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GAUSSIAN PROCESSES FOR COMPUTER EXPERIMENTS

François Bachoc1, Emile Contal2, Hassan Maatouk3 and Didier Rullière4

Abstract. This paper collects the contributions which were presented during the session devoted to
Gaussian processes at the Journées MAS 2016. First, an introduction to Gaussian processes is provided,
and some current research questions are discussed. Then, an application of Gaussian process modeling
under linear inequality constraints to financial data is presented. Also, an original procedure for
handling large data sets is described. Finally, the case of Gaussian process based iterative optimization
is discussed.

Résumé. Cet article réunit les contributions qui ont étés présentées lors de la session des Journées
MAS 2016 dédiée aux processus gaussiens. Tout d’abord, une introduction aux processus gaussiens
est donnée, et certaines questions de recherche actuelles sont discutées. Ensuite, une application d’un
modèle de processus gaussien sous contraintes de type inégalité, à des données financières, est présentée.
Puis, une procédure originale, pour gérer des volumes de données importants, est présentée. Enfin, le
cas de l’optimisation séquentielle par processus gaussiens est discuté.

Introduction
Gaussian process models [46, 56], also called Kriging, consist in inferring the values of a realization of a

Gaussian random field given (possibly noisy) observations at a finite set of observation points. They have become
a popular method for a large range of applications, such as geostatistics [39], numerical code approximation
[7, 50,51] and calibration [8, 45] or global optimization [29].

In many application cases, a deterministic function is under consideration, that one treats as a realization
from a Gaussian process. Thus, Gaussian processes can be interpreted as a Bayesian prior over unknown
functions. In many applications, the function values are outputs from a computer model, and the function
inputs are the corresponding simulation parameters. In these situations, the terminology “Gaussian processes
for computer experiments” is largely employed.

Considering Gaussian processes, in comparison to other random field models, as a Bayesian prior for a
deterministic function is often beneficial in terms of conceptual and computational simplicity. Indeed, Gaussian
processes are always well defined whenever a covariance function can be defined, which is the case for many
input spaces, either Euclidean spaces or more general spaces, like function spaces [41]. In addition, the full
conditional distribution of a Gaussian process, given the observations, is Gaussian, explicit, and can be sampled
relatively conveniently, see Section 1. As a consequence, Gaussian processes now constitute a popular and
widely studied methodology for the analysis of computer experiments.
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In this paper, we review the basic foundations of Gaussian processes, briefly discuss the current areas of
research, and present three contributions that were presented at the Journées MAS 2016. The rest of the paper
is organized as follows. In Section 1, we provide the general review on Gaussian processes and mention some
research areas. In Section 2, we present novel contributions on constrained Gaussian processes. In Section 3 we
present some new kriging predictors, suited to large datasets. In Section 4, we address Gaussian-process based
stochastic optimization.

The contributions which are presented in Sections 2, 3 and 4 correspond to the references [14, 35], [49]
and [12,13].

1. Gaussian process regression: framework and current research questions

1.1. Distribution for a Gaussian process
Throughout this paper, D denotes a set, which we call the input space of a Gaussian process. Next, we give

the definition of a Gaussian process.

Definition 1. A stochastic process Y on D is a Gaussian process if, for any n ∈ N, for any x1, ..., xn ∈ D, the
random vector (Y (x1), ..., Y (xn)) is a Gaussian vector.

Since Gaussian vectors are characterized by their mean vector and covariance matrices, it is natural to
extend these objects for Gaussian processes. This is the object of the next definition (which actually holds more
generally for stochastic processes).

Definition 2. Let Y be a stochastic process on D such that E
[
Y (x)2] < +∞ for all x ∈ D. Then the function

m : D → R, with m(x) = E [Y (x)] is called the mean function of Y and the function k : D × D → R, with
k(x1, x2) = Cov [Y (x1), Y (x2)] is called the covariance function of Y .

One benefit of Gaussian processes is that, whenever a valid covariance function on D can be chosen, a
corresponding Gaussian process exists automatically, as shown in the following proposition.

Proposition 1. Let m be any function from D to R. Let k be a function from D ×D to R for which, for any
n ∈ N and for any x1, ..., xn ∈ D, the matrix (k(xi, xj))1≤i,j≤n is symmetric and non-negative. Then, there
exists a Gaussian process Y on D with mean function m and covariance function k.

The previous proposition can be proved by using Kolmogorov’s extension theorem, see for instance [10].
From this proposition, we see that the only non-trivial quantity to define, in order to create a Gaussian process,
is the covariance function, since this function must respect the constraint of yielding symmetric non-negative
matrices, as in the previous proposition. Fortunately, many functions k are shown to respect this constraint,
for many possible input spaces D, see for instance [1, 46].

In terms of modeling, it is common practice to let the mean function drive the large-scale variations of the
Gaussian process trajectories, and to let the covariance function drive the small-scale variations. In particular,
when D is a subset of a Euclidean space, there exists many results relating the smoothness of the covariance
function to the smoothness of the Gaussian process, see [2, 51]. Quite informally (see the references before
for formal statements), one can keep in mind that if the covariance function is 2l times differentiable, then the
Gaussian process has derivatives up to order l in the mean square sense. Furthermore, if the covariance function
is “a bit more” than 2l times differentiable, then the Gaussian process trajectories are l times differentiable.

