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    Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary

Introduction

The classical lubrication problem is to describe the situation in which two adjacent surfaces in relative motion are separated by a thin film of fluid acting as a lubricant. Such situation appears naturally in numerous industrial and engineering applications, in particular those consisting of moving machine parts. The mathematical models for describing the motion of the lubricant usually result from the simplification of the geometry of the lubricant film, i.e. its thickness. Using the film thickness as a small parameter, an asymptotic approximation of the Stokes system can be derived providing the well-known Reynolds equation for the pressure of the fluid (see Bayada and Chambat [START_REF] Bayada | The transition between the Stokes equations and the Reynolds equation: a mathematical proof[END_REF] or Reynolds [START_REF] Reynolds | On the theory of lubrication and its applications to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil[END_REF] for more details). For the stationary case, considering no-slip condition on the boundary and an exterior force f , the two-dimensional Reynolds equation for the unknown pressure p has the form

div x h(x ) 3 12µ f (x ) -∇ x p(x ) = 0 , (1.1) 
where h describe the shape of the top boundary and µ is the fluid viscosity.

Engineering practice also stresses the interest of studying the effects of domain irregularities on a thin film flow. Thus, the goal becomes in identifying in which way the irregular boundary affects the flow. In this sense, the oscillating boundary is described by two parameters, ε and η ε , which are devoted to tend to zero. The parameter ε is the characteristic wavelength of the periodic roughness, and η ε is the thickness of the domain, i.e. the distance between the surfaces. By means of homogenization thecniques, it is showed in Bayada and Chambat [START_REF] Bayada | New models in the theory of the hydrodynamic lubrication of rough surfaces[END_REF][START_REF] Bayada | Homogenization of the Stokes system in a thin film flow with rapidly varying thickness[END_REF] that depending in the critical size, η ε ≈ ε with η ε /ε → λ, 0 < λ < +∞, there exist three types of flow regimes. This result has been successfully generalized to the unstationary case (the rough surface is moving) in Fabricius et al. [START_REF] Fabricius | Asymptotic behaviour of Stokes flow in a thin domain with a moving rough boundary[END_REF][START_REF] Fabricius | A comparison of the roughness regimes in hydrodynamic lubrication[END_REF]. Below, we describe the three characteristic regimes:

• Stokes roughness regime: it corresponds to the critical case when the thickness of the domain is proportional to the wavelength of the roughness, with λ the proportionality constant, 0 < λ < +∞ (see Figure 1). In this case, a modified Reynolds equation is obtained as an effective model where the coefficients are obtained by solving 3D local Stokes problems which depend on the parameter λ.

• Reynolds roughness regime: it corresponds to the case when λ = 0, i.e. η ε ε and so the wavelength of the roughness is much greater than the film thickness (see Figure 2). In this case, a modified Reynolds equation is obtained as an effective model where the coefficients are obtained by solving 2D local Reynolds problems. Similar averaged effective equations appear for example in [START_REF] Patir Thien | An average flow model for deterministic effects of three dimensional roughness on partial hydrodynamic lubrication[END_REF][START_REF] Phan-Thien | On the effects of the Reynolds and Stokes surface roughness in a two-dimensional slider bearing[END_REF][START_REF] Wall | Homogenization of Reynolds equation by two-scale convergence[END_REF].

• High-frequency regime: it corresponds to the case when λ = +∞, i.e. η ε ε and so the wavelength of the roughness is much smaller than the film thickness (see Figure 3). In this case, due to the highly oscillating boundary, the velocity field vanishes in the oscillating zone and a simpler Reynolds equation is deduced in the non-oscillating zone. This problem is well studied in the case of Newtonian fluids, however, for the non-Newtonian fluids the situation is completely different. The main reason is that the viscosity is a nonlinear function of the symmetrized gradient of the velocity. A relevant case of non-Newtonian fluids is when the viscosity satisfies the nonlinear power law, which is widely used for melted polymers, oil, mud, etc. If u is the 

η p (D [u]) = µ |D [u]| p-2 , 1 < p < +∞,
where the two material parameters µ > 0 and p are called the consistency and the flow index, respectively. Recall that p = 2 yields the Newtonian fluid, for 1 < p < 2 the fluid is pseudoplastic (shear thinning), which is the characteristic of high polymers, polymer solutions, and many suspensions, whereas for p > 2 the fluid is dilatant (shear thickening), whose behavior is reported for certain slurries, like mud, clay or cement, and implies an increased resitence to flow with intesified shearing.

Similarly to the mathematical derivation of the 2D Reynolds equation (1.1) for Newtonian fluids, a 2D nonlinear Reynolds equation for non-Newtonian fluids has been obtained in Bourgeat et al. [START_REF] Bourgeat | Dérivation des équations moyennes écrivant un écoulement non Newtonien dans un domaine de faible épaisseur[END_REF] and Mikelić and Tapiero [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF], which has the form

div x h(x ) p +1 2 p 2 (p + 1)µ p -1 f (x ) -∇ x p(x ) p -2 f (x ) -∇ x p(x ) = 0 ,
where p = p/(p -1) is the conjugate exponent of p.

In this paper, we consider fluid flows satisfying the non-Newtonian Navier-Stokes system, where the viscosity satisfies the nonlinear power law with 9/5 ≤ p < +∞, in the thin domain with a rough boundary described above (see Fig. 1, Fig. 2 and Fig. 3). Our purpose is to study the asymptotic behavior of this system when ε and η ε tend to zero. The proof of our results is based on an adaptation of the unfolding method (see Arbogast et al. [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF], and Cioranescu et al. [START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF]), which is strongly related to the two-scale convergence method (see Allaire [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], and Nguetseng [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]), but here it is necessary to combine it with a rescaling in the height variable, in order to work with a domain of fixed height, and to use monotonicity arguments to pass to the limit. The unfolding method is a very efficient tool to study periodic homogenization problems where the size of the periodic cell tends to zero. The idea is to introduce suitable changes of variables which transform every periodic cell into a simpler reference set by using a supplementary variable (microscopic variable). Thanks to this method, we are able to identify the critical size and later the effects of the microstructure in the corresponding effective equations. Thus, we obtain that the critical size is exactly the same as the one of the Newtonian case, i.e. when η ε ≈ ε with η ε /ε → λ, 0 < λ < +∞. This means that the same three characteristic regimes are still valid for the non-Newtonian case: the Stokes roughness regime (η ε ≈ ε), the Reynolds roughness regime (η ε ε) and the high-frequency regime (η ε ε). As a result, we generalize the Newtonian case studied by Bayada and Chambat [START_REF] Bayada | New models in the theory of the hydrodynamic lubrication of rough surfaces[END_REF][START_REF] Bayada | Homogenization of the Stokes system in a thin film flow with rapidly varying thickness[END_REF] to the case of a non-Newtonian fluid governed by the Navier-Stokes system and we give the explicit expressions in each regime, which are the main novelties of the paper. Some other generalized nonlinear Reynolds equations for non-Newtonian fluids has been also obtained in Duvnjak [START_REF] Duvnjak | Derivation of Non-linear Reynolds-type Problem for Lubrication of a Rotating Shaft[END_REF] for lubrication of a rotating shaft, in Boukrouche et al. [START_REF] Boughanim | Asymptotic behavior of a non-newtonian flow with stick-slip condition[END_REF] and Boukrouche and El Mir [START_REF] Boukrouche | Asymptotic analysis of a non-Newtonian fluid in a thin domain with Tresca law[END_REF], where it is assumed stick-slip conditions given by Tresca law on the boundary, and in Suárez-Grau [START_REF] Suárez-Grau | Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary[END_REF], where Navier slip boundary conditions are prescribed on the rough boundary.

The plan of this paper is as follows. In Section 2, the domain and some notations are introduced. In Section 3, we formulate the problem and state our main result, which is proved in Section 6 using a priori estimates and compactness results established in Section 4 and Section 5, respectively.

The domain and some notations

Along this section, the points x ∈ R 3 will be decomposed as x = (x , x 3 ) with x ∈ R 2 , x 3 ∈ R. We also use the notation x to denote a generic vector of R 2 .

We consider a smooth bounded open set ω ⊂ R 2 . The thin domain with an oscillating boundary is defined by

Ω ε = x ∈ R 3 : x ∈ ω, 0 < x 3 < η ε h x ε , (2.2) 
where the oscillating part of the boundary ∂Ω ε is given by

Σ ε = x ∈ R 3 : x ∈ ω, x 3 = η ε h x ε .
Here, η ε h(x /ε) represents the real gap between the two surfaces and h is a smooth function, defined for y in R 2 , Y -periodic, being Y = (-1/2, 1/2) 2 the cell of periodicity. The small parameter η ε is related to the film thickness, whereas the small parameter ε is the wavelength of the roughness.

