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Universidad de Sevilla, 41012-Sevilla (Spain)
fjsgrau@us.es

Abstract

We consider the Stokes system in a thin porous medium Ωε of thickness ε which is perforated by periodically
distributed solid cylinders of size ε. On the boundary of the cylinders we prescribe non-homogeneous slip
boundary conditions depending on a parameter γ. The aim is to give the asymptotic behavior of the velocity
and the pressure of the fluid as ε goes to zero. Using an adaptation of the unfolding method, we give, following
the values of γ, different limit systems.
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1 Introduction

We consider a viscous fluid obeying the Stokes system in a thin porous medium Ωε of thickness ε which is perforated
by periodically distributed cylinders (obstacles) of size ε. On the boundary of the obstacles, we prescribe a
Robin-type condition depending on a parameter γ ∈ R. The aim of this work is to prove the convergence of the
homogenization process when ε goes to zero, depending on the different values of γ.

The domain: the periodic porous medium is defined by a domain ω and an associated microstructure, or periodic
cell Y ′ = [−1/2, 1/2]2, which is made of two complementary parts: the fluid part Y ′f , and the obstacle part T ′

(Y ′f
⋃
T ′ = Y ′ and Y ′f

⋂
T ′ = ∅). More precisely, we assume that ω is a smooth, bounded, connected set in R2,

and that T ′ is an open connected subset of Y ′ with a smooth boundary ∂T ′, such that T
′

is strictly included in Y ′.

The microscale of a porous medium is a small positive number ε. The domain ω is covered by a regular mesh of
square of size ε: for k′ ∈ Z2, each cell Y ′k′,ε = εk′ + εY ′ is divided in a fluid part Y ′fk′ ,ε and an obstacle part T ′k′,ε,

i.e. is similar to the unit cell Y ′ rescaled to size ε. We define Y = Y ′ × (0, 1) ⊂ R3, which is divided in a fluid part
Yf = Y ′f × (0, 1) and an obstacle part T = T ′ × (0, 1), and consequently Yk′,ε = Y ′k′,ε × (0, 1) ⊂ R3, which is also
divided in a fluid part Yfk′ ,ε and an obstacle part Tk′,ε.

We denote by τ(T
′
k′,ε) the set of all translated images of T

′
k′,ε. The set τ(T

′
k′,ε) represents the obstacles in R2.
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Figure 1: Views of a periodic cell in 2D (left) and 3D (right)

The fluid part of the bottom ωε ⊂ R2 of the porous medium is defined by ωε = ω\⋃k′∈Kε T ′k′,ε, where

Kε = {k′ ∈ Z2 : Y ′k′,ε ∩ω 6= ∅}. The whole fluid part Ωε ⊂ R3 in the thin porous medium is defined by (see Figures
2 and 3)

Ωε = {(x1, x2, x3) ∈ ωε × R : 0 < x3 < ε}. (1.1)

We make the following assumption:

The obstacles τ(T
′
k′,ε) do not intersect the boundary ∂ω.

We define T εk′,ε = T ′k′,ε× (0, ε). Denote by Sε the set of the obstacles contained in Ωε. Then, Sε is a finite union
of obstacles, i.e.

Sε =
⋃

k′∈Kε
T
ε

k′,ε.

We define
Ω̃ε = ωε × (0, 1), Ω = ω × (0, 1), Λε = ω × (0, ε). (1.2)

We observe that Ω̃ε = Ω\⋃k′∈Kε T k′,ε, and we define Tε =
⋃
k′∈Kε T k′,ε as the set of the obstacles contained in

Ω̃ε.
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Figure 2: View from above

S"

"

!"

"

!

Figure 3: Views of the domain Ωε (left) and Λε (right)

The problem: let us consider the following Stokes system in Ωε, with a Dirichlet boundary condition on the
exterior boundary ∂Λε and a non-homogeneous slip boundary condition on the cylinders ∂Sε:

−µ∆uε +∇pε = fε in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Λε,

−pε · n+ µ
∂uε
∂n

+ αεγuε = gε on ∂Sε,

(1.3)

where we denote by uε = (uε,1, uε,2, uε,3) the velocity field, pε is the (scalar) pressure, fε = (fε,1(x1, x2), fε,2(x1, x2), 0)
is the field of exterior body force and gε = (gε,1(x1, x2), gε,2(x1, x2), 0) is the field of exterior surface force. The
constants α and γ are given, with α > 0, µ is the viscosity and n is the outward normal to Sε.