1.2. Conditional distribution for a Gaussian process
In the following, we use classical vectorial notations: for any functions f : D → R, g : D ×D → R and for

any vectors A = (a1, . . . , an) ∈ Dn and B = (b1, . . . , bm) ∈ Dm, we denote by f(A) the n× 1 real valued vector
with components f(ai) and by g(A,B) the n ×m real valued matrix with components g(ai, bj), i = 1, . . . , n,
j = 1, . . . ,m.
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With such notations, the conditional distribution of the Gaussian process Y given observations of it is
provided in the following Proposition, which follows from the Gaussian conditioning theorem (see e.g. Equation
A.6 in [46]).

Proposition 2. Let Y be a Gaussian process with mean function m and covariance function k. Let n ∈ N.
Let ε = (ε1, ..., εn) be a Gaussian vector with mean vector 0, covariance matrix Σ, and which is independent
of Y . Then, for any X = (x1, . . . , xn) ∈ Dn, for any q ∈ N, for any V = (v1, ..., vq) ∈ Dq, conditionally to
(Y (x1) + ε1, . . . , Y (xn) + εn) = (y1, . . . , yn) = y, (Y (v1), ..., Y (vq)) is a Gaussian vector with mean vector

m(V ) + k(V,X)[k(X,X) + Σ]−1(y −m(X))

and covariance matrix
k(V, V )− k(V,X)[k(X,X) + Σ]−1k(X,V ).

The previous proposition can be reformulated by saying that, given the n×1 vector of observations Y (X)+ε =
y, Y is a Gaussian process with mean and covariance function:{

E [Y (x)|Y (X) + ε = y] = m(x) + k(x,X)[k(X,X) + Σ]−1(y −m(X)) ,
Cov [Y (x), Y (x′)|Y (X) + ε = y] = k(x, x′)− k(x,X)[k(X,X) + Σ]−1k(X,x′).

1.3. Covariance parameter estimation for a Gaussian process
In the large majority of the cases, the mean and covariance functions of Y are estimated from the same

observation vector Y (X) + ε as for the obtention of the conditional distribution of Y in the Proposition 2.
Here, to simplify the exposition, we shall assume that the mean function of Y is known to be zero, and that

the covariance matrix Σ of ε is known. Most classically, the covariance function of Y is assumed to belong
to a parametric space {kθ; θ ∈ Θ}, where Θ is a finite-dimensional set and where kθ is a covariance function.
For instance, when D ⊂ R, we can have θ = (σ2, `) ∈ (0,∞)2, and kθ(x1, x2) = σ2e−`|x1−x2|, in which case
it is assumed that the Gaussian process is a transformation (scaling of the values and of the inputs) of the
Ornstein-Uhlenbeck process.

Often, an estimator θ̂(y), obtained from the observation vector y which is a realization of Y (X) + ε, is
obtained, and Proposition 2 is used directly with k replaced by kθ̂ and m replaced by 0. This is known as the
“plug-in approach” [56]. The most standard estimator θ̂ is the maximum likelihood estimator, defined as

θ̂(y) ∈ arg min
θ∈Θ

(
log(det(kθ(X,X) + Σ)) + yt(kθ(X,X) + Σ)−1y

)
,

see for instance [46, 56]. Another class of estimators θ̂ appearing in the literature is given by cross validation
estimators [4–6,46,66].

1.4. Current research questions
There remain important theoretical and practical needs for developments on Gaussian processes.
From a theoretical standpoint, although it yields good performances in practice, Gaussian process-based

prediction of unknown functions is significantly less understood than other standard techniques for function
prediction. In particular, when considering the setting where D is a fixed compact space and n goes to infinity,
it is not clear, to the best of the authors’ knowledge, if E [Y (x)|y], where y = f(X) + ε, converges to f(x) as
n→∞, for any fixed continuous function f . Some partial results are nevertheless given in [24,63]. In contrasts,
it is clear that other popular methods, like nearest-neighboor regression or kernel smoothing, can asymptotically
recover continuous functions as n→∞.

Another aspect of Gaussian processes for which open questions remain is covariance parameter estimation.
When D is compact and fixed as n→∞, it is known that some covariance parameters can not be consistently
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estimated [56]. For the parameters that could be consistently estimated, asymptotic results for maximum
likelihood are currently available only in special cases [32, 33, 64, 65]. In constrasts, when D is allowed to grow
as n→∞, with volume proportional to n, general results can be given for maximum likelihood [5, 18,19,38].

From a practical standpoint, computing the conditional moments of Proposition 2 and computing the likeli-
hood criterion require to inverse matrices of size n×n. This task is generally admitted to entail a complexity of
O(n3) in time andO(n2) in space. This becomes problematic when n goes beyond 103−104, and there is currently
a large body of literature proposing alternative computation procedures for larger values of n [17, 30,31,55].

Finally, Gaussian processes can be inadapted as prior distributions on some types of unknown functions.
In particular, when it is known that the unknown function satisfies conditions like boundedness, monotony or
convexity, Gaussian processes can become inadapted if used naively. Some alternative procedures are proposed
for instance in [20] and references therein. Similarly, the Gaussian distribution can be inadapted as a prior
distribution for some types of values, and alternatives to Gaussian processes are proposed for instance in [62].