In order to have a domain with thickness order one, we use the dilatation in the variable x 3 given by

y 3 = x 3 η ε , (2.3) 
which transforms the thin domain Ω ε in the rescaled domain Ω ε given by

Ω ε = (x , y 3 ) ∈ R 2 × R : x ∈ ω, 0 < y 3 < h x ε , (2.4) 
where the oscillating part of the boundary ∂ Ω ε is given by

Σ ε = (x , y 3 ) ∈ R 2 × R : x ∈ ω, y 3 = h x ε .
We denote

h min = min y ∈Y h(y ), h max = max y ∈Y h(y ) ,
and we define the domain with a fixed height Ω by

Ω = {(x , y 3 ) ∈ R 2 × R : x ∈ ω, 0 < y 3 < h max } ,
and the corresponding top boundary Σ by

Σ = {(x , y 3 ) ∈ R 2 × R : x ∈ ω, y 3 = h max } .
We also define

Ω -= {(x , y 3 ) ∈ R 2 × R : x ∈ ω, 0 < y 3 < h min } .
We denote by Y the reference cell in R 3 , which is given by

Y = {y ∈ R 3 : y ∈ Y , 0 < y 3 < h(y )} , (2.5) 
and by L p (Y ), W 1,p (Y ), with 1 < p < +∞, the functional spaces

L p (Y ) = v ∈ L p loc (Y ) : Y |v| p dy < +∞, v(y + k , y 3 ) = v(y) ∀k ∈ Z 2 , a.e. y ∈ Y , and W 1,p (Y ) = v ∈ W 1,p loc (Y ) ∩ L p (Y ) : Y |∇ y v| p dy < +∞ .
We denote by O ε a generic real sequence which tends to zero with ε and can change from line to line. We denote by C a generic positive constant which can change from line to line.

Setting and main results

In this section we describe the asymptotic behavior of an incompressible viscous non-Newtonian fluid in the geometry Ω ε given by (2.2). The proof of the corresponding results will be given in the next sections.

Our results are referred to the stationary non-Newtonian Navier-Stokes system,

-div (η p (D [u ε ]) D [u ε ]) + (u ε • ∇)u ε + ∇p ε = f in Ω ε , div u ε = 0 in Ω ε , (3.6) 
where u ε is the velocity, p ε is the pressure (scalar) and p = p/(p -1) is the conjugate exponent of p.

The right-hand side f is of the form

f (x) = (f (x ), 0), a.e. x ∈ Ω,
where f is assumed in L p (ω × (-h max , h max )) 2 . This choice of f is usual when we deal with thin domains. Since the thickness of the domain, η ε , is small then the vertical component of the force can be neglected and, moreover the force can be considered independent of the vertical variable.

Finally, we may consider no-slip boundary conditions without altering the generality of the problem under consideration,

u ε = 0 on ∂Ω ε . (3.7)
It is well known that (3.6)-(3.7) admits at least one weak solution (u ε , p ε ) ∈ W 1,p 0 (Ω ε ) 3 × L p 0 (Ω ε ) with 9/5 ≤ p < +∞ (see Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] and Málek et al. [START_REF] Málek | Weak and measured-valued solutions to evolutionary PDE[END_REF] for more details). The space L p 0 (Ω ε ) is the space of functions of L p (Ω ε ) with null integral.

Our aim is to study the asymptotic behavior of u ε and p ε when ε and η ε tend to zero. For this purpose, as usual when we deal with thin domains, we use the dilatation in the variable x 3 given by (2.3) in order to have the functions defined in the open set Ω ε defined by (2.4).

Namely, we define ũε

∈ W 1,p 0 ( Ω ε ) 3 , pε ∈ L p 0 ( Ω ε ) by ũε (x , y 3 ) = u ε (x , η ε y 3 ), pε (x , y 3 ) = p ε (x , η ε y 3 ), a.e. (x , y 3 ) ∈ Ω ε .
Let us introduce some notation which will be useful in the following. For a vectorial function v = (v , v 3 ) and a scalar function w, we will denote

D x [v] = 1 2 (D x v + D t x v) and ∂ y 3 [v] = 1 2 (∂ y 3 v + ∂ t y 3 v),
where we denote ∂ y 3 = (0, 0, ∂ ∂y 3 ) t , and associated to the change of variables (2.3), we introduce the operators: D ηε , D ηε , div ηε and ∇ ηε by

D ηε [v] = 1 2 D ηε v + D t ηε v , div ηε v = div x v + 1 η ε ∂ y 3 v 3 , (D ηε v) i,j = ∂ x j v i for i = 1, 2, 3, j = 1, 2, (D ηε v) i,3 = 1 η ε ∂ y 3 v i for i = 1, 2, 3 , ∇ ηε = (∇ x w, 1 η ε ∂ y 3 w) t .
Using the transformation (2.3), the system (3.6) can be rewritten as

-div ηε µ |D ηε [ũ ε ]| p-2 D ηε [ũ ε ] +(ũ ε • ∇ ηε )ũ ε +∇ ηε pε = f in Ω ε , div ηε ũε = 0 in Ω ε , (3.8) 
with no-slip condition, i.e. ũε = 0 on ∂ Ω ε .

(3.9)

Our goal then is to describe the asymptotic behavior of this new sequence (ũ ε , pε ).

The sequence of solutions (ũ ε , pε ) ∈ W 1,p 0 ( Ω ε ) 3 ×L p 0 ( Ω ε ) is not defined in a fixed domain independent of ε but rather in a varying set Ω ε . In order to pass the limit if ε tends to zero, convergences in fixed Sobolev spaces (defined in Ω) are used which requires first that (ũ ε , pε ) be extended to the whole domain Ω.

Then, by definition, an extension (ṽ ε , Pε ) ∈ W 1,p 0 (Ω) 3 × L p 0 (Ω) of (ũ ε , pε ) is defined on Ω and coincides with (ũ ε , pε ) on Ω ε .

In order to simplify the notation, we define S as the p-Laplace operator

S(ξ) = |ξ| p-2 ξ, ∀ξ ∈ R 3×3 sym , 1 < p < +∞.
Our main result referred to the asymptotic behavior of a solution of (3.8)-(3.9) is given by the following theorem.

Theorem 3.1. Assume 9/5 ≤ p < +∞. We distingue three cases depending on the relation between the parameter η ε with respect to ε:

i) If η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞, then the extension (η -p p-1 ε
ṽε , Pε ) of a solution of (3.8)-(3.9) converges weakly to (ṽ, P ) in W 1,p (0, h max ; L p (ω) 3 ) × L p 0 (ω) with ṽ3 = 0. Moreover, it holds that P ∈ W 1,p (ω) and ( Ṽ , P ) is the unique solution of the nonlinear Reynold problem

       Ṽ (x ) = 1 µ A λ f (x ) -∇ x P (x ) in ω, div x Ṽ (x ) = 0 in ω, Ṽ (x ) • n = 0 in ∂ω, (3.10) 
where Ṽ (x ) = hmax 0 ṽ (x , y 3 ) dy 3 and A λ : R 2 → R 2 is monotone, coercive and defined by

A λ (ξ ) = Y w ξ (y) dy, ∀ ξ ∈ R 2 , (3.11) 
where w ξ (y), for every ξ ∈ R 2 , denote the unique solution in

W 1,p (Y ) 3 of the local Stokes problem in 3D          -div λ S D λ [w ξ ] + ∇ λ π ξ = ξ in Y , div λ w ξ = 0 in Y , w ξ = 0 in y 3 = 0, h(y ) , w ξ , π ξ Y -periodic. (3.12) where D λ [•] = λD y [•] + ∂ y 3 [•], ∇ λ = (λ∇ y , ∂ y 3 ) t and div λ = λdiv y + ∂ y 3 . ii) if η ε ε, then the extension (η -p p-1 ε ṽε , Pε ) of a solution of (3.8)-(3.9) converges weakly to (ṽ, P ) in W 1,p (0, h max ; L p (ω) 3 ) × L p 0 (ω) with ṽ3 = 0.
Moreover, it holds that P ∈ W 1,p (ω) and ( Ṽ , P ) is the unique solution of the nonlinear Reynolds problem

       Ṽ (x ) = 1 2 p 2 (p + 1)µ A 0 f (x ) -∇ x p(x ) in ω, div x Ṽ (x ) = 0 in ω, Ṽ (x ) • n = 0 in ∂ω, (3.13) 
where Ṽ (x ) = hmax 0 ṽ(x , y 3 ) dy 3 and A 0 : R 2 → R 2 is monotone, coercive and defined by

