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Distributed chaos with spontaneously broken translational symmetry

Distributed chaos with spontaneously broken translational symmetry

It is shown that distributed chaos with spontaneously broken time translational symmetry (homogeneity) has a stretched exponential spectrum E(f ) ∝ exp -(f /f0) 1/2 . Good agreement has been established with a laboratory experimental data obtained at large values of Rayleigh number Ra ∼ 3 • 10 14 in thermal convection. It is also shown that finite size subsequences of decimal digits sequence of irrational numbers (such as π and e) are dominated by the distributed chaos with spontaneously broken translational symmetry (the E(f ) ∝ exp -(f /f0) 1/2 spectrum is used as an indication). The later result indicates an universal character (not related exclusively to dynamical systems) of such spectrum for the distributed chaos with spontaneously broken translational symmetry.

I. DISTRIBUTED CHAOS

Many dynamical systems with chaotic behaviour have the exponential power spectra [1]- [4] 

E(f ) ∝ exp -(f /f c ) (1) 
where f c = const is some characteristic frequency. Let us consider, for instance, the seminal Lorenz equations:

dx dt = σ(y -x), dy dt = rx -y -xz, dz dt = xy -bz (2)
The Eqs. ( 2) correspond to a simplified model for thermal (Rayleigh-Benard) convection in a layer of fluid, heated from below and cooled from above. Usually used values of the parameters σ = 10.0, r = 28.0, b = 8/3 result in a chaotic solution [5]. In Fig. 1 we show (in the semi-logarithmic scales) power spectrum of z-component in Eqs. (2). The spectrum was computed by the maximum entropy method. This method gives an optimal resolution for comparatively short time series 

f 1/2 [s -1/2 ] ln E T (f) exp-(f/f 0 ) 1/2
Ra = 3•10 14 Pr = 300 FIG. 2: Power spectrum of temperature measured at the cell center (the data taken from the Ref. [6]). The solid straight line indicates the stretched exponential decay Eq. ( 6).

[1] (in this case 3 • 10 4 data points). The dashed straight line corresponds to Eq. (1).

In the complex cases of distributed chaos the spectra can be approximated by a weighted superposition of the exponential functions Eq. ( 1):

E(f ) ∝ ∞ 0 P (f c ) exp -(f /f c ) df c (3) 
where P (f c ) is a probability distribution of f c . If the probability distribution is narrow and can be approximated by a delta-function then we have the exponential spectrum Eq. ( 1). By the Noether's theorem the energy conservation law is related to the time translational symmetry (invariance) [START_REF] Landau | Mechanics[END_REF]. When the time translational symmetry (invariance) is spontaneously broken the action I can be used as an adiabatic invariant [START_REF] Sagdeev | Nonlinear Physics: from the Pendulum to Turbulence and Chaos[END_REF]. Then for this case a relation between characteristic velocity v c and the characteristic frequency f c can be found using the dimensional considerations: 

v c ∝ I 1/2 f 1/2 c (4)
f [s -1 ] E (f) exp-(f/f 0 ) 1/2
Ra = 3•10 14 Pr = 300 FIG. 3: As in Fig. 2 but in the log-log scales. The solid curve indicates the stretched exponential decay Eq. ( 6).

If the characteristic velocity is normally (Gaussian) distributed, then f c has the chi-squared (χ 2 ) distribution

P (f c ) ∝ f -1/2 c exp -(f c /4f 0 ) (5) 
where f 0 is certain constant. Substituting the distribution Eq. ( 5) into integral Eq. ( 3) we obtain

E(f ) ∝ exp -(f /f 0 ) 1/2 (6) 
The above discussed Lorenz system is a very simplified model for thermal convection. Let us consider real (experimental) strong thermal convection. Figure 2 shows power spectrum of temperature measured at the cell center for very large Rayleigh number Ra = 3 • 10 14 and the Prandtl number P r = 300 (experimental measurements reported in the Ref. [6]). The solid straight line is drawn in the Fig. 2 in order to indicate the stretched exponential spectrum Eq. ( 6) corresponding to the distributed chaos with spontaneously broken translational symmetry. Similar spectrum was observed for the first time in experiment reported in Ref. [7]. As it is mentioned in the Ref. [6] the inertial (scaling) range was completely suppressed by buoyancy in this situation. Actually the Eq. ( 6) covers the entire spectrum (rather wide range) as one can see in figure 3 (in the log-log scales). It should be noted that thermal convection at the high values of the Rayleigh number is usually considered as strong turbulence and chaos was taken into account at the large scale thermal winds only [14], [15]. About Hamiltonian approach to hydrodynamics see, for instance, Refs. [START_REF] Eyink | [END_REF]- [13]. It should be also noted that spontaneous breaking of the space translational symmetry (homogeneity) in wave turbulence results in a crucial change of the statistical attractor [16]. The later phenomenon is related to the Kolmogorov-Zakharov spectrum instability to the perturbations weakly breaking the space translational symmetry. 