2. Constrained Gaussian processes
The content of this section corresponds to the articles [14,35].

2.1. Introduction and related work
In several application situations, physical systems (computer model output) are known to satisfy linear

inequality constraints (such as boundedness, monotonicity and convexity) with respect to some or all input
variables. For example, in Banking and Finance, the discount factor is known to be monotone (non-increasing)
with respect to time-to-maturities [14]. In computer experiment framework, Gaussian Process (GP) is a popular
model [50]. This is because it satisfies several nice properties: uncertainty can be quantified, a GP conditionally
to given data (equality constraints) is also a GP [16] and the partial derivatives of a GP are also Gaussian
processes [16,44]. Recently, a new methodology to explicitly incorporate linear inequality constraints into a GP
model has been proposed in [28]. It is based on a modification of the covariance function in Gaussian processes.
In [23, 47] respectively, the problem is to incorporate monotonicity constraints into a Gaussian process model
without (resp. with) noisy data. The main idea in their strategies is to put derivative informations in a special
places to force the process to be monotone. By this methodology the monotonicity constraint is not respected
in the entire domain. Our aim is to show how one can incorporate inequality constraints into a Gaussian
process model, where the inequality constraints are guaranteed in the entire domain. The difficulty of the
problem comes from the fact that, when incorporating an infinite number of inequality constraints into a GP,
the resulting process is not a GP in general. In this section, we show that the model developed in [35] is capable
of incorporating an infinite number of inequality constraints into a GP model

Y N (x) =
N∑
j=0

ξjφj(x), x ∈ Rd,

where ξ = (ξ0, . . . , ξN )t is a zero-mean Gaussian vector with covariance function ΓN and φj are some basis
functions. The basis functions φ1, ..., φN are fixed by the user, and the covariance matrix of ε1, ..., εN is assumed
to be known throughout the section (except in the application in Section 2.5).

2.2. Monotonicity in one-dimensional case
In this section, let C1 be the space of functions that admit derivatives up to order 1. Let C be the set of

monotone (non-decreasing) functions defined as

C = {f ∈ C1(R) : f ′(x) ≥ 0, x ∈ R}.



ESAIM: PROCEEDINGS AND SURVEYS 167

We are interested in constraining a GP Y so that its sample paths belong to C. Without loss of generality,
the input variable x is supposed to be in [0, 1]. For simplicity, the original GP Y is supposed to be zero-mean
with known covariance function K. First, we discretize the input set for example uniformly to N + 1 knots
u0, . . . , uN but the methodology can be adapted easily to non-uniform subdivision. Then, we consider a set of
basis functions

φj(x) =
∫ x

0
hj(x), x ∈ [0, 1],

where hj , j = 0, . . . , N are the hat functions associated to the knots uj : hj(x) = h((x − uj)/∆N ), where
∆N = 1/N and h(x) = (1− |x|) 1(|x|≤1), x ∈ R. First, we remark that the value of the derivative of any
basis function at any knot is equal to Kronecker’s Delta function (φ′j(uk) = δj,k), where δj,k is equal to one
if j = k and zero otherwise. Second, the hat functions are non-negative and then the basis functions φj are
non-decreasing in [0, 1]. In that case, the proposed model can be reformulated as follows

Y N (x) = Y (0) +
N∑
j=0

Y ′(uj)φj(x) = ζ +
N∑
j=0

ξjφj(x), x ∈ [0, 1], (1)

where ζ = Y (0) and ξj = Y ′(uj), j = 0, . . . , N .
Proposition 3. With the notation introduced before, the finite-dimensional approximation Y N of the original
Gaussian processes Y verifies the following properties

(1) (Y N (x))x∈[0,1] is a finite-dimensional GP with covariance function

KN (x, x′) =
(

1, φ(x)t
)

ΓN
(

1, φ(x′)t
)t
,

where φ(x) = (φ0(x), . . . , φN (x))t and ΓN is the covariance matrix of the Gaussian vector (Y (0), Y ′(u0), . . . , Y ′(uN ))t
which is equal to

ΓN =
[
K(0, 0) ∂K

∂x′ (0, uj)
∂K
∂x (ui, 0) ΓNi,j

]
0≤i,j≤N

,

with ΓNi,j = ∂2K
∂x∂x′ (ui, uj), i, j = 0, . . . , N and K the covariance function of the original GP Y .

(2) Y N converges uniformly pathwise to Y when N tends to infinity.

(3) Y N is monotone (non-decreasing) if and only if the (N+1) random coefficients Y ′(uj) are non-negative.
Proof. The proof of the proposition can be found in [35]. �

From this proposition, one can deduce that the infinite number of inequality constraints is reduced to a finite
minimum number of constraints on the coefficients Y ′(uj), j = 0, . . . , N . Therefore, the problem is reduced to
the simulation of the Gaussian vector (Y (0), Y ′(uj), . . . , Y ′(uN ))t truncated in the convex set formed by the
following two constraints (interpolation and inequality constraints):

Y N (X) = y,

(ζ, ξ) ∈ Cξ =
{

(ζ, ξ) ∈ RN+2 : ξj ≥ 0, j = 0, . . . , N
}
.

Simulated trajectories: From Proposition 3 (Item (3)), the simulation of the finite-dimensional approx-
imation of Gaussian processes Y N conditionally to given data and monotonicity constraints is equivalent to
simulating the Gaussian vector (ζ, ξ) restricted to Iξ ∩ Cξ

Iξ =
{

(ζ, ξ) ∈ RN+2 : A(ζ, ξ) = y
}
,

Cξ =
{

(ζ, ξ) ∈ RN+2 : ξj ≥ 0, j = 0, . . . , N
}
,
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where the n× (N + 2) matrix A is defined as

Ai,j =
{

1 for i = 1, . . . , n and j = 1,
φj−2

(
x(i)) for i = 1, . . . , n and j = 2, . . . , N + 2.