A 0 (ξ ) = Y h(y ) p +1 ξ + ∇ y π ξ p -2 ξ + ∇ y π ξ dy , ∀ ξ ∈ R 2 , (3.14)
where, π ξ (y ), for every ξ ∈ R 2 , denote the unique solution in

W 1,p (Y ) ∩ L p 0 (Y ) of the local Reynolds problem in 2D        div y h(y ) p +1 ξ + ∇ y π ξ p -2 ξ + ∇ y π ξ = 0 in Y , h(y ) p +1 ξ + ∇ y π ξ p -2 ξ + ∇ y π ξ • n = 0 in ∂Y . (3.15)
iii) If η ε ε, then the extension (η

-p p-1 ε
ṽε , Pε ) of the solution of (3.8)-(3.9) converges weakly to (ṽ, P ) in W 1,p (0, h min ; L p (ω) 3 ) × L p 0 (ω), with ṽ3 = 0. Moreover, it holds that P ∈ W 1,p (ω) and ( Ṽ , P ) is the unique solution of the nonlinear Reynolds problem

         Ṽ (x ) = h p +1 min 2 p 2 (p + 1)µ p -1 f (x ) -∇ x p(x ) p -2 f (x ) -∇ x p(x ) , div x Ṽ (x ) = 0 in ω, Ṽ (x ) • n = 0 in ∂ω , (3.16) 
where Ṽ (x ) = h min 0 ṽ(x , y 3 ) dy 3 .

Remark 3.2. The monotonicity and coerciveness properties of A λ and A 0 given by (3.11) and (3.14), respectively, can be found in Bourgeat et al. [START_REF] Bourgeat | Filtration law for polymer flow through porous media[END_REF].

Remark 3.3. This is a preliminary step towards a complete generalization of the papers of Bayada and Chambat [START_REF] Bayada | New models in the theory of the hydrodynamic lubrication of rough surfaces[END_REF][START_REF] Bayada | Homogenization of the Stokes system in a thin film flow with rapidly varying thickness[END_REF] in order to consider rough surfaces of type η ε h(x , x /ε) (locally periodic oscillatory boundaries), which are more practical from the engineering point of view. We think that this could be successfully managed by an adaptation of the recent version of the unfolding method introduced by Arrieta and Villanueva-Pesqueira [START_REF] Arrieta | Unfolding operator method for thin domains with a locally periodic highly oscillatory boundary[END_REF], which will be object of a future study.

A priori estimates

Let us begin with the classical Poincaré and Korn inequalities.

Lemma 4.1. (Poincaré's inequality) For w ∈ W 1,p 0 (Ω ε ) 3 , 1 ≤ p < +∞, w L p (Ωε) 3 ≤ Cη ε ∂ x 3 w L p (Ωε) 3 , (4.17) 
where C is independent of w and ε.

Lemma 4.2. (Korn's inequality) For w ∈ W 1,p 0 (Ω ε ) 3 , 1 < p < +∞, Dw L p (Ωε) 3×3 ≤ C D[w] L p (Ωε) 3×3 , (4.18) 
where C is independent of w and ε.

Proof. See Lemmas 1.2 and 1.3 in Mikelić and Tapiero [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF].

Let us obtain some a priori estimates for velocities u ε and ũε . 

u ε L p (Ωε) 3 ≤ Cη 2p-1 p(p-1) +1 ε , D [u ε ] L p (Ωε) 3×3 ≤ Cη 2p-1 p(p-1) ε , (4.19 
)

Du ε L p (Ωε) 3×3 ≤ Cη 2p-1 p(p-1) ε , (4.20) ũε L p ( Ωε) 3 ≤ Cη p p-1 ε , D ηε [ũ ε ] L p ( Ωε) 3×3 ≤ Cη 1 p-1 ε , (4.21) 
D ηε ũε L p ( Ωε) 3×3 ≤ Cη 1 p-1 ε . (4.22)
Proof. Multiplying by u ε in the first equation of (3.6) and integrating over Ω ε , we have

µ D [u ε ] p L p (Ωε) 3×3 = Ωε f • u ε dx. (4.23)
Using Hölder's inequality and the assumption of f , we obtain that

Ωε f • u ε dx ≤ Cη 1 p ε u ε L p (Ωε) 3 ,
and by (4.23), we have

D [u ε ] p L p (Ωε) 3×3 ≤ Cη 1 p ε u ε L p (Ωε) 3 .
Taking 

∇ ηε pε W -1,p ( Ωε) 3 ≤ C . (4.24)
Proof. From system (3.8), we have that (brackets are for the duality products between W -1,p and

W 1,p 0 ) ∇ ηε pε , φ Ωε = -µ Ωε S(D ηε [ũ ε ]) : D ηε φ dx dy 3 + Ωε f • φ dx dy 3 - Ωε (ũ ε • ∇ ηε )ũ ε φ dx dy 3 . (4.25)
for every φ ∈ W 1,p 0 ( Ω ε ) 3 . By the second estimate in (4.21), we have

µ Ωε S(D ηε [ũ ε ]) : D ηε φ dx dy 3 ≤ D ηε [ũ ε ] p-1 L p ( Ωε) 3×3 D ηε φ L p ( Ωε) 3×3 ≤ 1 η ε D ηε [ũ ε ] p-1 L p ( Ωε) 3×3 φ W 1,p 0 ( Ωε) 3×3 ≤ C φ W 1,p 0 ( Ωε) 3 , Ωε f • φ dx dy 3 ≤ C φ W 1,p 0 ( Ωε) 3 . (4.26)
Hence, to derive estimates for ∇ ηε pε from (4.25), we just need to consider the initial terms, which can be written

Ωε (ũ ε • ∇ ηε )ũ ε φ dx dy 3 = - Ωε ũε ⊗ũ ε : D x φ dx dy 3 + 1 η ε Ωε ∂ y 3 ũε,3 ũε • φ dx dy 3 + Ωε ũε,3 ∂ y 3 ũε • φ dx dy 3 , (4.27) 
where (u ⊗w

) ij = u i w j , i = 1, 2, j = 1, 2, 3.
We consider separately the two terms in the right-hand side of (4.27):

(i) Estimate of the first part of the right-hand side of (4.27) has the form

ũε 2 L q ( Ωε) 3 D x φ L p ( Ωε) 3×2 ,
with 2/q + 1/p = 1.

We introduce the interpolation parameter θ = p * (p-1)-2p 2(p * -p)

where

p * = 3p (3-p) if 9/5 ≤ p < 3, p * ∈ [p, +∞) if p = 3 and p * ∈ [p, +∞] if p > 3.
For 9/5 ≤ p < 3, we have that 0 ≤ θ ≤ 1 such that

1 q = θ p + 1 -θ p * .
We have the interpolation

ũε L q ( Ωε) 3 ≤ ũε θ L p ( Ωε) 3 ũε 1-θ L p * ( Ωε) 3 ,
and by the the Sobolev embedding, W 

( Ωε) 3 ≤ ũε θ L p ( Ωε) 3 Dũ ε 1-θ L p ( Ωε) 3×3 ≤ ũε W 1,p 0 ( Ωε) 3 ≤ Cη 1 p-1 ε , and then, Ωε ũε ⊗ũ ε : D x φ dx dy 3 ≤ Cη 2 p-1 ε φ W 1,p 0 ( Ωε) 3 .
For p ≥ 3, we take p * = p and we have

Ωε ũε ⊗ũ ε : D x φ dx dy 3 ≤ Cη 2p p-1 ε φ W 1,p 0 ( Ωε) 3 .
(ii) Estimate of the second part of the right-hand side of (4.27) has the form

C η ε ∂ y 3 ũε L p ( Ωε) 3 ũε L q ( Ωε) 3 φ L q ( Ωε) 3 ,
with 2/q + 1/p = 1.

For 9/5 ≤ p < 3, working as in item (i), we have 3 , and by estimate (4.22), we get

ũε L q ( Ωε) 3 ≤ Cη 1 p-1 ε , φ L q ( Ωε) 3 ≤ φ W 1,p 0 ( Ωε)
1 η ε Ωε ∂ y 3 ũε,3 ũε φ dx dy 3 + Ωε ũε,3 ∂ y 3 ũε φ dx dy 3 ≤ Cη 2 p-1 ε φ W 1,p 0 ( Ωε) 3 .
For p ≥ 3, we take p * = p and we have

1 η ε Ωε ∂ y 3 ũε,3 ũε φ dx dy 3 + Ωε ũε,3 ∂ y 3 ũε φ dx dy 3 ≤ Cη 2p p-1 ε φ W 1,p 0 ( Ωε) 3 .
Then, from (4.27) we can deduce that for 9/5 ≤ p < 3, we obtain

Ωε (ũ ε • ∇ ηε )ũ ε φ dx dy 3 ≤ Cη 2 p-1 ε φ W 1,p 0 ( Ωε) 3 ,
and for p ≥ 3, we get 3 . Taking into account the previous estimates with η ε 1 and (4.26) in (4.25), for 9/5 ≤ p < +∞, we have 3 , and so we have the estimate (4.24).

