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Abstract

Bridge is an incomplete information game which is complex both for
humans and for computer bridge programs. The purpose of this paper
is to present our work related to the adaptation to bridge of a recent
methodology used for boosting game Artificial Intelligence (AI) by seeking
a random seed, or a probability distribution on random seeds, better than
the others on a particular game.
The bridge AT Wbridgeb developed by Yves Costel has been boosted with
the best seed found on the outcome of these experiments and has won the
World Computer-Bridge Championship in September 2016.

1 Introduction

Games have always been an excellent field of experimentation for the nascent
techniques in computer science and in different areas of Artificial Intelligence
(AI) including machine learning (ML). Despite their complexity, games problems
are much easier to understand and to model than real life problems. Indeed,
most games have a limited number of simple rules and have been subject to in-
depth human analysis over time. Systems initially designed for games are then
used in the context of real applications. Therefore, next-generation Watsons,
the IBM system that has beaten two champions of Jeopardy!! in 2011, are
used as consultant machines in fields as varied as medicine, cybersecurity, and
business analytics.

*Corresponding author: ventos@lri.fr

TNow at: google

1Jeopardy! is a game consisting of finding a question from clues constituting the Response
expressed in natural language.



In the last decades, the design of champion-level systems dedicated to a game
(game AT) were considered as milestones of computer science and Al In 1994,
the checkers (english draughts) player system Chinook [16] became the first
computer program to win a world champion title against humans. Three years
later, the IBM supercomputer Deep Blue defeated the world chess champion
Garry Kasparov. In both cases, systems benefited from the increased computing
power of computers. More recently, despite increasing processing power, a major
challenge of Artificial Intelligence was to design a computer program reaching
the level of a human Go grand master. Until 2006 the best Go programs did not
exceed the level of an average amateur player. The first revolution came with
Mogo ([14],[7]) and Crazystone [5] two Go AI with strategies combining several
ML methods including an adaptation to the UCT algorithm (Upper Confidence
bounds applied to Trees) which allowed to explore more often the best node in
a tree search. In march 2016, AlphaGo designed by a team of DeepMind, a
British company specializing in artificial intelligence and games [17] became a
grand master after winning four games in one match against Lee Sedol, one of
the best players in the world. In May 2017, AlphaGo defeated by 3 to 0 the
world champion Ke Jie.

In Checkers, Chess or Go, players share complete information about the cur-
rent state of the game. A longstanding challenge of Al is related to games of
incomplete information where the game situation world is only partially observ-
able. For instance, Poker is an incomplete information game because opponents
hands remain hidden from view during play. In January 2017, the Poker AI Li-
bratus developed by Carnegie Mellon University won a heads-up no-limit Texas
hold’em poker event against four of the best professional players. This success is
not yet happened with regard to the game of bridge another game of incomplete
information which then provides a challenging problem for Al.

Bridge is a trick-taking game, played with 52 standard cards opposing two
pairs of players. Cards are dealt randomly to the four players; each of them
only sees his hand, that is to say the 13 cards he received. Bridge is there-
fore an incomplete information game where the players do not have common
knowledge of the game being played. Throughout the game, the hidden infor-
mation is reduced, the incompleteness decreasing either in a certain manner
(e.g cards put on the table) or with a high probability (e.g. by information
exchanged during the biddings step). In this game of incomplete information,
the main goal of each player consists in 'rebuilding’ the hidden hands in order
to make decisions. Most current bridge programs use Monte-Carlo simulations,
i.e. producing repeated random samples and considering their average in mak-
ing a decision. Such Monte-Carlo methods were initiated as early as 1949 by
Nicholas Metropolis [12]. The purpose of our work is to adapt to the game of
bridge a recent seed methodology which optimizes the quality of the simulations
and which has been defined and validated in other games as shown in [19, 3] and
to test whether the random seeds have an impact on the bridge Al performance.