The sampling scheme can be summarized in two steps: first of all, we compute the conditional distribution of
the Gaussian vector (ζ, ξ) with respect to interpolation conditions

(ζ, ξ) | A(ζ, ξ) = y ∼ N
(

(AΓN )t(AΓNAt)−1y,ΓN − (AΓN )t(AΓNAt)−1AΓN
)
. (2)

We simulate the Gaussian vector (ζ, ξ) with the above distribution (2). Using an improved rejection sampling
[34], we select only random coefficients in the convex set Cξ. The sample paths of the conditional Gaussian
process are then generated by (1), so that they satisfy both interpolation conditions and monotonicity constraints
in the entire domain (see the R package ‘constrKriging’ developed in [36] for more details).

Remark 1 (Boundedness constraints). For boundedness constraints, the finite-dimensional approximation Y N
of Y can be reformulated as

Y N (x) =
N∑
j=0

Y (uj)hj(x), x ∈ [0, 1],

where hj , j = 0, . . . , N are the hat functions centered at the jth knot. In that case, the covariance matrix of the
coefficients (Y (uj))j is equal to ΓN , where ΓNi,j = K(ui, uj). Additionally, Y N is bounded between two constants
a, b (i.e., Y N (x) ∈ [a, b]) if and only if Y (uj) ∈ [a, b] for all j = 0, . . . , N .

Remark 2 (Convexity constraints). For convexity constraints, the finite-dimensional approximation Y N of Y
can be written as

Y N (x) = Y (0) + xY ′(0) +
∑
j=0N

Y ′′(uj)ϕj(x), x ∈ [0, 1],

where ϕj , j = 0, . . . , N are the two times primitive of the hat functions (i.e., ϕj(x) =
∫ x

0 (
∫ t

0 hj(u)du)dt). In
that case, the covariance matrix of the coefficients Y ′′(uj) is equal to

ΓNi,j = Cov [Y ′′(ui), Y ′′(uj)] = ∂2

∂x∂x′
K(ui, uj).

Additionally, Y N is convex if and only if Y ′′(uj) ≥ 0 for all j = 0, . . . , N .

2.3. Isotonicity in two dimensions
We now assume that the input is x = (x1, x2) ∈ R2 and without loss of generality is in the unit square. The

monotonicity (non-decreasing) constraints with respect to the two input variables is defined as

x1 ≤ x′1 and x2 ≤ x′2 ⇒ f(x1, x2) ≤ f(x′1, x′2).

As in the one-dimensional case, we construct the basis functions such that monotonicity constraints are equivalent
to constraints on the coefficients. The finite-dimensional approximation of GPs Y N is defined as

Y N (x1, x2) =
N∑

i,j=0
Y (ui, uj)hi(x1)hj(x2) =

N∑
i,j=0

ξi,jhi(x1)hj(x2), (3)

where hj are the hat functions defined in Section 2.2.

Proposition 4. With the notations introduced before, (Y N (x))x∈[0,1]2 verifies the following properties:
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• Y N is a finite-dimensional GP with covariance function KN (x,x′) = Φ(x)tΓNΦ(x′), where Φ(x)t =
(hi(x1)hj(x2))i,j, ΓN(i,j),(i′,j′) = K ((ui, uj), (ui′ , uj′)) and K is the covariance function of the original
GP Y .

• Y N converges uniformly to Y when N tends to infinity.
• Y N is non-decreasing with respect to the two input variables if and only if the (N+1)2 random coefficients
ξi,j , i, j = 0, . . . , N verify the following linear constraints:
(1) ξi−1,j ≤ ξi,j and ξi,j−1 ≤ ξi,j , i, j = 1, . . . , N .
(2) ξi−1,0 ≤ ξi,0, i = 1, . . . , N .
(3) ξ0,j−1 ≤ ξ0,j , j = 1, . . . , N .

From the last property, the problem is equivalent to simulate the Gaussian vector ξ = (ξi,j)i,j restricted to the
convex set Iξ ∩ Cξ, where

Iξ =

ξ ∈ R(N+1)2
: Y N

(
x

(i)
1 , x

(i)
2

)
=

N∑
i,j=0

ξi,jhi

(
x

(i)
1

)
hj

(
x

(i)
2

)
= yi

 ,

Cξ =
{
ξ ∈ R(N+1)2

such that ξi,j verify the constraints 1. 2. and 3.
}
.

Remark 3 (Isotonicity in two dimensions with respect to one variable). If the function is non-decreasing with
respect to the first variable only, then

Y N (x1, x2) =
N∑

i,j=0
Y (ui, uj)hi(x1)hj(x2) =

N∑
i,j=0

ξi,jhi(x1)hj(x2), (4)

is non-decreasing with respect to x1 if and only if the random coefficients satisfy ξi−1,j ≤ ξi,j , i = 1, . . . , N and j =
0, . . . , N .

2.4. Constrained Kriging in financial term-structures
The suggested model (1) has been applied to finance and economic domain to estimate discount factors and

default probabilities [14]. In this section, we focus on discount factors. The real data are represented by the
following linear equality constraints

AY N (X) = b, (5)
where A and b are some given matrix and vector respectively and X is the input vector of observations.