Ωε (ũ ε • ∇ ηε )ũ ε φ dx dy 3 ≤ Cη 2p p-1 ε φ W 1,p 0 ( Ωε)
| ∇ ηε pε , φ Ωε | ≤ C φ W 1,p 0 ( Ωε)
In order to estimate the pressure, since Ω ε is a bounded Lipschitz domain, we have

pε L p 0 ( Ωε) ≤ C( Ω ε ) ∇p ε W -1,p ( Ωε) 3 .
We take into account that the constant depends on the domain, i.e. it depends on ε. Thus, we can not obtain an estimate of the pressure in a fixed domain in order to prove convergence. So we have to define a continuation of the pressure to Ω in order to prove convergence.

The Extension of (ũ ε , pε ) to the whole domain Ω

In this section, we will extend the solution (ũ ε , pε ) to the whole domain Ω. It is easy to extend the velocity by zero in Ω\ Ω ε (this is compatible with the no-slip boundary condition on ∂ Ω ε ). We will denote by ṽε the continuation of ũε in Ω. It is well known that extension by zero preserves L p and W 1,p 0 norms for 1 < p < +∞. We note that the extension ṽε belongs to W 1,p 0 (Ω) 3 . Extending the pressure is a much more difficult task. Tartar [START_REF] Tartar | Incompressible fluid flow in a porous medium convergence of the homogenization process[END_REF] introduced a continuation of the pressure for a flow in a porous media. This construction applies to periodic holes in a domain Ω ε when each hole is strictly contained into the periodic cell. In this context, we can not use directly this result because the "holes" are along the boundary Σ ε of Ω ε , and moreover the scale of the vertical direction is smaller than the scales of the horizontal directions. This fact will induce several limitations in the results obtained by using the method, especially in view of the convergence for the pressure. In this sense, for the case of Newtonian fluids, Bayada and Chambat [START_REF] Bayada | Homogenization of the Stokes system in a thin film flow with rapidly varying thickness[END_REF] and Mikelić [START_REF] Mikelić | Remark on the result on homogenization in hydrodynamical lubrication by G. Bayada and M. Chambat[END_REF] introduced an operator R ε generalizing the results of Tartar [START_REF] Tartar | Incompressible fluid flow in a porous medium convergence of the homogenization process[END_REF] to this context. In our case, we need an operator R ε p between W 1,p (Ω) 3 and W 1,p ( Ω ε ) 3 with similar properties.

Let us introduce some notation. We consider that the domain ω is covered by a rectangular mesh of size ε: for k ∈ Z 2 , each cell Y k ,ε = εk + εY . We define the thin domain

Q ε = {x ∈ R 3 : x ∈ ω, 0 < x 3 < η ε h max } ,
and the corresponding cubes of size ε and height η ε h max given by Q

k ,ε = Y k ,ε × (0, η ε h max ). We also define Q k ,ε = Y k ,ε × (0, h max ).
According to the definition of the basic cell Y defined in (2.5), we also define Y k ,ε = Y k ,ε ×(0, h(y )) for k ∈ Z 2 . We also consider a smooth surface included in Y and surrounding the hump such that Y is split into two areas Y f and Y m (see Figure 4). 

Π = Y × (0, h max ), Π -= Y × (0, h min ), Y s = Π \ (Y m ∪ Y f ), S = ∂Y m ∩ ∂Y f .
We suppose from now on the following assumptions:

(H1) the surface roughness is made of detached smooth humps periodically given on the upper part of the gap, (H2) ω is covered by an exact finite number of periodic sets Y k ,ε . Thus, we define

T ε = {k ∈ Z 2 : ω ∩ Y k ,ε = ∅}, (H3) ∂Y m is a C 1 manifold.
Generalizing Bayada and Chambat [START_REF] Bayada | Homogenization of the Stokes system in a thin film flow with rapidly varying thickness[END_REF], we get the following.

Lemma 4.5. For given φ ∈ W 1,p (Π) 3 , 1 < p < +∞, such that φ = 0 on Γ, there exists w in W 1,p (Y m ) 3 such that: w| S = φ| S and w| ∂Ym\S = 0 .

Moreover, there exists a constant C which does not depend on φ such that:

   w W 1,p (Ym) 3 ≤ C φ W 1,p (Π) 3 ,
div ηε φ = 0 ⇒ div ηε w = 0 .

(4.28)

Proof. The proof is very similar to that given in [START_REF] Bayada | Homogenization of the Stokes system in a thin film flow with rapidly varying thickness[END_REF] for the case p = 2. In addition to the technique used in [START_REF] Bayada | Homogenization of the Stokes system in a thin film flow with rapidly varying thickness[END_REF], one needs L p -regularity for the Stokes equation.

Lemma 4.6. There exists an operator R ε p :

W 1,p 0 (Q ε ) 3 → W 1,p 0 (Ω ε ) 3 , 1 < p < +∞, such that: 1. ϕ ∈ W 1,p 0 (Ω ε ) 3 ⇒ R ε p (ϕ) = ϕ , 2. div ϕ = 0 ⇒ div R ε p (v) = 0 , 3. For any ϕ ∈ W 1,p 0 (Q ε ) 3 (the constant C is independent of ϕ and ε), we have R ε p (ϕ) L p (Ωε) 3 ≤ C ϕ L p (Qε) 3 + ε D x ϕ L p (Qε) 3×2 + η ε ∂ x 3 ϕ L p (Qε) 3 , D x R ε p (ϕ) L p (Ωε) 3×2 ≤ C 1 ε ϕ L p (Qε) 3 + D x ϕ L p (Qε) 3×2 + ηε ε ∂ x 3 ϕ L p (Qε) 3 , ∂ x 3 R ε p (ϕ) L p (Ωε) 3 ≤ C 1 η ε ϕ L p (Qε) 3 + ε η ε D x ϕ L p (Qε) 3×2 + ∂ x 3 ϕ L p (Qε) 3 .
Proof. For any φ ∈ W 1,p 0 (Π) 3 such that φ = 0 on Γ, Lemma 4.5 allows us to define R p ( φ) ∈ W 1,p (Π) 3 by

R p ( φ) =    φ if y ∈ Y f , w if y ∈ Y m , 0 if y ∈ Y s , which satisfies Π |R p ( φ)| p dy + Π |D y R p ( φ)| p dy ≤ C Π | φ| p dy + Π |D y φ| p dy . (4.29) 
For every k ∈ T ε , by the change of variables

k + y = x ε , y 3 = x 3 η ε , dy = dx ε 2 η ε , ∂ y = ε ∂ x , ∂ y 3 = η ε ∂ x 3 ,
we rescale (4.29) from Π to Q k ,ε . This yields that, for every function

ϕ ∈ W 1,p (Q k ,ε ) 3 , one has Q k ,ε |R p (ϕ)| p dx + ε p Q k ,ε |D x R p (ϕ)| p dx + η p ε Q k ,ε |∂ x 3 R p (ϕ)| p dx ≤ C Q k ,ε |ϕ| p dx + ε p Q k ,ε |D x ϕ| p dx + η p ε Q k ,ε |∂ x 3 ϕ| p dx.
We define R ε p by applying R p to each period Q k ,ε . Summing the previous inequalities for all the periods Q k ,ε , and taking into account that from (H2) we have

Q ε = ∪ k ∈Tε Q k ,ε , gives Qε |R ε p (ϕ)| p dx + ε p Qε |D x R ε p (ϕ)| p dx + η p ε Qε |∂ x 3 R ε p (ϕ)| p dx ≤ C Qε |ϕ| p dx + ε p Qε |D x ϕ| p dx + η p ε Qε |∂ x 3 ϕ| p dx .
Obviously R ε p (ϕ) lies in W 1,p 0 (Ω ε ) 3 and is equal to ϕ if ϕ is zero on Q ε \ Ω ε , so we get the estimates in the third item. Moreover, the second item is obvious from (4.28) 2 and the definition of R ε p .