This choice of f and g is usual when we deal with thin domains. Since the thickness of the domain, ε, is small
then vertical component of the forces can be neglected and, moreover the force can be considered independent of
the vertical variable.

Problem (1.3) models in particular the flow of an incompressible viscous fluid through a porous medium under
the action of an exterior electric field. This system is derived from a physical model well detailed in the literature.
As pointed out in Cioranescu et al. [1] and Sanchez-Palencia [2], it was observed experimentally in Reuss [3] the
following phenomenon: when a electrical field is applied on the boundary of a porous medium in equilibrium, a
motion of the fluid appears. This motion is a consequence of the electrical field only. To describe such a motion,
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it is usual to consider a modified Darcy’s law considering of including an additional term, the gradient of the
electrical field, or consider that the presence of this term is possible only if the electrical charges have a volume
distribution. However, this law contains implicitly a mistake, because if the solid and fluid parts are both dielectric,
such a distribution does not occur, the electrical charges act only on the boundary between the solid and the fluid
parts and so they have necessarily a surface distribution. If such hypothesis is done, we can describe the boundary
conditions in terms of the stress tensor σε as follows

σε · n+ αεγuε = gε,

which is precisely the non-homogeneous slip boundary condition (1.3)4 and means that the stress-vector σε · n
induces a slowing effect on the motion of the fluid, expressed by the term αεγ . Moreover, if there are exterior forces
like for instance, an electrical field, then the non-homogeneity of the boundary condition on the ∂Sε is expressed
in terms of surface charges contained in gε.

On the other hand, the behavior of the flow of Newtonian fluids through periodic arrays of cylinders has been
studied extensively, mainly because of its importance in many applications in heat and mass transfer equipment.
However, the literature on Newtonian thin film fluid flows through periodic arrays of cylinders is far less complete,
although these problems have now become of great practical relevance because take place in a number of natural
and industrial processes. This includes flow during manufacturing of fibre reinforced polymer composites with liq-
uid moulding processes (see Frishfelds et al. [4], Nordlund and Lundstrom [5], Tan and Pillai [6]), passive mixing in
microfluidic systems (see Jeon [7]), paper making (see Lundström et al. [8], Singh et al. [9]), and block copolymers
self-assemble on nanometer length scales (see Park et al. [10], Albert and Epps [11], Farrel et al. [12]).

The Stokes problem in a periodically perforated domain with holes of the same size as the periodic has been
treated in the literature. More precisely, the case with Dirichlet conditions on the boundary of the holes was studied
by Ene and Sanchez-Palencia [13], where the model that describes the homogenized medium is a Darcy’s law. The
case with non-homogeneous slip boundary conditions, depending on a parameter γ ∈ R, was studied by Cioranescu
et al. [1], where using the variational method introduced by Tartar [14], a Darcy-type law, a Brinkmann-type
equation or a Stokes-type equation are obtained depending of the values of γ. The Stokes and Navier-Stokes equa-
tions in a perforated domain with holes of size rε, with rε � ε is considered by Allaire [15]. On the boundary of
the holes, the normal component of the velocity is equal to zero and the tangential velocity is proportional to the
tangential component of the normal stress. The type of the homogenized model is determined by the size rε, i.e.
by the geometry of the domain.

The earlier results relate to a fixed height domain. For a thin domain, in [16] Anguiano and Suárez-Grau
consider an incompressible non-Newtonian Stokes system, in a thin porous medium of thickness ε that is perforated
by periodically distributed solid cylinders of size aε, with Dirichlet conditions on the boundary of the cylinders.

Using a combination of the unfolding method (see Cioranescu et al. [17] and Cioranescu et al. [18] for perforated
domains) applied to the horizontal variables, with a rescaling on the height variable, and using monotonicity
arguments to pass to the limit, three different Darcy’s laws are obtained rigorously depending on the relation
between aε and ε. We remark that an extension of the unfolding method to evolution problems in which the
unfolding method is applied to the spatial variables and not on the time variable was introduced in Donato and
Yang [19] (see also [20]).