Since 1996, best bridge programs can annually participate in an official World
Computer-Bridge Championship (WCBC). This competition is organized by the
World Bridge Federation (WBF, President Gianarrigo Rona) and the American
Contract Bridge League under direction of Alvin Lévy (www.computerbridge.
com/). To check whether the adaptation to bridge could be efficient (the gain is
variable according to the games), we chose among the participants in WCBC a
bridge AI to be boosted. The selected bridge Al is the one developed by Yves
Costel for the bridge program Whbridge5? (see fig 1). WBridgeb, boosted as
described in the present paper, was ranked first in the round-robin of the world
computer bridge championship 2016, and then won the semifinal and final.
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Figure 1: Screen shot of Wbridge5

This paper outlines the methodology and the experimental results related
to the adaptation of the seed methodology to Whridgeb together with the de-
scription of the world computer bridge championship 2016.

To begin with, in section II we introduce the game of bridge, we describe a state
of art of computer bridge and we summarize the seed methodology. Section III
presents an adaptation of the seed method on Whbridge5. Experiments related
to the boosting of Wbridge5 are described in section IV. Section V is dedicated
to describing the world computer bridge championships won by the boosted
version of Wbridgeb. Finally, related and future work are presented section VI.

2http://www.wbridges. com



2 Prerequisites

In the present section, we introduce the prerequisites, namely bridge, computer
bridge and the seed methodology.

2.1 Bridge

Bridge is made of two parts full of complexities: the bidding phase then the card
play. The bidding phase can be seen as a coded language used by players to pass
information to their partner about their hand (most of the time, balanced or
unbalanced, suits distribution and strength according to the number of points
of their cards). The goal for each side is to reach an optimal contract. The
contract specifies the minimum number of tricks among the thirteen to be won
in the second phase. During the card play the goal is to fulfill (or to defeat for
the opposite side) the contract reached during the first step.
From computer game aspects, bridge is a multi-player game:

e with incomplete information: players only see a portion of the cards,
therefore they have an incomplete knowledge of the state. They also do
not know the gains resulting of their actions. However, players know :
the possibilities of actions, other player’s possibilities of actions and their
motives.

e with perfect memory: it is not always the case in practice, but we can
assume each player can remember which cards have been played previously
and by whom.

e non-cooperative: bridge is not a cooperative game even though there is
cooperation between partners.

e sequential: for the two parts of a board, the players’ order of actions is
decided (clockwise).

e finite: the set of strategies of each player is finite.

e with constant sum: not exactly with zero sum but with constant sum
since both pairs are playing for thirteen tricks.

e incrementally scoring: the number of won tricks used to compute the
score increases all among the board.

Scoring in Bridge

The possible results for the games covered in previous seed approaches [3, 11,
4] like Domineering, Atari-Go, or Phantom-Go (Go with hidden information)
are 0 for a loss, 0.5 for a draw and 1 for a win. In bridge, we need more precise
results. Indeed, it is important to know the exact points difference between the
winner and the looser. Here are some explanations about the scoring of a board.
Bridge is a trick-taking game where the score is related to the contract reached
during the bidding phase and the number of won tricks in the card play phase.



Figure 2: Bidding box used in duplicate bridge competitions

The different contracts are represented in figure 2. Let n be a number between
land 7and S € (#, O, &, &, NT). The contract n.S determines the minimum
number of tricks the pair commits to win (n + 6) and which suit is the trump,
NT to expressing the fact that there is no trump. For instance 49 is fulfilled
if the number of tricks won is at least 10 (4 + 6) with a © trump. The rules
during the card play step are quite simple. For every trick, each player plays one
card in turn on the table. When the four players have played a card, the trick is
over and is won by the player who played the highest card in the suit originally
played, or by the highest trump. He will also be on lead at the following trick.
The board is over when all the 52 cards have been played. The number of tricks
won by each pair is checked and the score of the board is calculated from this
number and the number of won tricks required by the contract. For instance,
let us consider that a pair has reached the contract of 40. If the pair wins ten
tricks as required by the contract, it obtains a score of 4420, if the pair gets
only 9 tricks the contract is defeated and the side scores -50,