Lemma 4.7. Setting R ε p ( ϕ) = R ε p (ϕ) for any ϕ in W 1,p 0 (Ω) 3 , 1 < p < +∞, where φ(x , y 3 ) = ϕ(x , η ε y 3 ) and R ε p is defined in Lemma 4.6, we have the following estimates

i) if η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞ or η ε ε, then R ε p ( φ) L p ( Ωε) 3 ≤ C φ W 1,p 0 (Ω) 3 , D ηε R ε p ( φ) L p ( Ωε) 3×3 ≤ C 1 η ε φ W 1,p 0 (Ω) 3 , ii) if η ε ε, then R ε p ( φ) L p ( Ωε) 3 ≤ C φ W 1,p 0 (Ω) 3 , D ηε R ε p ( φ) L p ( Ωε) 3×3 ≤ C 1 ε φ W 1,p 0 (Ω) 3 .
Proof. Considering the change of variables given in (2.3) and the estimates given in Lemma 4.6, we obtain

R ε p ( φ) L p ( Ωε) 3 ≤ C φ L p (Ω) 3 + ε D x φ L p (Ω) 3×2 + ∂ y 3 φ L p (Ω) 3 , D x R ε p ( φ) L p ( Ωε) 3×2 ≤ C 1 ε φ L p (Ω) 3 + D x φ L p (Ω) 3×2 + 1 ε ∂ y 3 φ L p (Ω) 3 , ∂ y 3 R ε p ( φ) L p ( Ωε) 3 ≤ C φ L p (Ω) 3 + ε D x φ L p (Ω) 3×2 + ∂ y 3 φ L p (Ω) 3 .
Taking into account that ε, η ε 1 and the relation between ε and η ε , we have the desired result.

It is then possible, to use the classical Tartar extension of the pressure.

Lemma 4.8. Assume that 9/5 ≤ p < +∞. There exists a constant C independent of ε, such that the extension (ṽ ε , Pε ) ∈ W 1,p 0 (Ω) 3 × L p 0 (Ω) of a solution (ũ ε , pε ) of (3.8)-(3.9) satisfies

ṽε L p (Ω) 3 ≤ Cη p p-1 ε , D ηε [ṽ ε ] L p (Ω) 3×3 ≤ Cη 1 p-1 ε , (4.30) 
D ηε ṽε L p (Ω) 3×3 ≤ Cη 1 p-1 ε . (4.31) For the cases η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞, or η ε ε, we have Pε L p 0 (Ω) ≤ C, (4.32) 
and for the case η ε ε, we have Pε 

L p 0 (Ω -) ≤ C. ( 4 
to Q ε introducing F ε in W -1,p (Q ε ) 3 : F ε , ϕ Qε = ∇p ε , R ε p (ϕ) Ωε , for any ϕ ∈ W 1,p 0 (Q ε ) 3 . (4.34)
We calcule the right hand side of (4.34) by using (3.6) and we have

F ε , ϕ Qε = -µ Ωε S(D [u ε ]) : DR ε p (ϕ) dx + Ωε f • R ε p (ϕ) dx - Ωε (u ε • ∇)u ε R ε p (ϕ) dx . (4.35) Moreover, divϕ = 0 implies F ε , ϕ Qε = 0 ,
and the DeRham theorem gives the existence of P ε in L p 0 (Q ε ) with F ε = ∇P ε . We get for any φ ∈ W 1,p 0 (Ω) 3 , using the change of variables (2.3),

∇ ηε Pε , φ Ω = - Ω Pε div ηε φ dx dy 3 = -η -1 ε Qε P ε div ϕ dx = η -1 ε ∇P ε , ϕ Qε .
Then, using the identification (4.35) of F ε ,

∇ ηε Pε , φ Ω = η -1 ε -µ Ωε S(D [u ε ]) : DR ε p (ϕ) dx + Ωε f • R ε p (ϕ) dx - Ωε (u ε • ∇)u ε R ε p (ϕ) dx ,
and applying the change of variables (2.3),

∇ ηε Pε , φ Ω = -µ Ωε S(D ηε [ũ ε ]) : D ηε Rε p ( φ) dx dy 3 + Ωε f • Rε p ( φ) dx dy 3 - Ωε (ũ ε • ∇ ηε )ũ ε Rε p ( φ) dx dy 3 .
(4.36)

Now, we estimate the right-hand side of (4.36). First, we consider η ε ≈ ε or η ε ε.

Using (4.21) and Lemma 4.7-(i), we get

µ Ωε S(D ηε [ũ ε ]) : D ηε Rε p ( φ) dx dy 3 ≤ Cη ε D ηε Rε p ( φ) L p ( Ωε) 3×3 ≤ C φ W 1,p 0 (Ω) 3 , Ωε f • Rε p ( φ) dx dy 3 ≤ C Rε p ( φ) L p ( Ωε) 3 ≤ C φ W 1,p 0 (Ω) 3 .
For the intertial terms, we proceed as in the proof of Lemma 4.4. We have

Ωε (ũ ε • ∇ ηε )ũ ε Rε p ( φ) dx dy 3 ≤ Ωε ũε ⊗ũ ε : D x Rε p ( φ) dx dy 3 + 1 η ε Ωε ∂ y 3 ũε,3 ũε Rε p ( φ) dx dy 3 + Ωε ũε,3 ∂ y 3 ũε Rε p ( φ) dx dy 3 .
Proceeding exactly as the proof of Lemma 4.4 and taking into account Lemma 4.7-(i), we obtain for 9/5 ≤ p < 3 3 . Then, for 9/5 ≤ p < +∞, we can deduce

Ωε (ũ ε • ∇ ηε )ũ ε Rε p ( φ) dx dy 3 ≤ Cη 3-p p-1 ε φ W 1,p 0 (Ω) 3 , and for p ≥ 3 Ωε (ũ ε • ∇ ηε )ũ ε Rε p ( φ) dx dy 3 ≤ Cη p+1 p-1 ε φ W 1,p 0 (Ω)
Ωε (ũ ε • ∇ ηε )ũ ε Rε p ( φ) dx dy 3 ≤ C φ W 1,p 0 (Ω) 3 ,
and from (4.36), we obtain

∇ ηε Pε L p 0 (Ω) 3 ≤ C, (4.37)
which implies (4.32).

In the case η ε ε, due to the highly oscillating boundary, we will obtain that the velocity will be zero in ω × (h min , h max ) (see (5.49) for more details), and so we will obtain an effective problem posed in Ω -. Therefore, reproducing Lemma 4.4 by considering φ ∈ W 1,p 0 (Ω -), and taking into account that Rε p ( φ) = φ in Ω -, we deduce that ∇ ηε Pε L p 0 (Ω -) 3 ≤ C, which implies (4.33).

Adaptation of the Unfolding Method

The change of variable (2.3) does not provide the information we need about the behavior of ũε in the microstructure associated to Ω ε . To solve this difficulty, we introduce an adaptation of the unfolding method (see [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF][START_REF] Cioranescu | Periodic unfolding and homogenization[END_REF] for more details). For this purpose, given ũε ∈ W 1,p 0 ( Ω ε ) 3 a solution of the rescaled system (3.8)-(3.9), we define ûε by

ûε (x , y) = ũε εκ x ε + εy , y 3 , a.e. (x , y) ∈ ω × Y, (4.38) 
where the function κ is defined as follows; for k ∈ Z 2 , we define κ : R 2 → Z 2 by

κ(x ) = k ⇐⇒ x ∈ Y k ,1 .
Remark that κ is well defined up to a set of zero measure in R 2 (the set ∪ k ∈Z 2 ∂Y k ,1 ). Moreover, for every ε > 0, we have

κ x ε = k ⇐⇒ x ∈ Y k ,ε .
In Let us obtain some estimates for the sequences (û ε , Pε ).

Lemma 4.10. Assume that 9/5 ≤ p < +∞. There exists a constant C independent of ε, such that (û ε , Pε ) defined by (4.38)-(4.39) satisfies

D y [û ε ] L p (ω×Y ) 3×2 ≤ Cεη 1 p-1 ε , ∂ y 3 [û ε ] L p (ω×Y ) 3 ≤ Cη p p-1 ε , (4.41) D y ûε L p (ω×Y ) 3×2 ≤ Cεη 1 p-1 ε , ∂ y 3 ûε L p (ω×Y ) 3 ≤ Cη p p-1 ε (4.42) ûε L p (ω×Y ) 3 ≤ Cη p p-1 ε . (4.43)
For the cases η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞, or η ε ε, we have

Pε L p (ω×Π) ≤ C. (4.44)
Proof. Let us obtain some estimates for the sequence ûε defined by (4.38). We obtain

ω×Y D y ûε (x , y) p dx dy = k ∈Tε Y k ,ε Y D y ûε (x , y) p dx dy = k ∈Tε Y k ,ε Y h(y ) 0
D y ũε (εk + εy , y 3 ) p dx dy dy 3 .