2.5. Curve construction at a single and several quotation dates
We now illustrate the constrained GP method described above in a one and two-dimensional setting. In one-

dimensional case, the construction is based on market quotes as of 30/12/2011 [15]. The Matérn 5/2 covariance
function has been used

k(x, x′) = σ2
(

1 +
√

5 | x− x′ |
θ

+ 5(x− x′)2

3θ2

)
exp

(
−
√

5|x− x′|
θ

)
, (6)

where the covariance parameters (σ and θ) have been estimated using the suited cross validation method
described in [14] and [37]. We get θ̂ = 30 and σ̂ = 0.93.

In the left panel of Figure 1, we generate 100 sample paths taken from model (1) conditionally to linear
equality constraints (5) and monotonicity (non-increasing) constraints. Note that the simulated curves (gray
lines) are non-increasing in the entire domain. The black solid line represents the posterior maximum of
the constrained Gaussian process. The black dashed-lines represent the 95% point-wise confidence intervals
quantified by simulation. The red dash-dotted points are associated to the best-fitted Nelson-Siegel curves [42]
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Figure 1. Simulated paths (gray lines) taken from the conditional GP with non-increasing
constraints and market-fit constraints Swap vs Euribor 6M market quotes as of 30/12/2011
(left). Discount factors as a function of time-to-maturities and quotation dates (right).

and the blue dotted points are associated to the best-fitted Svensson curves [57]. In the right panel of Figure 1,
discount factors as a function of time-to-maturities and quotation dates are shown using model (3). The
monotonicity (non-increasing) constraint is respected to the first (time-to-maturities) variable only.

3. Nested Kriging for large datasets
We present in this section some results from a joint work with F. Bachoc, C. Chevalier, N. Durrande and

D. Rullière [49].
As discussed in Section 1.4, it is usually admitted that obtaining a Kriging prediction (in the sense of

Proposition 2), at one point given n observations of the process Y , has a complexity of O(n3) in time and O(n2)
in space. We propose here a new method aiming at reducing these complexities in order to deal with large
datasets.

Classical methods of the literature are dedicated to this problem, as inducing points [26,43], low rank approx-
imations [54], Gaussian Markov Random Fields [48], compactly supported covariance functions and covariance
tapering [22,31,53]. These methods suffer from either the loss of interpolation properties or either difficulties to
capture small or large scale dependencies. Some methods aggregate submodels or “experts” based on subsets of
the data, as mixture of experts [21,27,58], or consensus methods [60,61]. As they often ignore some covariances
between submodels or experts, one can show that they suffer from inconsistencies and accuracy losses.

3.1. Proposed aggregation
The proposed method is based on the idea of aggregating submodels that are cheaper to construct. Compared

to [49], we focus here on the simplified context of Kriging submodels relying on centered Gaussian Processes,
but results can be adapted to more general settings, such as non-Gaussian processes, or other types of submodels.

Let us split the input points vector X into p distinct subvectors Xi, i = 1, . . . , p. Consider a new input point
x ∈ D where we want to predict Y (x). Now consider Gaussian process regression submodels Mi, each based on
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a subset of the data Xi, i ∈ A, where A = {1, . . . , p} is the set of submodels indexes:

Mi(x) = E [Y (x)|Y (Xi)] = k(x,Xi)k(Xi, Xi)−1Y (Xi) . (7)

The p submodels are gathered into a p×1 vectorM(x) = (M1(x) . . . ,Mp(x))t. For a given covariance function k,
the random column vector (M1(x), . . . ,Mp(x), Y (x))t is centered with finite first two moments and both the
p× 1 covariance vector kM (x) = Cov [M(x), Y (x)] and the p× p covariance matrix KM (x) = Cov [M(x),M(x)]
can be obtained with basic linear algebra:{ (

kM (x)
)
i

= Cov [Mi(x), Y (x)] = k(x,Xi)k(Xi, Xi)−1k(Xi, x) ,(
KM (x)

)
i,j

= Cov [Mi(x),Mj(x)] = k(x,Xi)k(Xi, Xi)−1k(Xi, Xj)k(Xj , Xj)−1k(Xj , x) .
(8)

The main idea for aggregating the submodelsMi(x), . . . ,Mp(x) is to take into account their cross-covariances,
as well as their covariances with the unknown output Y (x). It differs in this sense to most consensus aggregation
techniques [60,61] and to classical machine learning aggregations [21,58].

The proposed aggregation MA(x) and its associated mean square error vA(x) are defined as

{
MA(x) = E [Y (x)|Mi(x), i ∈ A] = kM (x)tKM (x)−1M(x) ,

vA(x) = V [Y (x)|Mi(x), i ∈ A] = k(x, x)− kM (x)tKM (x)−1kM (x) .
(9)

3.2. Properties
Among basic properties in the specific Gaussian Kriging case, this aggregation is optimal and interpolat-

ing: it is optimal in the sense that MA(x) is the best linear unbiased estimator (BLUE) of Y (x) that writes∑
i∈A αi(x)Mi(x), with mean squared error vA(x) = E

[
(Y (x)−MA(x))2]. Furthermore, the aggregation is

interpolating: if one of the submodels Mj interpolates a point xi, Mj(xi) = Y (xi), then the aggregated model
is also interpolating at this point, MA(xi) = Y (xi) and vA(xi) = 0. Note that some usual methods dealing with
large datasets, as inducing points [26,43], do not satisfy this interpolation property.

In the example of Figure 2 we give two Kriging predictors, one predictor M1(.) based on four observations,
one other M2(.) based on three other observations. There is no difficulty to obtain the required quantities
kM (x), KM (x), and thus the aggregated predictor. One can observe that the aggregate predictor MA(x) is
very close to the one of the full model, Mfull(x), which is the classical Kriging predictor based on all seven
observations.