We focus on duplicate bridge scoring (see https://en.wikipedia.org/
wiki/Bridge/_scoring for more details) which is based on relative performance
reducing the randomness factor. A team match is a match between two teams,
each team being constituted by two pairs. Same boards are played at two dif-
ferent tables where one pair from each team is seated in opposite directions.
Players are represented by North, East, South and West (abbreviated to N, E,
S, W) the pairs being NS and EW. If the first pair of team A is sitting in North-
South and playing against the first pair of team B, then the second pair of team
A is sitting in Est-West at the other table and playing against the second pair
of team B. The final scoring for a board consists in computing the difference
between the scores at the two tables. For instance if Team A got +420 points
and Team B -50, the score is 4470 for the team A. This score is then converted
in International Match Point scale (IMPs) in order to compress potential big



Diff. in Pts. IMPs| Diff.inPts. IMPs| Diff.inPts. IMPs| Diff.inPts. IMPs
20- 40 1 270 -310 7 750 - 890 13 2000 - 2240 19
50 - 80 2 320 -360 8 900 - 1090 14 2250 - 2490 20

90 - 120 3 370 - 420 9 | 1100 - 1290 15 2500 - 2990 21
130 - 160 4 430 - 490 10 | 1300 - 1490 16 3000 - 3490 22
170 - 210 5 500 - 590 11 | 1500-1740 17 3500 - 3990 23
220 - 260 6 600 - 740 12 | 1750 - 1990 18 4000 and up 24

Figure 3: Table for converting points into IMP

differences. Note that the conversion is not linear (see Table 3). A team can
obtain between from -24 to 24 IMPs for each board. The score of a match is
the sum of the scores in IMPs of each board.

A bridge game consist in n boards with n known in advance (most of the
time, n is between 20 and 100). The winning team is the one with the best
cumulative score in IMPs over the n boards.

2.2 State of art of Computer Bridge

Some algorithms were designed in the 60s and the 70s to solve bridge problems
but their performance was very modest due to computing power limitations
[2, 21]. Bridge Baron, which was created in 1983, was the first computer pro-
gram allowing to process complete deals, at a very modest playing level though.
Facing a card play problem, a human player elaborates a plan involving different
steps displaying several bridge techniques: finesse, squeeze, etc ([18]) applied
with reasonable success Al planning methods (Hierarchical task network) in or-
der to generate and evaluate these techniques. This approach allowed Bridge
Baron to win the WCBC in 1997, although its level was much weaker than the
average level of a non-professional bridge player.

More recent programs use for the card play a technique widely known as
double-dummy analysis (DDA): a solver maximizes the number of tricks for
each side in a simplified version of bridge. In this version, the final contract
is given and the 4 hands are known: the general framework is deterministic
and it is a situation of complete information. More precisely, the DDA gives
the number of tricks won by each side for Spade, Heart, Diamond, Club or
No Trump contracts when all four players know the emplacement of the 52
cards, and each player plays optimally. A tree-search can then be used in this
simplified game, as well as routine alpha-beta methods. Values of the leafs are
computed using the DDA. As the number of won tricks is growing, this number
offers upper and lower boundaries for the alpha-beta process, with smaller and
smaller intervals. DDA is the basis of bridge programs since it is used as an
evaluation function even in the bidding part.
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Figure 4: Screenshot of BBo’s retransmission. In the upper right corner: the
bidding sequence, in the lower left corner: the current scores in IMPs of each
team

Albeit these improvements the branching factor b remains too high for the
card play problems to be solved by brute force. Bridge programs began to use
the following two steps method: reducing the state-space using symmetries of
bridge game (typically defining small cards as equivalent) then using the double
dummy solver on a sample of boards generated using Monte Carlo methods and
consistent with the sequence of auctions and the cards played so far. The
branching factor is then significantly reduced from b to 0.76b. Broadly known
as partition search, Ginsberg formalized the method in [9] and more thoroughly
in [8]). The GIB (Ginsberg’s Intelligent Bridge player) program won the WCBC
in 1998 and 1999.