We observe that ũε does not depend on x , then we can deduce Finally, let us obtain some estimates for the sequence Pε defined by (4.39). We observe that using the definition (4.39) of Pε , we obtain ω×Π Pε (x , y)

= ε p k ∈Tε Y k ,ε h( x ε -k ) 0 D x ũε (x , y 3 ) p dx dy 3 = ε p k ∈Tε Y k ,ε h( x ε ) 0 D x ũε (x , y 3 ) p dx dy 3 = ε p Ωε D x ũε (x ,
p dx dy ≤ k ∈Tε Y k ,ε Y hmax 0 Pε (εk + εy , y 3 ) p dx dy.
We observe that Pε does not depend on x , then we can deduce Taking into account (4.32), we have (4.44).

Some compactness results

In this section we obtain some compactness results about the behavior of the sequences (ṽ ε , Pε ) and (û ε , Pε ) satisfying a priori estimates given in Lemma 4.8 and Lemma 4.10 respectively. We obtain different behaviors depending on the magnitude η ε with respect to ε.

Let us start giving a convergence result for the pressure Pε .

Lemma 5.1. Assume 9/5 ≤ p < +∞. For the cases η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞, or η ε ε, for a subsequence of ε still denote by ε, there exists P ∈ L p 0 (Ω), independent of y 3 , such that

Pε P in L p 0 (Ω), (5.45) 
and for the case η ε ε, Pε P in L p 0 (Ω -).

(5.46)

Proof. Estimate (4.32) implies, up to a subsequence, the existence of P ∈ L p 0 (Ω) such that (5.45) holds. Also, from (4.37), by noting that ∂ y 3 Pε /η ε also converges weakly in W -1,p (Ω), we obtain ∂ y 3 P = 0. Analogously, we obtain (5.46).

We will give a convergence result for ṽε . Lemma 5.2. Assume that 9/5 ≤ p < +∞. For a subsequence of ε still denote by ε, there exists ṽ ∈ W 1,p (0, h max ; L p (ω) 3 ) where ṽ3 = 0, and ṽ(x , 0) = ṽ(x , h max ) = 0, such that η

-p p-1 ε ṽε (ṽ , 0) in W 1,p (0, h max ; L p (ω) 3 ) , (5.47) and  
      div x hmax 0 ṽ (x , y 3 )dy 3 = 0 in ω, hmax 0 ṽ (x , y 3 )dy 3 • n = 0 on ∂ω.
(5.48)

Moreover, for the case η ε ε, we have

η -p p-1 ε ṽε 0 in W 1,p (h min , h max ; L p (ω) 3 ) , (5.49) 
and

       div x h min 0 ṽ (x , y 3 )dy 3 = 0 in ω, h min 0 ṽ (x , y 3 )dy 3 • n = 0 on ∂ω.
(5.50)

Proof. The estimates (4.30)-(4.31) read

ṽε L p (Ω) 3 ≤ Cη p p-1 ε , D x ṽε L p (Ω) 3×2 ≤ Cη 1 p-1 ε , ∂ y 3 ṽε L p (Ω) 3 ≤ Cη p p-1 ε .
The above estimates imply the existence ṽ ∈ W 1,p (0, h max ; L p (ω) 3 ), such that, up to a subsequence, we have η

-p p-1 ε ṽε ṽ in W 1,p (0, h max ; L p (ω) 3 ), (5.51) which implies η 
-p p-1 ε div x ṽ ε div x ṽ in W 1,p (0, h max ; W -1,p (ω)). (5.52) 
Since div ηε ṽε = 0 in Ω, multiplying by η

-p p-1 ε we obtain η -p p-1 ε div x ṽ ε + η -2p-1 p-1 ε ∂ y 3 ṽε,3 = 0, in Ω,
which, combined with (5.52), implies that η

-2p-1 p-1 ε ∂ y 3 ṽε,3 is bounded in W 1,p (0, h max ; W -1,p (ω)). This implies that η -p p-1 ε ∂ y 3 ṽε,3 tends to zero in W 1,p (0, h max ; W -1,p (ω))
. Also, from (5.51), we have that

η -p p-1 ε ∂ y 3 ṽε,3 tends to ∂ y 3 ṽ3 in L p (Ω)
. From the uniqueness of the limit, we have that ∂ y 3 ṽ3 = 0, which implies that ṽ3 does not depend on y 3 . Moreover, the continuity of the trace applications from the space of functions v such that ṽ L p and ∂ y 3 ṽ L p to L p (Σ) and to L p (ω × {0}) implies ṽ = 0 on Σ and ω × {0}. This together to ∂ y 3 ṽ3 = 0 implies that ṽ3 = 0. Finally, we prove (5.48). To do this, we consider ϕ ∈ C 1 c (ω) as test function in div ηε ṽε = 0 in Ω, which multiplying by η

-p p-1 ε gives Ω div x ṽ ε ϕ(x ) dx dy 3 = 0.
From convergence (5.47), we get (5.48).

Finally, for the case η ε ε, following Theorem 5.2. in Chambat et al [START_REF] Chambat | Some effects of the boundary roughness in a thin film flow, in Boundary variations and boundary control[END_REF], we obtain (5.49). As consequence, this together with (5.48) gives (5.50). Now, we give a convergence result for the pressure Pε .

Lemma 5.3. Assume that 9/5 ≤ p < +∞. For the cases η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞, or η ε ε, for a subsequence of ε still denote by ε there exists Next, we give a convergence result for ûε .

P ∈ L p 0 (ω × Π) such that Pε P in L p 0 (ω × Π) . ( 5 
Lemma 5.4. Assume that 9/5 ≤ p < +∞. For a subsequence of ε still denote by ε, i) if η ε ≈ ε with η ε /ε → λ, 0 < λ < +∞, then there exist û ∈ L p (ω; W 1,p (Y ) 3 ), with Y û3 dy = 0 and û = 0 on y 3 = {0, h(y )}, such that

η -p p-1 ε ûε û in L p (ω; W 1,p (Y ) 3 ), (5.54) div λ û = 0 in ω × Y, (5.55) 
where div λ = λdiv y + ∂ y 3 , ii) if η ε ε, then there exist û ∈ L p (ω; W 1,p (Y ) 3 ), with û = 0 on y 3 = {0, h(y )}, Y û3 dy = 0 and û3 independent of y 3 , such that η

-p p-1 ε ûε û in L p (ω; W 1,p (Y ) 3 ), (5.56) div y û = 0 in ω × Y, (5.57) iii) if η ε ε, then we have that η -p p-1 ε ûε (ṽ , 0) in W 1,p (0, h min ; L p (ω) 3 ) .
where (ṽ , 0) is the weak limit in W 1,p (0, h min ; L p (ω) 3 ) of ṽε given in Lemma 5.2.

Moreover, in the cases η ε ≈ ε and η ε ε, we have

div x Y û (x , y)dy = 0 in ω, Y û (x , y)dy • n = 0 on ∂ω .
(5.58)

Proof. We proceed in four steps.

Step 1. Case η ε ≈ ε. In this case, the estimates (4.42)-(4.43) read ûε L p (ω×Y ) 3 ≤ Cη (5.59)

The above estimates imply the existence û : ω × Y → R 3 , such that, up to a subsequence, convergences (5.54) holds. By semicontinuity and the estimates given in (5.59), we have It would remain to prove the Y -periodicity of û in y . This can be obtain by proceeding as in Lemma 5.4 in [START_REF] Suárez-Grau | Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary[END_REF].

Since div ηε ũε = 0 in Ω, then by definition of ûε we have ε -1 div y û ε + η -1 ε ∂ y 3 ûε,3 = 0. Multiplying by η -1/(p-1) ε we obtain

η ε ε η -p p-1 ε div y û ε + η -p p-1 ε ∂ y 3 ûε,3 = 0, in ω × Y,
which, combined with (5.54) and η ε /ε → λ, proves (5.55).

Step 2. Case η ε ε. In this case, from the second estimates (4.42) and (4.43), up to a subsequence and using a semicontinuity argument, there exists û ∈ W 1,p (0, h(y ); L p (ω × Y ) 3 ) such that ε div y û ε div y û in W 1,p (0, h(y ); W -1,p (Y ; L p (ω))).

Since div ηε ũε = 0 in Ω, then by definition of ûε we have ε

-1 div y û ε + η -1 ε ∂ y 3 ûε,3 = 0. Multiplying by η -1/(p-1) ε , we obtain η ε ε η -p p-1 ε div y û ε + η -p p-1 ε ∂ y 3 ûε,3 = 0, in ω × Y.
(5.61)

From the above convergences and η ε /ε → 0, we can deduce that ∂ y 3 û3 = 0, and so û3 does not depend on y 3 . Now, we prove (5.57). To do this, we consider ϕ ∈ C In order to proof the Y -periodicity of û in y , we proceed similarly to the step 1.