From a theoretical point of view, more properties can be derived. Some developments show that the aggre-
gation method can be seen as an approximation of the full model, but can also be seen as an exact method
relying on a slightly modified process. Partly relying on this fact, bounds for the difference |MA(x)−Mfull(x)|
can be derived. It can also be shown that if the knowledge of all submodels at the prediction point x allows to
retrieve all initial observations, then the aggregation MA(.) corresponds exactly to the full model Mfull(.). The
detail of all these properties is given in [49].

An important consistency result, justifying the use of covariances, is the following one, which is proved in [9].

Proposition 5 (Consistency). Let D be a compact subset of Rd. Let Y be a Gaussian process on D with mean
zero and continuous covariance function k. Let (xni)1≤i≤n,n∈N be a triangular array of observation points so
that xni ∈ D for all 1 ≤ i ≤ n, n ∈ N and so that for all x ∈ D, limn→∞mini=1,...,n ||xni − x|| = 0.

For n ∈ N, let An = {1, ..., pn} be the set of submodel indexes and let M1(x), ...,Mpn(x) be any collection
of pn Kriging predictors based on respective design points X1, . . . , Xpn . Assume that each component of



172 ESAIM: PROCEEDINGS AND SURVEYS

2

1

0

1

2

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

2

1

0

1

2

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

2

1

0

1

2

Figure 2. Example of aggregation of two Gaussian process regression models. For each model,
we represent the predicted mean and 95% confidence intervals. Left panels: submodels to
aggregate. Right panel: aggregated model (solid lines) and full model (dashed lines).

X = (xn1, ..., xnn) is a component of at least one Xi, 1 ≤ i ≤ pn. Then we have

sup
x∈D

E
(

(Y (x)−MAn(x))2
)
→n→∞ 0. (10)

In the literature, many aggregation methods do not use covariances between submodels, but only prediction
variances of each submodel. This is the case for many consensus aggregation and for other aggregation tech-
niques as Product of Experts, Generalized Product of Experts, Bayesian Committee Machine, Robust Bayesian
Committee Machine (see [21]). For these methods and under quite general assumptions, one can show that it
is possible to find a triangular array of observations that becomes dense into D, but is however such that

lim inf
n→∞

E
[(
Y (x)− M̄An(x)

)2]
> 0. (11)

where M̄An is the considered alternative aggregation technique. It results that, contrary to the proposed ag-
gregation, many classical methods can be shown to be inconsistent. For a large number of observations, this is
clearly an important advantage of the proposed method.

Concerning the complexity, one can show that starting from n observations, a reachable complexity for q
prediction points is O(n) in space and O(qn2) in time, for example when aggregating

√
n submodels of

√
n

observations each. This complexity is to be compared to O(n2) in space and O(n3 + qn) in time for the full
model. Thus, while requiring an additional cost compared to the cheapest methods of the literature, the method
is still tractable for large number of observations, say up to 106, provided that the number of prediction points
is small compared to the number of observations, q � n.

As aggregated models can themselves be aggregated, the method can be built along more complex tree
structures. However, while this can reduce the complexity in time, the general computational complexity order
remains O(qn2), only the factor multiplying this order being modified. This however opens some perspectives
for further large reduction of the complexity of the algorithm.

3.3. Numerical illustration with known covariance
Consider test functions that are given by samples over [0, 1] of a centered Gaussian process Y with a one

dimensional Matérn 5/2 kernel, with known parameters σ2 and θ (see (6) for a definition of the Matérn kernel).
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The Figure 3 shows the boxplots of some performance criteria for 50 replications of the experiments. Each
experiment consists in predicting the Gaussian process sample path on a grid of 201 points, based on 30
observations. 10 submodels are build with three observations each.

We consider the following criteria to quantify the distance between the aggregated model and the full model:
the mean square error (MSE) that measures the accuracy of the aggregated mean compared to the full model,
the mean variance error (MVE) that measures the accuracy of the predicted variance and the mean negative log
probability (MNLP) that measures the overall distribution fit, see [59]. The other methods that are considered
in this benchmarck are the (generalized) product of Experts: PoE, GPoE, the (robust) Bayesian Committee
Machine: BCM, RBCM, and the smallest Prediction Variance (SPV), see [21,49].

The setting differs slightly from the one in [49], but the conclusion remains identical: it appears in Figure 3
that the proposed approach gives the best approximation of the full model for the three considered criteria.
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Figure 3. Quality assessment of the aggregated models for 50 test functions. Each test func-
tion is a sample from a Gaussian process and in each case 30 observation points are sampled
uniformly on [0, 1]. Left panel: MSE (should be small), center panel: MVE (should be close
to 0), right panel: MNLP (should be small).

3.4. Numerical illustration with unknown covariance
In practice, covariance parameters of the kernel are unknown and have to be estimated. For kernels that

write k = σ2kθ, we give a leave-one-out method for estimating the parameter θ, and then the parameter σ2:

θ̂ ∈ argmin
θ∈Θ

1
n

n∑
i=1

(f(xi)−mA,θ,−i(xi))2 and σ̂2 = 1
n

n∑
i=1

(
f(xi)−mA,θ̂,−i(xi)

)2

vA,θ̂,−i(xi)
, (12)

where f(xi) are the observed values of Y (xi) and mA,θ,−i the leave-one-out mean prediction based on a param-
eter θ and a leaved observation i, which does not depend on σ. For usual Kriging methods, the computational
cost for calculating one leave-one-out error (f(xi)−mA,θ,−i(xi))2 is O(n3). In our procedure, this cost can be
O(n2). Thus for large datasets, even one leave-one-out error cannot be computed with usual Kriging methods,
whereas it becomes tractable with our method. Furthermore, the average leave-one-out error can be estimated on
a subset of successively excluded points I, having cardinal q � n, thus leading to an average error of cost O(qn2).