The behavior observed when aε ≈ ε in [16] has motivated the fact of considering non-homogeneous slip conditions
on the boundary of the cylinders. In this sense, our aim in the present paper is to consider a Newtonian Stokes
system with the non-homogeneous slip boundary condition (1.3)4 in the thin porous medium described in (1.1) and
we prove the convergence of the homogenization process depending on the different values of γ. To do that, we
have to take into account that the normal component of the velocity on the cylinders is different to zero and the
extension of the velocity is no longer obvious. If we consider the Stokes system with Dirichlet boundary condition
on the obstacles as in [16], the velocity can be easily extended by zero in the obstacles, however in this case we
need another kind of extension and adapt it to the case of a thin domain.
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One of the main difficulties in the present paper is to treat the surface integrals. The papers mentioned above
about problems with non-homogeneous boundary conditions use a generalization (see Cioranescu and Donato [21])
of the technique introduced by Vanninathan [22] for the Steklov problem, which transforms the surface integrals into
volume integrals. In our opinion, an excellent alternative to this technique was made possible with the development
of the unfolding method (see Cioranescu et al. [17]), which allows to treat easily the surface integrals. In the present
paper, we extend some abstract results for thin domains, using an adaptation of the unfolding method, in order
to treat all the surface integrals and we obtain directly the corresponding homogenized surface terms. A similar
approach is made by Cioranescu et al. [23] and Zaki [24] with non-homogeneous slip boundary conditions, and
Capatina and Ene [25] with non-homogeneous pure slip boundary conditions for a fixed height domain.

In summary, we show that the asymptotic behavior of the system (1.3) depends on the values of γ:

- for γ < −1, we obtain a 2D Darcy type law as an homogenized model. The flow is only driven by the pressure.

- for −1 ≤ γ < 1, we obtain a 2D Darcy type law but in this case the flow depends on the pressure, the external
body force and the mean value of the external surface force.

- for γ ≥ 1, we obtain a 2D Darcy type law where the flow is only driven by the pressure with a permeability
tensor obtained by means of two local 2D Stokes problems posed in the reference cell with homogeneous
Neumann boundary condition on the reference cylinder.

We observe that we have obtained the same three regimes as in Cioranescu et al. [23] (see Theorems 2.1 and 2.2),
and Zaki [24] (see Theorems 14 and 16). Thus, we conclude that the fact of considering the thin domain does not
change the critical size of the parameter γ, but the thickness of the domain introduces a reduction of dimension
of the homogenized models and other consequences. More precisely, in the cases γ < −1 and −1 ≤ γ < 1, we
obtain the same Darcy type law as in [23, 24] with the vertical component of the velocity zero as consequence of
the thickness of the domain. The main difference appears in the case γ ≥ 1, in which a 3D Brinkmann or Stokes
type law were derived in [23, 24] while a 2D Darcy type law is obtained in the present paper.

We also remark the differences with the result obtained in [16] where Dirichlet boundary conditions are pres-
cribed on the cylinders in the case aε ≈ ε. In that case, a 2D Darcy law as an homogenized model with a
permeability tensor was obtained through two Stokes local problems in the reference cell with Dirichlet boundary
conditions on the reference cylinder. Here, we obtain three different homogenized model depending on γ. The case
γ ≥ 1 gives a similar 2D Darcy type law, but the permeability tensor is obtained through two Stokes local problems
with homogeneous Neumann boundary conditions. In the cases γ < −1 and −1 ≤ γ < 1, we obtain a 2D Darcy
type law without microstructure.

The paper is organized as follows. We introduce some notations in Section 2. In Section 3, we formulate the
problem and state our main result, which is proved in Section 4. The article closes with a few remarks in Section
5.

2 Some notations

Along this paper, the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈ R2, x3 ∈ R. We also use the
notation x′ to denote a generic vector of R2.

In order to apply the unfolding method, we need the following notation: for k′ ∈ Z2, we define κ : R2 → Z2 by

κ(x′) = k′ ⇐⇒ x′ ∈ Y ′k′,1 . (2.4)

Remark that κ is well defined up to a set of zero measure in R2, which is given by ∪k′∈Z2∂Y ′k′,1. Moreover, for
every ε > 0, we have

κ

(
x′

ε

)
= k′ ⇐⇒ x′ ∈ Y ′k′,ε.
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For a vectorial function v = (v′, v3) and a scalar function w, we introduce the operators: Dε, ∇ε and divε, by

(Dεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2, (Dεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

∇εw = (∇x′w,
1

ε
∂y3w)t, divεv = divx′v

′ +
1

ε
∂y3v3.

We denote by |O| the Lebesgue measure of |O| (3-dimensional if O is a 3-dimensional open set, 2-dimensional
of O is a curve).