II. IRRATIONAL NUMBERS

Distribution of digits in the decimal digits sequence of irrational numbers is apparently random. We will be mainly interested in the normal numbers. For these numbers no finite set of digits occurs more frequently than any other. There is a proof that almost all (by the means of the Lebesgue measure) real numbers are normal [START_REF] Calude | Information and Randomness: An Algorithmic Perspective[END_REF], and it is believed that such important constants as π and e are normal (the rigorous proof is still absent and approach is empirical, see for instance Ref. [START_REF] Bailey | [END_REF]). In this note the decimal digits sequence will be mapped into a set of so-called telegraph signals in order to compare properties of the decimal digits sequences with those of the signals corresponding to dynamical systems. Analogous approach was used in Ref. [19] for distribution of the prime numbers.

Let us map the decimal digits sequence into telegraph signals by defining binary functions B 0 (n), B 1 (n),... B 9 (n) of natural numbers n = 1, 2, 3, ... (n enumerates places in the sequence or in a subsequence of the digits, see Fig. 4). The telegraph signal B 6 (n), for instance, corresponds to the digit 6 in the the decimal digits sequence. Such binary function takes two values +1 or -1 and changes its sign passing each digit 6 along the decimal digits sequence (all functions B 0 (n), B 1 (n),... B 9 (n) are analogously defined). Figure 4 shows a short sample of the B 6 (n) function for the decimal digits sequence of the number π (first 200 places).

Construction of these functions is rather sensitive to clustering of a digit in the decimal digits sequence, i.e. to appearance of such clusters: 66, 666, 6666 and so on. To avoid this problem let us consider modified function B6 (n). Unlike the function B 6 (n) this function is constructed after all above mentioned clusters have been collapsed (each cluster has been replaced by single digit), i.e. 66 → 6, 666 → 6, 6666 → 6 and so on, in the decimal digits sequence (all functions B0 (n), B1 (n),... B9 (n) are analogously defined). This mapping allows to compare properties of the telegraph signals with those of the signals corresponding to dynamical systems by interpretation n → t, where t is time.

III. FINITE SIZE SUBSEQUENCES

Real (stochastic) randomness imply translational symmetry (invariance) for any fixed digit (say 6) along the decimal digits sequence, i.e. appearance of a fixed digit (say 6) does not distinguish different points (places) in the decimal digits sequence (a statistical homogeneity). For finite size subsequences this translational symmetry (invariance) can be spontaneously broken.

Let us assume certain universality of the result Eq. ( 6) for the distributed chaos with spontaneously broken symmetry, so that it includes also the case under con-

0 0.1 0.2 0.3 0.4 0.5 0.6 -3 -2 -1 0 1 2 3 f 1/2 ln E(f) exp-(f/f 0 ) 1/2
1 FIG. 7: As in Fig. 5 but for the number e.

sideration (n → t). Figure 5 shows frequency spectrum E(f ) for the telegraph signal B1 (n) computed using a finite size subsequence (first 20000 places) of the decimal digits sequence of the number π. The computation was made with the maximum entropy method (this method provides optimal spectral resolution for relatively short data sets and, in particular, for the spectra caused by chaotic phenomena [1]). The semi-logarithmic scales are used in order to compare the data with the Eq. ( 6). The straight line is drawn in the Fig. 5 to indicate correspondence of the data to the Eq. ( 6). The frequency f 0 ≃ 0.01, that corresponds to period T 0 = 1/f 0 ≃ 100 in the decimal digits sequence. Figure 6 shows analogous situation for B6 (n) (all other telegraph signals B0 (n) ... B9 (n) exhibit the same properties).

All irrational numbers (with the assumption of the translational invariance) can be analogously treated and one can expect analogous results. Figure 7, for instance, shows frequency spectrum E(f ) for the telegraph signal B1 (n) computed using a finite size subsequence (first 20000 places) of the decimal digits sequence of the number e. The straight line is drawn in the Fig. 7 to indicate correspondence of the data to the Eq. ( 6). The frequency f 0 ≃ 0.01, that corresponds to period T 0 = 1/f 0 ≃ 100 in the decimal digits sequence, the same value of f 0 (or T 0 ) as for the number π. I thank C. S. Calude for comments.
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 1 FIG.1: Logarithm of power spectrum for z-component of the Eq. (2) against frequency f . The dashed straight line corresponds to Eq. (1).
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 4 FIG. 4: A short sample of the B6(n) function (first 200 places).

1 FIG. 5 : 6 FIG. 6 :

 1566 FIG.5:Frequency spectrum E(f ) for the telegraph signal B1(n) computed using a finite size subsequence (first 20000 places) of the decimal digits sequence of the number π.