This makes possible to build a dedicated stochastic gradient descent for calculating an estimator of θ, defined
as the limit of a sequence of (θi)i≥1, starting from a given value θ0. The sequences (ai) and (δi) of increments
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and step sizes, and the sequence of random directions (hi) are given.

θi = θi−1 −
ai
2δi

1
q

∑
j∈Ii

(
f(xj)−mA,−j,θi−1+δihi(xj)

)2 − 1
q

∑
j∈Ii

(
f(xj)−mA,−j,θi−1−δihi(xj)

)2hi. (13)

Subsets Ii are sampled uniformly among subsets of {1, . . . , n} of size q. Some more details and links to a
publicly available code are given in [49].

On a real data set of size n = 104 in dimension d = 6, we get for p = 90 submodels a MSE criterion of
0.00418, which is better than the most competitive of the other methods in this benchmark, SPV and a variant
of GPoE, having respective MSE equal to 0.00556 and 0.0244. Results are quite similar with MNLP criterion,
−1.7 for our method, compared to −1.55 and 2.13 for the best two competitors. Other numerical results are
omitted here, but we get the same conclusion when replicating the experiments with other test and learning
sets, or other covariance kernels. Overall, we found that the accuracy of the proposed method, along with
dedicated parameter estimation, outperforms state-of-the-art alternative aggregation methods.

4. Gaussian processes for stochastic optimization
The content of this section corresponds to the references [12,13].

4.1. Sequential stochastic optimization
Optimizing an unknown, non-convex and potentially noisy function is at the center of many computer ex-

periments. The goal of a sequential optimization procedure may be either seen as maximizing the sum of the
outputs (or rewards) received at each iteration, that is to minimize the cumulative regret widely used in bandit
problems, or as maximizing the best reward received so far, that is to minimize the simple regret. This task
becomes challenging when we only have mild information about the unknown function. To tackle this chal-
lenge, a Bayesian approach has been shown to be empirically efficient [29, 40]. In this approach, we model the
unknown function as a centered Gaussian Process Y : D → R which allows to control the assumptions we put
on the smoothness of the function by choosing different kernels, as described in Section 1. We consider that the
observations from the unknown function are affected by an independent additive Gaussian noise. A sequential
optimization algorithm iterates two steps: at iteration t ∈ N, it first chooses xt ∈ D based on the previous
observations y1, . . . , yt−1, and next queries the unknown function at xt and observes yt = Y (xt) + εt, where εt
is an independent centered Gaussian of known variance η2. The cumulative regret is then an unknown random
variable, defined for each iteration T ∈ N as:

RT =
T∑
t=1

(
sup
x∈D

Y (x)− Y (xt)
)

= T sup
x∈D

Y (x)−
T∑
t=1

Y (xt) .

The simple regret, or optimization error, is similarly defined as:

ST = sup
x∈D

Y (x)− max
1≤t≤T

Y (xt) .

We note that ST ≤ RT /T , therefore an upper bound of RT for a given optimization algorithm leads to an upper
bound on the optimization error.

Several optimization strategies have been proposed in this respect. The Expected Improvement algorithm [29]
is the one-step-ahead optimal rule. The convergence rate of the simple regret obtained by this strategy is
analyzed in [11] for deterministic and fixed function in the RKHS space generated by the covariance of the
Gaussian process. The Entropy Search algorithm [25] approximates the maximization of the information gain
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Algorithm 1: GP-UCB(k, η, δ) on finite D
X0 ← ∅; Y0 ← ∅
for t = 0, 1, . . . do

βt ← 2 log
(
|D|t2 π

2

6δ
)

for x ∈ D do
µt(x)← k(Xt, x)

[
k(Xt, Xt) + η2I

]−1
Yt

s2
t (x)← k(x, x)− k(Xt, x)

[
k(Xt, Xt) + η2I

]−1
k(Xt, x)

Ut(x)← µt(x) +
√
βs2

t (x)
end
xt+1 ← arg maxx∈D Ut(x); yt+1 ← Query(xt+1)
Xt+1 ← [Xt+1;xt+1]; Yt+1 ← [Yt+1; yt+1]

end

on the optimum from each evaluation. This strategy typically displays low simple regret in practice. To the best
of the authors’ knowledge, no theoretical convergence rates are known. The GP-UCB algorithm [52] extends the
popular UCB policy from bandits problem [3] to the Bayesian optimization setting. For a finite space D, this
algorithm exhibits state-of-the-art regret bounds, for both the simple and cumulative regrets. At each iteration
t, a high probabilistic upper confidence bound on the unknown function is built given the available observations.
For a fixed tolerance parameter 0 < δ < 1, the algorithm defines βt = 2 log

(
|D|t2 π

2

6δ
)
and the upper confidence

bounds:
∀x ∈ D, Ut(x) = µt(x) +

√
βts2

t (x) ,

where µt (resp. s2
t ) is the posterior expectation (resp. variance) given the observations, defined in Proposition 2.