For every bounded set O and if ϕ ∈ L1(O), we define the average of ϕ on O by

MO[ϕ] =
1

|O|

∫
O
ϕdx . (2.5)

Similarly, for every compact set K of Y , if ϕ ∈ L1(∂K) then

M∂K [ϕ] =
1

|∂K|

∫
∂K

ϕdσ ,

is the average of ϕ over ∂K.

We denote by L2
] (Y ), H1

] (Y ), the functional spaces

L2
] (Y ) =

{
v ∈ L2

loc(Y ) :

∫
Y

|v|2dy < +∞, v(y′ + k′, y3) = v(y) ∀k′ ∈ Z2, a.e. y ∈ Y
}
,

and

H1
] (Y ) =

{
v ∈ H1

loc(Y ) ∩ L2
] (Y ) :

∫
Y

|∇yv|2dy < +∞
}
.

We denote by : the full contraction of two matrices, i.e. for A = (ai,j)1≤i,j≤2 and B = (bi,j)1≤i,j≤2, we have

A : B =
∑2
i,j=1 aijbij .

Finally, we denote by Oε a generic real sequence, which tends to zero with ε and can change from line to line,
and by C a generic positive constant which also can change from line to line.

3 Main result

In this section we describe the asymptotic behavior of a viscous fluid obeying (1.3) in the geometry Ωε described
in (1.1). The proof of the corresponding results will be given in the next section.

The variational formulation: let us introduce the spaces

Hε =
{
ϕ ∈ H1(Ωε) : ϕ = 0 on ∂Λε

}
, H3

ε =
{
ϕ ∈ H1(Ωε)

3 : ϕ = 0 on ∂Λε
}
,

and
H̃ε =

{
ϕ̃ ∈ H1(Ω̃ε) : ϕ̃ = 0 on ∂Ω

}
, H̃3

ε =
{
ϕ̃ ∈ H1(Ω̃ε)

3 : ϕ̃ = 0 on ∂Ω
}
.

Then, the variational formulation of system (1.3) is the following one:
µ

∫
Ωε

Duε : Dϕdx−
∫

Ωε

pε divϕdx+ αεγ
∫
∂Sε

uε · ϕdσ(x) =

∫
Ωε

f ′ε · ϕ′ dx+

∫
∂Sε

g′ε · ϕ′ dσ(x), ∀ϕ ∈ H3
ε ,

∫
Ωε

uε · ∇ψ dx =

∫
∂Sε

(uε · n)ψ dσ(x), ∀ψ ∈ Hε.

(3.6)
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Assume that fε(x) = (f ′ε(x
′), 0) ∈ L2(ω)3 and gε(x) = g(x′/ε), where g is a Y ′-periodic function in L2(∂T )2.

Under these assumptions, it is well known that (3.6) has a unique solution (uε, pε) ∈ H3
ε × L2(Ωε) (see Theorem

4.1 and Remark 4.1 in [26] for more details).

Our aim is to study the asymptotic behavior of uε and pε when ε tends to zero. For this purpose, we use the
dilatation in the variable x3, i.e.

y3 =
x3

ε
, (3.7)

in order to have the functions defined in the open set with fixed height Ω̃ε defined by (1.2).

Namely, we define ũε ∈ H̃3
ε , p̃ε ∈ L2(Ω̃ε) by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x′, y3) ∈ Ω̃ε.

Using the transformation (3.7), the system (1.3) can be rewritten as
−µ∆x′ ũε − ε−2µ∂2

y3 ũε +∇x′ p̃ε + ε−1∂y3 p̃εe3 = fε in Ω̃ε,

divx′ ũ
′
ε + ε−1∂y3 ũε,3 = 0 in Ω̃ε,

ũε = 0 on ∂Ω,

(3.8)

with the non-homogeneous slip boundary condition,

−p̃ε · n+ µ
∂ũε
∂n

+ αεγ ũε = gε on ∂Tε, (3.9)

where e3 = (0, 0, 1)t.