The best-known online game is Bridge Base Online (BBO) represented in
figure 4. Bridge Base Inc. was founded in 1990 by Fred Gitelman. BBO is free,
operates as a supervisor and allows human players to use GIB robots.

[15] establishes an extensive state of art on computer bridge. Unfortunately,
few articles are written, the designers of the bridge programs being reluctant to
reveal details about their code, but it seems that they have been using similar
techniques with only slight variations.



2.3 Seed methodology

Recently, a methodology [19, 3, 4, 11] has been proposed for boosting the com-
putational intelligence of randomized game-playing programs. The principle of
the approach is: given a stochastic Al, checking its performance by comparing
different deterministic versions of the AI in order to choose the best ones.

A stochastic computer program uses a random seed which is a number ini-
tializing a pseudo-random number generator. For one seed there is only one
generated pseudo-random sequence. In the field of computer security a random
seed can then be used as a secret key. The determination of the Al is done
according to the fixation of the random seed. It is then possible to compare
different deterministic versions of the Al and to plot the winning rates, sort,
and compare the variations to the standard deviations.

Let us introduce some definitions:

e The game is stochastic if, even if each player uses a same deterministic
policy, the result is not the same. For example, Bridge is stochastic from
the shuffling of the cards; Monopoly is stochastic, because there are dice.

e The Al is stochastic if, even if the information it has received is exactly
the same, with exactly the same history of moves, it will not necessarily
play the same moves. Typically, an Al is stochastic if it uses pseudo-
random.

e A stochastic AI has clean random seeds if it is not stochastic when
you set up a random seed.

This methodology is designed for an Al which is both
e stochastic;
e with clean random seeds.

To apply the seed methodology, we must first define a simulator. Then, in the
case of 2 players (or two teams) let us use notation r = simulator(sy, s2) where:

e sp is the seed for player 1.
e 55 is the seed for player 2.

e 7 is the result of the game, 1 if player 1 wins, 0.5 in case of draw, 0 if
player 2 wins. You might have intermediate values for games with scores;
the principle is to have greater values when player 1 performs better.

Because the Al has clean random seed, it becomes deterministic when the seed
is fixed. To compare the different seeds, we need to build a matrix with the
results of games between the different deterministic Al

For the simplest seed methodologies, we then build a matrix R with R(i,j) =
simulator(i, 7), for i € {1,2,..., N} and j € {1,2,..., N}, which will be used for
choosing the best seeds. In fact, seed methodologies include several approaches:



e BestSeed approach:

— just pick up 4 such that the sum R(i,1) + R(7,2) + ... + R(i, N) is
maximum for choosing an excellent seed i for player 1.

— and pick up j such that the sum R(1,j) + R(2,5) + ... + R(N,j) is
minimum for choosing an excellent seed j for player 2.

e Robust BestSeed approach: instead of the best seed, pick up the k best
seeds, where k is a robustness parameter, and your policy is the uniform
policy over these k seeds.

e Nash approach: compute the Nash equilibrium of the matrix R (with row
player maximizing); this provides p (probability distribution on seeds for
the first player) and ¢ (probability distribution on seeds for the second
player). Then:

— choose seed i with probability p(i) for the player 1;
— choose seed j with probability q(j) for the player 2.

It has been empirically shown in ([19, 3, 11]) that the seed methodology
optimizes the quality of the simulations in several games like Atari-Go, Domi-
neering, Breakthrough. The success rate of the boosted algorithm against the
non-boosted baseline is usually positive even in the case of an incomplete infor-
mation game like Phantom-Go [4]. The goal is to check whether it is the case
for bridge Al

3 Adaptation of the seed methodology to com-
puter bridge

In bridge AI, seeds are used to generate samples of hidden hands according
to the context. These samples are used to evaluate decisions to make without
knowing all of the cards in play.