Step 3. In order to prove (5.58), let us first prove the following relation between ṽ and û for the cases η ε ≈ ε or η ε ε, 1 |Y | Y û(x , y)dy = hmax 0 ṽ(x , y 3 )dy 3 .

(5.62)

For this, let us consider ϕ ∈ C 1 c (ω). We observe that using the definition (4.38) of ûε , we obtain

η -p p-1 ε ω Y ûε (x , y)ϕ(x )dydx = η -p p-1 ε k ∈Tε Y k ,ε Y ũε (εk + εy , y 3 ) ϕ(εk + εy )dydx + O ε .
We observe that ũε and ϕ do not depend on x , then we can deduce Taking into account the convergences (5.47), (5.54) and (5.56), we obtain (5.62) for the cases η ε ≈ ε or η ε ε. Since ṽ3 = 0, we deduce that Y û3 dy = 0 a.e. in ω. Finally, relation (5.62) together with (5.48) implies (5.58).

η -p p-1 ε ω Y ûε (x , y)ϕ(x )dydx = η -p p-1 ε ε 2 |Y | k ∈Tε Y h ( 
Step 4. Case η ε ε. In this case, by the second estimate in (4.42) and estimate (4.43), up to a subsequence and using a semicontinuity argument, there exists û ∈ W 1,p (0, h(y

); L p (ω × Y ) 3 ) such that η -p p-1 ε ûε û in W 1,p (0, h(y ); L p (ω × Y ) 3 ). (5.63) Since ε -1 η -1 p-1 ε D y ûε is bounded in L p (ω × Y ) 3 , we observe that η -p p-1
ε D y ûε is also bounded, and tends to zero. This together with (5.63) implies

η -p p-1 ε D y ûε 0 in W 1,p 0, h(y ); L p (ω × Y ) 3×2 ,
and so û does not depend on y .

Taking into account (5.49), proceeding as in (5.62) but in ω × Π -, we obtain

1 |Y | Π - û(x , y)dy = h min 0 ṽ(x , y 3 ) dy 3 .
Since û does not depend on y , we have that û = (ṽ , 0). then we have

µ Ωε S (D ηε [ũ ε ]) : D x [ϕ] + 1 ε D y [ϕ] + 1 η ε ∂ y 3 [ϕ] dx dy 3 + Ωε ∇ ηε pε ϕ dx dy 3 = Ωε f • ϕ dx dy 3 + O ε .
Taking into account the prolongation of the pressure, we have

Ωε ∇ ηε pε ϕ dx dy 3 = Ω ∇ ηε Pε ϕ dx dy 3 ,
and so

µ Ωε S (D ηε [ũ ε ]) : D x [ϕ] + 1 ε D y [ϕ] + 1 η ε ∂ y 3 [ϕ] dx dy 3 - Ω Pε div x ϕ dx dy 3 - 1 ε Ω Pε div y ϕ dx dy 3 - 1 η ε Ω Pε ∂ y 3 ϕ 3 dx dy 3 = Ωε f • ϕ dx dy 3 + O ε . (6.67)
By the change of variables given in Remark 4.9, we obtain

µ ω×Y S 1 ε D y [û ε ] + 1 η ε ∂ y 3 [û ε ] : 1 ε D y [ϕ] + 1 η ε ∂ y 3 [ϕ] dx dy - ω×Π Pε div x ϕ dx dy - 1 ε ω×Π Pε div y ϕ dx dy - 1 η ε ω×Π Pε ∂ y 3 ϕ 3 dx dy = ω×Y f • ϕ dx dy + O ε ,
which can be written by

µ ω×Y S η ε ε η -p p-1 ε D y [û ε ] + η -p p-1 ε ∂ y 3 [û ε ] : η ε ε D y [ϕ] + ∂ y 3 [ϕ] dx dy - ω×Π Pε div x ϕ dx dy - 1 ε ω×Π Pε div y ϕ dx dy - 1 η ε ω×Π Pε ∂ y 3 ϕ 3 dx dy = ω×Y f • ϕ dx dy + O ε . (6.68) 
This variational formulation will be useful in the following steps.

We proceed in three steps.

Step 1. Case η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞.
First, we prove that P does not depend on the microscopic variable y. To do this, we consider as test function η ε ϕ(x , x /ε, y 3 ) in (6.68), taking into account the estimates in (4.41) and passing to the limit when ε tends to zero by using convergence (5.53), we have ω×Π P div λ ϕ dx dy = 0, which shows that P does not depend on y.

For all ϕ ∈ D(ω; C ∞ (Y ) 3 ) with div λ ϕ = 0 in ω × Y and div x ( Y ϕ dy) = 0 in ω, we choose φ ε = (φ ε , φ ε,3 ) defined by

φ ε = λ ε η ε ϕ -η -p p-1 ε û ε , φ ε,3 = ϕ 3 -η -p p-1 ε ûε,3 ,
as a test function in (6.68). Due to monotonicity, we have

µ ω×Y S η ε ε D y [ϕ] + ∂ y 3 [ϕ] : η ε ε D y [φ ε ] + ∂ y 3 [φ ε ] dx dy - ω×Π Pε div x φ ε dx dy ≥ ω×Y f • φ ε dx dy + O ε .
Thus, we can use the convergences (5.53) and (5.54). If we argue similarly as in [START_REF] Bourgeat | Effective fluid flow in a porous medium containing a thin fissure[END_REF], we have that the convergence of the pressure is in fact strong. This implies that the convergence of the pressure Pε is also in fact strong (see Proposition 2.9 in [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF]). Then, when passing to the limit, the second term contributes nothing because the limit of Pε does not depend on y and û satisfies (5.58). Taking into account that λ ε/η ε → 1, we obtain

µ ω×Y S λD y [ϕ] + ∂ y 3 [ϕ] : λD y [ϕ -û] + ∂ y 3 [ϕ -û] dx dy ≥ ω×Y f • (ϕ -û ) dx dy ,
which, due to Minty Lemma [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], is equivalent to

-µ div λ S D λ û = f in ω × Y.
By density

µ ω×Y S (D λ [û]) : D λ [ϕ] dx dy = ω×Y f ϕ dx dy (6.69)
holds for every function ϕ in the Hilbert space V defined by

V =            ϕ(x , y) ∈ L p (ω; W 1,p (Y ) 3 ), such that div λ ϕ(x , y) = 0 in ω × Y, div x Y ϕ(x , y) dy = 0 in ω, ϕ(x , y) = 0 in ω × Y s , Y ϕ(x , y) dy • n = 0 on ω           
.

By Lax-Milgram lemma, the variational formulation (6.69) in the Hilbert space V admits a unique solution û in V . Reasoning as in [START_REF] Allaire | Homogenization of the Stokes flow in a connected porous medium[END_REF], the orthogonal of V with respect to the usual scalar product in L p (ω × Y ) is made of gradients of the form ∇ x q(x ) + ∇ λ q(x , y), with q(x ) ∈ L p 0 (ω) and q(x , y) ∈ L p (ω; W 1,p (Y )). Therefore, by integration by parts, the variational formulation (6.69) is equivalent to the effective system (6.64). It remains to prove that the pressure P (x ), arising as a Lagrange multiplier of the incompressibility constraint div x ( Y û(x , y)dy) = 0, is the same as the limit of the pressure Pε . This can be easily done by multiplying equation (3.8) by a test function with div λ equal to zero, and identifying limits. Since (6.64) admits a unique solution, then the complete sequence (η -p/(p-1) ε ûε , Pε ) converges to the solution (û(x , y), P (x )). Finally, from Theorem 8 in [START_REF] Bourgeat | Homogenization of a polymer flow through a porous medium[END_REF] we have that system (6.64) has a unique solution and moreover P ∈ W 1,p (ω).

Step 2. Case η ε ε.

First, we prove that P does not depend on the vertical variable y 3 . To do this, we consider as test function (0, η ε ϕ 3 (x , x /ε, y 3 )) in (6.68), taking into account the estimates in (4.41) and passing to the limit when ε tends to zero by using the convergence (5.53), we have ω×Π P ∂ y 3 ϕ 3 dx dy = 0, which shows that P does not depend on y 3 .