Taking in (3.6) as test function ϕ̃ (x′, x3/ε) with ϕ̃ ∈ H̃3
ε and ψ̃ (x′, x3/ε) with ψ̃ ∈ H̃ε, applying the change of

variables (3.7) and taking into account that dσ(x) = εdσ(x′)dy3, the variational formulation of system (3.8)-(3.9)
is then the following one:

µ

∫
Ω̃ε

Dεũε : Dεϕ̃ dx
′dy3 −

∫
Ω̃ε

p̃ε divε ϕ̃ dx
′dy3 + αεγ

∫
∂Tε

ũε · ϕ̃ dσ(x′)dy3

=

∫
Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +

∫
∂Tε

g′ε · ϕ̃′ dσ(x′)dy3, ∀ ϕ̃ ∈ H̃3
ε ,∫

Ω̃ε

ũε · ∇εψ̃ dx′dy3 =

∫
∂Tε

(ũε · n)ψ̃ dσ(x′)dy3, ∀ ψ̃ ∈ H̃ε.

(3.10)

In the sequel, we assume that the data f ′ε satisfies that there exists f ′ ∈ L2(ω)2 such that

εf ′ε ⇀ f ′ weakly in L2(ω)2. (3.11)

Observe that, due to the periodicity of the obstacles, if f ′ε =
f ′

ε
where f ′ ∈ L2(ω)2, then

χΩεf
′
ε = εf ′ε ⇀ θf ′ in L2(ω)2,

assuming εf ′ε extended by zero outside of ωε, where θ denotes the proportion of the material in the cell Y ′ given by

θ :=
|Y ′f |
|Y ′| .

We also define the constant µ1 :=
|∂T ′|
|Y ′| .
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Main result: our goal then is to describe the asymptotic behavior of this new sequence (ũε, p̃ε) when ε tends to

zero. The sequence of solutions (ũε, p̃ε) ∈ H̃ε×L2(Ω̃ε) is not defined in a fixed domain independent of ε but rather

in a varying set Ω̃ε. In order to pass the limit if ε tends to zero, convergences in fixed Sobolev spaces (defined in
Ω) are used which requires first that (ũε, p̃ε) be extended to the whole domain Ω. For the velocity, we will denote
by Ũε the zero extension of ũε to the whole Ω, and for the pressure we will denote by P̃ε the zero extension of p̃ε
to the whole Ω.

Our main result referred to the asymptotic behavior of the solution of (3.8)-(3.9) is given by the following
theorem.

Theorem 3.1. Let (ũε, p̃ε) be the solution of (3.8)-(3.9). Then there exists an extension operator Π̃ε ∈ L(H̃3
ε ;H1

0 (Ω)3)
such that

i) if γ < −1, then
Π̃εũε ⇀ 0 in H1

0 (Ω)3.

Moreover, (ε−1Ũε, ε
−γP̃ε) is bounded in H1(0, 1;L2(ω)3) × L2(ω) and any weak-limit point (ũ(x′, y3), p̃(x′))

of this sequence satisfies ũ′ = 0 on y3 = {0, 1}, ũ3 = 0 and the following Darcy type law: ṽ′(x′) = − θ

αµ1
∇x′ p̃(x′)

ṽ3(x′) = 0,

in ω , (3.12)

where ṽ(x′) =
∫ 1

0
ũ(x′, y3)dy3,

ii) if −1 ≤ γ < 1, then

ε
γ+1
2 Π̃εũε ⇀ 0 in H1

0 (Ω)3.

Moreover, (εγŨε, εP̃ε) is bounded in H1(0, 1;L2(ω)3) × L2(ω) and any weak-limit point (ũ(x′, y3), p̃(x′)) of
this sequence satisfies ũ′ = 0 on y3 = {0, 1}, ũ3 = 0 and the following Darcy type law: ṽ′(x′) =

θ

αµ1
(f ′ −∇x′ p̃(x′) + µ1M∂T ′ [g

′])

ṽ3(x′) = 0,

in ω , (3.13)

where ṽ(x′) =
∫ 1

0
ũ(x′, y3)dy3,

iii) if γ ≥ 1, then
εΠ̃εũε ⇀ 0 in H1

0 (Ω)3.

Moreover, (Ũε, ε
2P̃ε) is bounded in H1(0, 1;L2(ω)3)×L2(ω) and any weak-limit point (ũ(x′, y3), p̃(x′)) of this

sequence satisfies ũ = 0 on y3 = {0, 1} and the following Darcy type law: ṽ′(x′) = − θ
µ
A∇x′ p̃(x′)

ṽ3(x′) = 0,

in ω , (3.14)

where ṽ(x′) =
∫ 1

0
ũ(x′, y3)dy3, and the symmetric and positive permeability tensor A ∈ R2×2 is defined by its

entries

Aij =
1

|Y ′f |

∫
Y ′f

Dwi(y′) : Dwj(y′) dy, i, j = 1, 2.