3.1 Monte-Carlo in computer bridge

Monte-Carlo simulations are mainly used to make decisions in two situations:
late decisions in the bidding phase and card play.

e bidding: a set of rules is manually built from human expertise according
to the chosen bidding system known by the four players. First auctions
are often chosen according to this set of rules and the knowledge of classi-
cal situations. Some boards can be handled without using any simulation
in the bidding part if the previous architecture is sufficient. However, a
set of rules does not cover all the auctions (there exist approximately 10%7
different sequence of auctions). Human players have the same problems,
they use rules of the bidding system when it is possible but sometimes



they must make decisions not handled by the rules. In this case, good
players compare the different options (in general there are 2 or 3 possibil-
ities) by imagining some possible hidden hands according to the previous
auctions. They choose the best auction related to these possibilities. For
bridge programs, simulations are mainly used to choose the final decision
(the contract that will be played) and as humans, they allow the system
to choose between several (2 or 3) predetermined choices. In this case,
there is generation of hands (partners and opponents) consistent with the
current bidding sequence since it represents constraints on hands. For
each generated board (a generation is equivalent to a possible real board),
the result of the different options is evaluated using the DDA. The system
then chooses the best auction according to this evaluation.

e Card play: During this phase, there are only three active players: the
declarer and the two defenders. Indeed, after the lead (i.e. the first played
card), the declarer’s teammate (called the dummy) puts his hand face
up on the table and then bows out of the action entirely. Each player
(defenders or declarer) sees his own hand and the hand of the dummy.
The declarer must imagine, according to the sequence of auctions and
the lead, the two hidden hands and take successive decisions in order to
maximize the number of tricks. Nowadays, computer programs simulate
samples of hands for the opponents and select the winning action in most
cases according to DDA.

3.2 Chosen AI: Whbridge5

The purpose is to check whether the optimization seed method can be effective
on bridge AI. The first step consists in choosing a bridge AI which satisfies
the different conditions for which the method can be applied. The selected Al
is the one developed by Yves Costel for the bridge program Wbridge5. The
program satisfies the seed methodology conditions since it is stochastic and it
uses pseudo-random number generators in order to obtain a sample of hidden
hands and allows to set the generators seed which makes it deterministic.

The second step consists in making some choices related to the adaptation of
the seed methodology to the game of bridge which is different on several aspects.
First of all, the methodology has been previously studied in the context of two
player games and for games with only one step whereas bridge is a four player
game with two different steps (bidding and card play).

We must handle the fact that there are four AI (two against two). Therefore,
four seeds need to be chosen. In order to make the interpretation of the results
easier, we choose a seed for each pair instead of for each player.

Another choice is related to the fact that the two phases of bridge are so
different that they can be seen as two different games. Furthermore, bidding
and card play do not use the same logic. The simulations are not used in the
same way when you have to take a decision during the bidding and during the
card play. A bad score can be due to a sub-optimal contract or bad card play
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In order to make the experiment more accurate, we need to test the seed used
during the bidding according to a perfect play and the seed used during the
card play by assuming that the contract is optimal.

We choose to restrict experiments to the optimization of the biddings seed for the
following reasons: the final contract is crucial - even if your card play is optimal,
the pair obtains a bad score if the contract is wrong. Bidding phase is known
to be one of the most difficult problems for computer bridge. Simulations are
more useful during the bidding where the incompleteness concerns three hands,
that is to say 39 cards, while there are at most 25 unknown cards during the
card play after the lead. Note that the choice of the lead is decided by another
part of the program and that the last tricks are almost always played with
all the cards known by all the players. Finally, information from the bidding
and the cards played previously are available during card play - therefore, the
number of unknown cards is restricted enough to make possible the use of more
costly methods without DDA. In practice, for computational reasons, systems
use double-dummy approach for choosing then playing cards at the beginning
of the phase (between 0 to 4 first played cards depending on the system) and
use single-dummy approaches, which are more effective but more costly, for
the rest of the board. Single-dummy methods are usually not documented
since developers keep their own version private. Note that approaches used
by bridge AI in the card play stage have satisfying results but also various
shortcomings: the simulation takes into account the opponents’ bids (or the
absence of bidding), but it does not (yet, and usually) take into account their
earlier actions during the card play - whereas a human player takes into account
his opponents’ auctions, bridge computer programs are often unable to have this
kind of reasoning. Finally, card play being very time-consuming, we do not use
the card play module of Wbridge5. The evaluation function is defined according
to DDA as explained in the following section.