The selection of the next query then follows the maximization of the upper confidence bounds, which forms a
tradeoff between exploitation (maximizing the predicted value) and exploration (maximizing the uncertainty):

xt+1 ∈ arg max
x∈D

Ut(x) .

The GP-UCB algorithm is presented in Algorithm 1, its theoretical guarantees are described in the following
section.

4.2. Theoretical guarantees for finite input spaces
Thanks to Proposition 2 we know that the posterior distribution of the Gaussian process is another Gaussian

process. Therefore, with a union bound on the iterations n ∈ N and on the input points x ∈ D, we have the
following concentration guarantee.

Proposition 6. Fix 0 < δ < 1. Defines βt = 2 log
(
|D|t2 π

2

6δ
)
for all iteration t ∈ N. Then for a centered

Gaussian process Y , with probability at least 1− δ:

∀t ∈ N,∀x ∈ D, µt(x)−
√
βts2

t (x) ≤ Y (x) ≤ µt(x) +
√
βts2

t (x) ,

where µt and s2
t are as previously.

Using the UCB rule, that is choosing the points maximizing the upper confidence bound, we can bound the
regret incurred at each iteration.
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Proposition 7. For all iteration t ∈ N, selects xt+1 ∈ arg maxx∈D Ut(x) as previously. Under the event of
Proposition 6 the following holds,

∀t ∈ N, sup
x∈D

Y (x)− Y (xt+1) ≤ 2
√
βts2

t (xt+1) .

That is, for the cumulative regret RT ,

∀T ∈ N, RT ≤ 2
√
βT

T∑
t=1

st−1(xt) .

The previous inequality can be translated into explicit regret bounds according to the covariance of the Gauss-
ian process, using the information-theoretical inequalities of [52]. We consider here three popular covariance
functions for D ⊂ Rn:

• the linear kernel, k(x, x′) = xtx′ modelling linear functions,
• the squared exponential kernel, k(x, x′) = exp(−‖x− x′‖22) modelling infinitely differentiable functions,
• the Matérn kernel of parameter ν > 1, k(x, x′) =

∫
D
eiu

t(x−x′)(1 + ‖u‖22)−ν−n/2du modelling functions
that are m times differentiable for the largest integer m < ν.

We note that the Matérn kernel enjoys simple explicit forms when 2ν is an odd integer. For ν = 1/2, the process
is the Ornstein-Uhlenbeck process, for ν →∞, the Matérn kernel converges to the squared exponential kernel.

Proposition 8 (Lemma 5.4 and Theorem 5 in [52]). Let D be a finite subset of Rn, under the event of
Proposition 6, we have the following inequalities, with βT ≤ O(log(T |D|)):

• for the linear kernel, RT ≤ O
(√
βTnT log T

)
,

• for the squared exponential kernel, RT ≤ O
(√

βTT logn+1 T
)
,

• for the Matérn kernel of parameter ν > 1, RT ≤ O
(√

βTT
ν+n(n+1)

2ν+n(n+1)

)
.

The previous inequalities ensure that the GP-UCB strategy has a sub-linear cumulative regret with high
probability for the considered covariance functions. This directly implies convergence rates of the optimization
error. The next section extends these results for non-finite input spaces D.

4.3. Theoretical guarantees for continuous metric spaces
When the input space D is continuous, the union bound from Proposition 6 does not hold. We solve this issue

by introducing successive discretizations of D. Points in these discretizations are well-spaced for a particular
pseudo-metric defined from the covariance of Y . We calibrate their density such that the approximation error is
of the order of the error of the UCB policy. We first define the canonical pseudo-metric of the Gaussian process
by:

∀x, x′ ∈ D, d(x, x′) =
√
k(x, x)− 2k(x, x′) + k(x′, x′) .

We are able to derive bounds on the discretization error of well-spaced points with respect to d, as described in
the following proposition.

Proposition 9. Let D be a bounded subset of Rn. Let X be a finite subset of D and a mapping π : D → X
such that it exists ε > 0 satisfying ∀x ∈ D, d(x, π(x)) ≤ ε. Then for all δ > 0 and the covariance functions
considered in Proposition 8, with probability at least 1− δ,

∀x ∈ D, Y (x)− Y (π(x)) ≤ O
(
ε
√

log(1/δ) + n log(1/ε)
)
.

The proof of this result involves tight concentration inequalities on the extremes of the Gaussian process,
detailed in [12]. The previous proposition allows to adapt the GP-UCB algorithm for continuous spaces. At
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iteration t, we run the UCB policy on Xt a discretization of D with mapping πt, that is we select xt+1 ∈
arg maxx∈Xt Ut(x), with Ut as before and βt = 2 log

(
|Xt|t2 π

2

6δ
)
. We calibrate the discretization such that:

∀x ∈ D, d(x, πt(x)) ≤ t−1/2 .

In the light of the previous proposition, we obtain a discretization error of O
(√

(n log t)/t
)
. Over T iterations,

the sum of the discretization errors is then bounded by O
(√
nT log T

)
. Now, since d(x, x′) ≤ ‖x− x′‖2 for

the above covariance functions, the number of points required in Xt does not exceed O
(
tn/2

)
, that is βT ≤

O
(
n log T

)
. Summing both the approximation error and the error of the UCB policy, and following the steps

of Proposition 8, we obtain the state-of-the-art regret bounds where the log |D| factor in βT is replaced by n
the dimension of D.
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