8
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For i = 1, 2, wi(y′), denote the unique solutions in H1
] (Y ′f )2 of the local Stokes problems with homogeneous

Neumann boundary conditions in 2D:

−∆y′w
i +∇y′qi = ei in Y ′f

divy′ŵ
i = 0 in Y ′f

∂wi

∂n
= 0 on ∂T ′,

wi, qi Y ′ − periodic,

MYf [wi] = 0 .

(3.15)

Remark 3.2. We observe that in the homogenized problems related to system (3.8)-(3.9), the limit functions do not
satisfy any incompressibility condition, so (3.12), (3.13) and (3.14) do not identify in a unique way (ṽ, p̃). This is
a consequence of the fact that the normal component of ũε does not vanish on the boundary of the cylinders, so the
average fluid flow, given by ṽ, is (eventually) represented by the motion of a compressible fluid. As pointed out in
Conca [26] (see Remark 2.1) and Cioranescu et al. [1] (see Remarks 2.3 and 2.6), this result, which at first glance
seems unexpected, can be justified as follows: the boundary condition (3.9) implies that the normal component ũε ·n
of ũε is not necessarily zero on ∂Tε so we can not expect that the extension Ũε will be a zero-divergence function.
In fact, from the second variational formulation in (3.10), we have∫

Ω

Ũε · ∇εψ̃ dx′dy3 =

∫
∂Tε

(ũε · n)ψ̃ dσ(x′)dy3, ∀ψ ∈ H̃ε,

and the term on the right-hand side is not necessarily zero. Therefore, by weak continuity, it is not possible to
obtain an incompressibility condition of the form divx′ ṽ

′(x′) = 0 in ω as it is obtained in the case with Dirichlet
condition considered in [16]. Roughly speaking, ũε · n 6= 0 on ∂Tε means that some fluid “dissapear” through the
cylinders, and this fact implies that the incompressibility condition is not necessary verified at the limit in ω.

4 Proof of the main result

In the context of homogenization of flow through porous media Arbogast et al. [27] use a L2 dilation operator to
resolve oscillations on a prescribed scale of weakly converging sequences. It was observed in Bourgeat et al. [28]
that this operator yields a characterization of two-scale convergence (see Allaire [29] and Nguetseng [30]). Later,
Cioranescu et al. [17, 23] introduced the periodic unfolding method as a systematic approach to homogenization
which can be used for H1 functions and take into account the boundary of the holes by using the so-called boundary
unfolding operator. In this section we prove our main result. In particular, Theorem 3.1, is proved in Subsection
4.3 by means of a combination of the unfolding method applied to the horizontal variables, with a rescaling on
the vertical variable. One of the main difficulties is to treat the surface integrals using an adaptation of the
boundary unfolding operator. To apply this method, a priori estimates are established in Subsection 4.1 and some
compactness results are proved in Subsection 4.2.

4.1 Some abstract results for thin domains and a priori estimates

The a priori estimates independent of ε for ũε and p̃ε will be obtained by using an adaptation of the unfolding
method.

Some abstract results for thin domains: let us introduce the adaption of the unfolding method in which we
divide the domain Ω̃ε in cubes of lateral lengths ε and vertical length 1. For this purpose, given ϕ̃ ∈ Lp(Ω̃ε)

3,
1 ≤ p < +∞, (assuming ϕ̃ extended by zero outside of ωε), we define ϕ̂ε ∈ Lp(R2 × Yf )3 by

ϕ̂ε(x
′, y) = ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
, a.e. (x′, y) ∈ R2 × Yf , (4.16)

9
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where the function κ is defined in (2.4).

Remark 4.1. The restriction of ϕ̂ε, to Y ′f ′k,ε
× Yf does not depend on x′, whereas as a function of y it is obtained

from ṽε, by using the change of variables

y′ =
x′ − εk′

ε
, (4.17)

which transforms Yfk′ ,ε into Yf .