4 Experiments

The first step of experiments consists in building a matrix with the results of
matches between the various deterministic versions of Whbridge5 which can be
generated from the stochastic Al by choosing seeds since Whbridge5 has clean
seeds. The matrix allows us to compare the different seeds.

In the following, let us denote WB(i) the deterministic version of Whridgeb
with seed i.

4.1 Bridge data

The duplicate scoring (see section II.A) is the scoring used for official compe-
titions both for humans and robots. The size of matches in computer bridge
competitions is usually 64 boards.

In order to compare 40 seeds, we build a 40x40 matrix R; each entry R(i, )
containing the result in IMPs of a 64-board match between W B(i) and W B(j).

11



As an illustration, R(2,3) = 12 represents the fact that the Wbridge5 with seed
2 against wbridgeb with seed 3 wins the 64-board match with an advance of 12
IMPs.

Description of a match WB(i) against WB(j):
there are two game tables with for each table two instances of WB(i) and two
instances of WB(j). At table 1, instances of WB(i) are NS and instances of
WB(j) are EO. At table 2, instances of WB(j) are NS and instances of WB(i)
are EO. The 64 boards are the same at the two tables. Each Al has then exactly
the same cards as the opponent at the other table.
Scoring: let us recall that we want to evaluate the biddings according to an
optimal card play. Moreover, the card play stage is computationally expensive.
Consequently, we decide to only use the bidding part of wbridge5 and to compute
the score at each table by comparing the contract reached by the Al and the
number of won tricks computed with the double-dummy solver of Wbridge5. It
is then sufficient to compute the difference in points between the score linked to
the two tables. Finally, the difference is converted into IMPs according to the
conversion table 3.
Remarks:
1. During the experiment, we observe that there is no simulation for 10% of
boards, and in 75% of cases the contract is the same for the two different seeds
considered. In these two cases, the score of the board is then 0.
2. The seed has an impact in 15% of cases but these cases concern important
decisions with high value in IMPs (this kind of boards are called swing boards).
3. Since the Al is deterministic when the seed is fixed, R(i,j) = —R(j,¢) and
the diagonal contains 0 values since it concerns matches between four same Al.
4. The set of boards of each match is disjoint from the set of boards of every
other match. Each seed is then tested on 2496 (39*64) different boards. The
matrix is built using 49920 boards ((40*39*%64)/2).
Results: here is the vector of the cumulative scores is, from seed 1 to seed 40:
(156 -28 55 167 -170 -188 -16 246 -30 94 -111 -113 266 -73 13 110 54 63 86 21
-53 -263 30 130 -62 -162 -57 -20 -173 -5 -81 57 92 -151 -25 -44 118 -234 269 32).
The bigger is the cumulative score, the better is the seed. The worst seed is
the seed 22 (with a cumulative score of -263) and the best seed is the seed 39
(4+269). The won matches rate is : 56.4% for seed 39 and 41.02% for seed 22.

There are several competing approaches in the seed methodology [19, 3, 4],
including BestSeed and Nash. The BestSeed approach usually provides greater
success rates against the original Al tan the Nash approach. On the other hand,
the Nash approach is more robust and provides significant improvements against
opponents who might learn against our algorithm. More precisely, the Nash
approach allows us to obtain a stochastic boosted AI by giving a probability
distribution over the seeds. The goal is to make sure the AI is not predictable
for the opponents. Because of the complexity of the game, predictability is not
a problem for bridge. Therefore we use BestSeed allowing use to choose the seed
39 with 4269 cumulated IMPs.

12
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Figure 5: Performance of the best seed (39) w.r.t. the size of a randomly known
submatrix

In the two following sections, we present some results related to the perfor-
mance of the best seed found. The first approach presented in B. is a cross-
validation one on the current matrix. The second approach presented in C.
consists in empirically testing the performance of the best seed over new 1000-
board match between different versions of Wbridge5 and the boosted one.