Let us now prove that P does not depend on the microscopic variable y . For this, we take now as test function (εϕ (x , x /ε, y 3 ), 0) in (6.68). By using estimates in (4.41) and the convergence (5.53), we get ω×Π P div y ϕ dx dy = 0 which implies that P does not depend on y . Thus, we conclude that P does not depend on the entire variable y. Thus, we can use the convergences (5.53) and (5.56). If we argue similarly as the step 1, we have that the convergence of the pressure Pε is strong. Then, when passing to the limit, the second term contributes nothing because the limit of Pε does not depend on y and û satisfies (5.58). We obtain

µ ω×Y S ∂ y 3 ϕ : ∂ y 3 ϕ -û dx dy ≥ ω×Y f • (ϕ -û ) dx dy + O ε ,
which, due to Minty Lemma [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], is equivalent to

-µ ∂ y 3 S ∂ y 3 û = f in ω × Y.
By density, and reasoning as in Step 1, this problem is equivalent to the effective system (6.65). Observe that the condition (5.57) implies that q does not depend on y 3 . Finally, from Theorem 8 in [START_REF] Bourgeat | Homogenization of a polymer flow through a porous medium[END_REF] we have that system (6.65) has a unique solution and moreover P ∈ W 1,p (ω).

Step 3. Case η ε ε. From Lemma 5.2 and Lemma 5.4, we take into account that we are going to obtain an effective problem for the pressure in Ω -without involving the microstructure of the domain Ω ε . Thus, we choose in (6.67) the following test function ϕ ε (x , y 3 ) = (ϕ (x , y 3 ), η ε ϕ 3 (x , y 3 )) ∈ D(Ω -) 3 satisfying div x ϕ + ∂ y 3 ϕ 3 = 0 in Ω -, div x h min 0 ϕ (x , y 3 )dy 3 = 0 in ω.

Integrating by parts, we obtain The procedure to obtain the effective problem is standard and is given in Proposition 3.2 in Mikelić and Tapiero [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF], so we omit it. Then, we obtain the effective system (6.66). Finally, from Proposition 3.3 in [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF] we have that P ∈ W 1,p (ω).

In the final step, we will eliminate the microscopic variable y in the effective problem. This is the focus of the Theorem 3.1.

Proof of Theorem 3.1. In the case η ε ≈ ε, with η ε /ε → λ, 0 < λ < +∞ the derivation of (3.10) from the effective problem (6.64) is straightforward by using the local problem (3.12) and definition (3.11).

In the case η ε ε, we proceed as the previous case. We deduce that 

       Ṽ (x ) = - 1 µ A 0 f (x ) -∇ x P (x ) in ω,
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 43 Assume that 9/5 ≤ p < +∞. There exists a constant C independent of ε, such that a solution u ε of problem (3.6)-(3.7) and the corresponding rescaled solution, ũε , of the problem (3.8)-(3.9) satisfy
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 44 Assume that 9/5 ≤ p < +∞. There exists a constant C independen of ε, such that a solution pε of the problem (3.8)-(3.9) satisfies
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 49 the same sense, given the extension of the pressure Pε ∈ L p 0 (Ω), we define Pε by Pε (x , y) = Pε εκ x ε + εy , y 3 , a.e. (x , y) ∈ ω × Π. (4.39) For k ∈ T ε , the restrictions of ûε to Y k ,ε × Y and Pε to Y k ,ε × Π do not depend on x , whereas as a function of y it is obtained from (ũ ε , Pε ) by using the change of variables y = xεk ε , (4.40) which transforms Y k ,ε into Y and Q k ,ε into Π, respectively.

D

  y ũε (εk + εy , y 3 ) p dy dy 3 . By the change of variables (4.40) and by the Y -periodicity of h, we obtain ω×Y D y ûε (x , y) p dx dy

ω×Π

  Pε (x , y) p dx dy ≤ ε 2 k ∈Tε Y hmax 0 Pε (εk + εy , y 3 ) p dy dy 3 . By the change of variables (4.40), we obtain ω×Π Pε (x , y) p dx dy ≤ Ω Pε (x , y 3 ) p dx dy 3 .

  .53) Proof. Reasoning as in Lemma 5.1, the estimate (4.44) implies the existence P : ω × Π → R such that (5.53) holds. By semicontinuity and the previous estimate of Pε , we have ω×Π P p dx dy ≤ C, which shows that P belongs to L p (ω × Π).

ω×Y |û| p

  dx dy ≤ C, ω×Y |D y û| p dx dy ≤ C, which shows that û ∈ L p (ω; W 1,p (Y ) 3 ).

  W 1,p (0, h(y ); L p (ω × Y )

1 c 1 ε

 11 (ω × Y ) as test function in (5.61), which gives ω×Y div y û ε ϕ(x , y ) dx dy = 0. Multiplying by η -p pand from convergence (5.60), we get (5.57).

  y ) 0 ũε (εk + εy , y 3 ) ϕ(εk + εy )dy 3 dy + O ε . By the change of variables (4.40) and the Y -periodicity of h, we obtain η , y 3 ) ϕ(x )dy 3 dx + O ε , y 3 ) ϕ(x )dy 3 dx + O ε , y 3 ) ϕ(x )dy 3 dx + O ε .

For 1 ε

 1 all ϕ ∈ D(ω; C ∞ (Y )3 ) with ϕ 3 independent of y 3 , div y ϕ = 0 in ω × Y and div x ( Y ϕ dy) = 0 in ω, we chooseφ ε = ϕη -p p-ûε , as a test function in (6.68). Using monotonicity, we haveµ ω×Y S η ε ε D y [ϕ] + ∂ y 3 [ϕ] : η ε ε D y [φ ε ] + ∂ y 3 [φ ε ] dx dy -ω×Π Pε div x φ ε dx dy ≥ ω×Y f • φ ε dx dy + O ε .

S

  D ηε ũ ε : D ηε ϕ dx dy 3 = Ω - f • ϕ dx dy 3 + O ε .

, y 3 )-∂ y 3 Sw ξ p 2 - 1 ,

 3321 div x Ṽ (x ) = 0 in ω, Ṽ(x )• n = 0 in ∂ω, dy 3 and A 0 : R 2 → R 2 is monotone, coercive and defined byA 0 (ξ ) = Y w ξ (y) dy, ∀ ξ ∈ R 2 ,(6.71)where, w ξ (y ), for every ξ ∈ R 2 , denotes the unique solution inW 1,p (Y ) 2 of the local Stokes problem in ∂ y 3 [w ξ ] + ∇ y π ξ = -ξ in Y, Y , w ξ = 0 on y 3 = 0, h(y ) w ξ (x , y), π ξ (x , y ) Yperiodic. (6.72)We observe that (6.72) can be solved, and we can give a Reynolds type equation.Take into account that∂ y 3 w ξ p-2 = T r ∂ y 3 w ξ , ∂ t y 3 implies S(∂ y 3 [w ξ ]) = 2 -p 2 S(∂ y 3 w ξ ),

  y 3 ) p dx dy 3 .

	Similarly, using the definition (4.38), the change of variables (4.40) and the first estimate in (4.21),
	we have			
		ûε (x , y)	p 2 p-1 ε p dx dy ≤ Cη	,
		ω×Y		
	and (4.43) holds.			
	Taking into account the second estimate in (4.21), we get the first estimate in (4.41).
	Similarly, using Remark 4.9 and definition (4.38), we have	
	∂ y 3 ûε (x , y)	p dx dy ≤ ε 2	∂ y 3 ũε (εk + εy , y 3 )	p dy.
	ω×Y		k ∈Tε Y	
	By the change of variables (4.40) and the second estimate in (4.21), we obtain
					p 2
					p-1

ω×Y ∂ y 3 ûε (x , y) p dx dy ≤ Ωε ∂ y 3 ũε (x , y 3 ) p dx dy 3 ≤ Cη ε , so the second estimate in (4.41) is proved. Consequently, from classical Korn's inequality, we also have (4.42).
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Effective models

In this section, we will multiply system (3.8) by a test function having the form of the limit û (as explicated in Lemma 5.4), and we will use the convergences given in the previous section in order to identify the effective model in every case. Theorem 6.1. Assume that 9/5 ≤ p < +∞. We distingue three cases:

where

, with Y û3 dy = 0 and û3 independent of y 3 , of the effective problem 

from Proposition 3.4 in [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF], we deduce that

From the expression of the Darcy velocity (1.14) in [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF], we have

Then, from (6.70)-( 6.71) we have (3.13) and (3.14), and from the second equation in (6.72) we have (3.15).

In the case η ε ε, in order to obtain (3.16), we only need to obtain an expression for the velocity ṽ in terms of the pressure P from the first equation in (6.66). This is given in Proposition 3.4 in [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF], and we have ṽ (x , y 3 ) = 2 From the expression of the Darcy velocity (1.14) in [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF], we have (3.16). Finally, from Propositions 3.5 in [START_REF] Mikelić | Mathematical derivation of the power law describing polymer flow through a thin slab[END_REF], we have that the problem (3.16) has a unique solution.