Proposition 4.2. We have the following estimates:

i) for every ϕ̃ ∈ Lp(Ω̃ε), 1 ≤ p+∞, we have

‖ϕ̂ε‖Lp(R2×Yf )3 = |Y ′| 1p ‖ϕ̃‖Lp(Ω̃ε)3
, (4.18)

where ϕ̂ε is given by (4.16),

ii) for every ϕ̃ ∈W 1,p(Ω̃ε)
3, 1 ≤ p < +∞, we have that ϕ̂ε, given by (4.16), belongs to Lp(R2;W 1,p(Yf )3), and

‖Dyϕ̂ε‖Lp(R2×Yf )3×3 = ε|Y ′| 1p ‖Dεϕ̃‖Lp(Ω̃ε)3×3 . (4.19)

Proof. Let us prove i). Using Remark 4.1 and definition (4.16), we have∫
R2×Yf

|ϕ̂ε(x′, y)|p dx′dy =
∑
k′∈Z2

∫
Y ′
k′,ε

∫
Yf

|ϕ̂ε(x′, y)|p dx′dy

=
∑
k′∈Z2

∫
Y ′
k′,ε

∫
Yf

|ϕ̃(εk′ + εy′, y3)|p dx′dy.

We observe that ϕ̃ does not depend on x′, then we can deduce∫
R2×Yf

|ϕ̂ε(x′, y)|p dx′dy = ε2|Y ′|
∑
k′∈Z2

∫
Yf

|ϕ̃(εk′ + εy′, y3)|p dy.

For every k′ ∈ Z2, by the change of variable (4.17), we have

k′ + y′ =
x′

ε
, dy′ =

dx′

ε2
∂y′ = ε∂x′ , (4.20)

and we obtain ∫
R2×Yf

|ϕ̂ε(x′, y)|p dx′dy = |Y ′|
∫
ωε×(0,1)

|ϕ̃(x′, y3)|p dx′dy3

which gives (4.18).

Let us prove ii). Taking into account the definition (4.16) of ϕ̂ε and observing that ϕ̃ does not depend on x′,
then we can deduce∫

R2×Yf
|Dy′ ϕ̂ε(x

′, y)|p dx′dy = ε2|Y ′|
∑
k′∈Z2

∫
Yf

|Dy′ ϕ̃(εk′ + εy′, y3)|p dy.

By (4.20), we obtain∫
R2×Yf

|Dy′ ϕ̂ε(x
′, y)|p dx′dy = εp|Y ′|

∑
k′∈Z2

∫
Y ′f
k′ ,ε

∫ 1

0

|Dx′ ϕ̃(x′, y3)|p dx′dy3

= εp|Y ′|
∫
ωε×(0,1)

|Dx′ ϕ̃(x′, y3)|p dx′dy3. (4.21)

10
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For the partial of the vertical variable, proceeding similarly to (4.18), we obtain∫
R2×Yf

|∂y3 ϕ̂ε(x′, y)|p dx′dy = |Y ′|
∫
ωε×(0,1)

|∂y3 ϕ̃(x′, y3)|p dx′dy3

= εp|Y ′|
∫
ωε×(0,1)

∣∣∣∣1ε∂y3 ϕ̃(x′, y3)

∣∣∣∣p dx′dy3 ,

which together with (4.21) gives (4.19).

In a similar way, let us introduce the adaption of the unfolding method on the boundary of the obstacles ∂Tε
(see Cioranescu et al. [23] for more details). For this purpose, given ϕ̃ ∈ Lp(∂Tε)

3, 1 ≤ p < +∞, we define
ϕ̂bε ∈ Lp(R2 × ∂T )3 by

ϕ̂bε(x
′, y) = ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
, a.e. (x′, y) ∈ R2 × ∂T, (4.22)

where the function κ is defined in (2.4).

Remark 4.3. Observe that from this definition, if we consider ϕ̃ ∈ Lp(∂T ), 1 ≤ p < +∞, a Y ′-periodic function,
and we define ϕ̃ε(x

′, y3) = ϕ̃(x′/ε, y3), it follows that ϕ̂bε(x
′, y) = ϕ̃(y).

Observe that for ϕ̃ ∈W 1,p(Ω̃ε)
3, ϕ̂bε is the trace on ∂T of ϕ̂ε. Therefore ϕ̂bε has a similar properties as ϕ̂ε.

We have the following property.

Proposition 4.4. If ϕ̃ ∈ Lp(∂Tε)3, 1 ≤ p < +∞, then

‖ϕ̂bε‖Lp(R2×∂T )3 = ε
1
p |Y ′| 1p ‖ϕ̃‖Lp(∂Tε)3 , (4.23)

where ϕ̂bε is given by (4.22).