4.2 Validation w.r.t. the impact of the matrix size

The validation is related to the 40x40 matrix mentioned above. Importantly,
we properly apply cross-validation - the performance is tested in parts of the
matrix which have not been seen. The general idea of this cross-validation is to
study the impact of the best seed by randomly keeping a part of the matrix to
form the test set.

For each submatrix size (from 1 to 30), we compute the performance, in
IMPs, of the best seed selected on a randomly known submatrix against the
remaining seeds. The process is iterated in order to obtain an average perfor-
mance for each matrix size. Results of the cross-validation of the best seed are
presented in Fig. 5 where the x-axis represents the size of a the submatrix,
while the y-axis represents the average performance, in IMPs, of the best seed
selected on this submatrix against the remaining seeds.

The results of the robustified version are presented in Fig. 6 where the x-axis
represents the size of a the submatrix, while the y-axis represents the average
performance, in IMPs, of the the best X% seed selected on this submatrix
against the remaining seeds.
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4.3 Validation according to empirical results out of the
matrix

We test the best seed found in the matrix on new 1000-board matches. As
previous, scores are computing using the double-dummy solver. Here are some
results related to the cumulative score and to the rate of won boards.

We compare the deterministic program with the best seed (seed 39) and the
worst (seed 22). The program with the best seed wins with a difference of 163+
2.62 IMPs, over 1000 games, i.e. 0.16 IMP per board. The rate of won boards
for seed 39 is : 59%.

According to the fact that the cumulative scores of the best seed and the
second one (seed 13 with 266 IMPs) were very close, we decide to compare the
two seeds in a new 1000-board match. The program with the best seed wins
with a difference of 138+ 2.86 IMPs, over 1000 games, i.e. 0.13 IMP per board.
The rate of won boards for seed 39 is: 54%.

Finally, we test the performance of the best seed with a third match against
the program with the current seed (99) which had been chosen arbitrarily in
the past of WBridge5. The program with the best seed wins with a difference
of 97 4+ 2.75 IMPs on 1000 boards. This means an improvement of ~0.1 IMP
per board.

Without going into further details it is important to point out that a gain of
0.1 IMP per board is a great improvement for bridge players with similar game
level. The won boards rate for seed 39 against the seed 99 is: 55.5%. These
experimental results ensuring a significant performance improvement compared
to the original WBridgeb, Yves Costel decides to use the boosted version for the
Whridge5 participation to the 20th World Computer-Bridge Championship.

5 World Computer-Bridge Championship

Figure 7: World Computer-Bridge Championship in Wroclaw, september 2016

The 20*" World Computer-Bridge Championship was held on September
10-15, alongside the World Bridge Games in Wroclaw, Poland. The orga-
nization is carried out by Alvin Levy who provided boards, played a tour-
ney director role and established the ranking (for more details see https:
//bridgerobotchampionship.wordpress.com/). The technical part is entirely
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handled by Gérard Joyez who has developed the central program Table Man-
ager of these championships which allows the sharing of information between
robots while avoiding cheating. This year the 8 participants and their awards
are : Bridge Baron (USA, 1997), Meadowlark Bridge (USA, 2000), Micro Bridge
(Japan), Q-Plus Bridge (Germany), RoboBridge (Netherlands), Shark Bridge
(Denmark, 2011 and 2014), Wbridge5 (France, 2005, 2007 and 2008) et Xin-
rui (China). We note that the absence of the current world champion Jack
(Netherlands), the come-back of Meadowlark Bridge and the new entry of Xin-
rui which is a serious opponent since Xinrui is designed by a company dedicated
to computer bridge founded by Yuzhang Liu with a team of 20 persons.

The competition begins with a qualification stage called Round-Robin where
every Al play against each other in 32-board matches. At the end of this stage,
the four best programs are qualified for the semi-finals, the first one faces the
fourth, while the second faces the third. The two winners of these semi-finals
face each other for a final match of 64 boards.

