
through various 2D and 3D examples. First, the case of flows in parallel pores
is considered as benchmark problem to compare the basic and the acceler-
ated scheme and to check their accuracy with the exact solution. As expected,
the accelerated scheme has been found to converge more rapidly and is only
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considered for the other applications. As a second application, the effective
diffusivity is computed in the case of a regular array of cylinders. Particular
attention is made on the role of the flow direction on the homogenized diffusiv-
ity. In a last example, we solve the problem for a complex 3D microstructure
made up of interconnected cylinders of random orientations and which can
mimic more realistic some fibers made porous materials.
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A Poiseuille solution

In the Poiseuille problem where the pressure gradient acting along the flow direction J =
Jei, the local velocity field of the fluid admits following parabolic form

J
vi(z2) = o [xg - h2} |za| < h,
nf (63)

vi(w2) =0 h<|zo| < H

In equation (63), h is the pore height and H the height of the unit cell (see figure 1). The
macroscopic velocity field is:

Jh?
Vi=-— (64)
3H77f

For the heat transfer problem, a macroscopic temperature gradient is prescribed in the same
direction of the flow, i.e. E = Ee;. Adopting the following general form of temperature field
in the fluid and solid phase

T = Ex1 + ¢(z2), (65)

the differential equations for ¢¥(z2) in both the solid and the fluid phase are:

P J* h3
Fluid phase: k = k E
uid phase: k" (z2) {1)1(952)Jr Sgan}
_ J'ksE [z} K% KP (66)
H3 2 2 3H
J*ksER®
. . 7 _ s
Solid phase: ks¢" (z2) = YT
in which we have used the dimensionless pressure gradient:
JH?
t= (67)
ks77f
After integration, we obtain (accounting for the symmetry of the problem):
, ) J*ksE [23h% 2% B3,
Fluid phase: ¢(z2) = ok, { 4 o4 ™2 + C1
; (68)
J*ksE [ h
Solid phase: ¥ (z2) = — HSZS {@xg} + C2 + C3z2|

The integration introduces three constants C7, C2 and C3 which have to be determined.
The continuity of the temperature and the flux at the interface between the solid and the
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fluid (at z2 & h) leads to:

J*h3ksE
CB - _787
3H3ks
(69)
J*hksE [4h —5H  4(2H — h)
Cr=0Cs — +
24H*4 ks ks
The condition < T' >y = 0 yields to:
J*h3ksE [(5h — 6H)h?>  2H® + 3Hh? — 2h3
Cy = - {( ) + } (70)
Hb 45k ¢ 18ks

Note however that C2 does not enter into the calculation of the homogenized permeability
since it appears in (68) as a constant temperature.
The calculation of the permeability from relation (11) leads to:

F(51 —84f +35f2) (1—f)3
945k ¢ + 27k }

K11 = (1= f)ks + fhy + (J*)?K2f© { (71)

Here only the component of K71 is provided since a macroscopic gradient of pressure along
the direction Oxz1 has been prescribed to the unit cell. The component Kao is not affected
by the fluid flow and remains unchanged from the classic solution:

1-f f]*l

Koo = - 72
22 |:ks Jrkf (72)