When there are several matches between teams as it is the case during the

Round-Robin, for each match the difference in IMPs is converted into Victory
Points or VPs with a minimum of 0 and a maximum of 20 per match. The
use of such scales reduces the impact of possible massive IMPs blow-outs that
may occur in some matches. Here is the overall team ranking related to the
cumulation of VPs during the Round-Robin (7 matches): (Wbridge5 91.87,
Micro Bridge 90.07, Bridge Baron 89.21, Shark Bridge 80.12 , Q-Plus Bridge
78.76 , Xinrui 78.50 , RoboBridge 50.58 , Meadowlark Bridge 0.89).
Whridge5 finishes first of the Round-Robin with a very little lead over the second
and third Xinrui, the newcomer, with a great start, was about to qualify before
its last match against Shark Bridge where it was heavily defeated. Generally
speaking, the competition between the first six programs was very tight. In this
way, Q-plus bridge only lost the fourth place during the last board of the last
match. The semi-finals and finals are also very tight. Since it is a K.O. phase,
scores are in IMPs. Micro-Bridge beated Bridge Baron with a fewer difference:
144-138 IMPs. Whbridge5 wins in semifinal 140.6-131 IMPs. This difference
of 9.6 IMPs is about the same as the carry-over coming from the victory of
Whridge5 against Shark during the Round-Robin. The final is as tight as the
semifinals. Before the last two boards, Wbridge5 looses by 17 IMPs against
Micro Bridge. However, Wbridge5 wins 23 IMPs in the last two boards for a
final score of 162 to 156. The difference of 6 IMPs for 64 boards corresponds to
a gain of 0.09375 IMP per board. The estimated advantage of the best seed in
comparison to the old one is ~ 0.1 IMPs per board. All over the competition,
the Al made the difference in the bidding part by finding a better contract than
its opponent. Our empirical experiments show that the seed has an impact
on difficult decisions like these ones. Finally, Wbridgeb won its fourth world
champion title, eight years after its last victory.
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6 Conclusions

6.1 Related work

A large part of the current research effort in card games uses deep learning (e.g.
[13] for Poker), with clear successes; this has reached Bridge (see the recent
[10, 23] and the older [22]). In [23], a deep reinforcement learning model has
been designed in order to achieve automatic bid learning task in a subproblem
of bidding called non competitive bidding sequences. This kind of bidding se-
quence occurs in only 27 % of boards (statistics obtained from the data on the
WBEF site). Besides, the subproblem is related to a two-player process rather
than to a four-player one. Automatic bidding has been studied in [1, 6] where
a PIDM (Partial Information Decision Making) algorithm has been designed in
order to predict reasonable auctions. In [6], a self-organizing map neural net-
work has been used to effectively bid no trump hands. Our approach is not in
competition with these methods; it could be used on top of any method which
uses stochasticity, in particular to avoid blunders related to unlucky seeds.

6.2 Work in progress and Further Work

Current research is directed towards extending this analysis and a flurry of
experiments on Whbridge5 in progress aim to extend the framework. First of
all, in order to decrease the offline computational cost, we begin to extend our
work by using an advanced bandit methodology [11] rather than the brute force
version used in the present work. The time gain will allow us to make more
precise experiments in order to find best specific seeds for different situations in
the bidding depending on the level of the contract (e.g slams which are contracts
involving to win at least 12 of the 13 tricks). Finally, a possible extension of the
work is related to the optimization of seeds used in the card play step.

As stated in [20], bridge is a great challenge for AT and much work related
to the definition of a bridge AI remains to be done. Currently, the average
level of best current bridge Al is well below world class level. The level of
bridge programs is close to that of Go programs before 2006. The designing of
a hybrid architecture including recent numeric and symbolic machine learning
modules is currently underway. Work presented in this paper fits into this
architecture. The seed methodology has been applied to several games, but
to the best of our knowledge the present paper presents simultaneously the
first application to Bridge and the first application to a world-level program.
WBridge5 equipped with the seed methodology won the 20** World Computer-
Bridge Championship, whereas it had not won this yearly competition since
2008.
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