Proof. We take (x′, y3) ∈ ∂Tk′,ε. Taking into account (4.22), we obtain∫
R2×∂T

|ϕ̂bε(x′, y)|p dx′dσ(y) = ε2|Y ′|
∑
k′∈Z2

∫
∂T

|ϕ̃(εk′ + εy′, y3)|p dσ(y).

For every k′ ∈ Z2, by taking x′ = ε(k′ + y′), we have dσ(x′) = εdσ(y′). Since the thickness of the obstacles is one,
we have that dσ(x′)dy3 = εdσ(y). Hence∫

R2×∂T
|ϕ̂bε(x′, y)|p dx′dσ(y) = ε|Y ′|

∫
∂Tε

|ϕ̃(x′, y3)|p dσ(x′)dy3,

which gives (4.23).

Now, let us give two results which will be useful for obtaining a priori estimates of the solution (ũε, p̃ε) of
problem (3.8)-(3.9). These results are an extension of Cioranescu et al. (Proposition 5.3 and Corollary 5.4 in [31])
to the thin domain case.

Proposition 4.5. Let g ∈ L2(∂T ′)3 and ϕ̃ ∈ H1(Ω̃ε)
3, extended by zero in outside of wε. Let ϕ̂ε be given by

(4.16). Then, there exists a positive constant C, independent of ε, such that∣∣∣∣∫
R2×∂T

g(y′) · ϕ̂ε(x′, y) dx′dσ(y)

∣∣∣∣ ≤ C |M∂T ′ [g]|
(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dεϕ̃‖L2(Ω̃ε)3×3

)
. (4.24)

In particular, if g = 1, there exists a positive constant C, independent of ε, such that∣∣∣∣∫
R2×∂T

ϕ̂ε(x
′, y) dx′dσ(y)

∣∣∣∣ ≤ C (‖ϕ̃‖L1(Ω̃ε)3
+ ε‖Dεϕ̃‖L1(Ω̃ε)3×3

)
. (4.25)
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Proof. Due to density properties, it is enough to prove this estimate for functions in D(R3)3. Let ϕ̃ ∈ D(R3)3, one
has ∣∣∣∣∫

R2×∂T
g(y′) · ϕ̂ε(x′, y) dx′dσ(y)

∣∣∣∣
=

∣∣∣∣∫
R2×∂T

g(y′) · ϕ̃
(
εκ

(
x′

ε

)
+ εy′, y3

)
dx′dσ(y)

∣∣∣∣
≤
∣∣∣∣∫

R2×∂T
g(y′) · ϕ̃

(
εκ

(
x′

ε

)
, y3

)
dx′dσ(y)

∣∣∣∣
+

∣∣∣∣∫
R2×∂T

g(y′) ·
(
ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
− ϕ̃

(
εκ

(
x′

ε

)
, y3

))
dx′dσ(y)

∣∣∣∣
≤ C |M∂T ′ [g]|

(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dx′ ϕ̃‖L2(Ω̃ε)3×3

)
≤ C |M∂T ′ [g]|

(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dεϕ̃‖L2(Ω̃ε)3×3

)
,

which implies (4.24). In particular, if g = 1, proceeding as above, we have∣∣∣∣∫
R2×∂T

ϕ̂ε(x
′, y) dx′dσ(y)

∣∣∣∣
=

∣∣∣∣∫
R2×∂T

ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
dx′dσ(y)

∣∣∣∣
≤
∣∣∣∣∫

R2×∂T
ϕ̃

(
εκ

(
x′

ε

)
, y3

)
dx′dσ(y)

∣∣∣∣
+

∣∣∣∣∫
R2×∂T

(
ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
− ϕ̃

(
εκ

(
x′

ε

)
, y3

))
dx′dσ(y)

∣∣∣∣
≤ C

(
‖ϕ̃‖L1(Ω̃ε)3

+ ε‖Dx′ ϕ̃‖L1(Ω̃ε)3×3

)
≤ C

(
‖ϕ̃‖L1(Ω̃ε)3

+ ε‖Dεϕ̃‖L1(Ω̃ε)3×3

)
,

which implies (4.25).

Corollary 4.6. Let g ∈ L2(∂T )3 be a Y ′-periodic function. Then, for every ϕ̃ ∈ H1(Ω̃ε)
3, we have that there exists

a positive constant C, independent of ε, such that∣∣∣∣∫
∂Tε

g(x′/ε) · ϕ̃(x′, y3)dσ(x′)dy3

∣∣∣∣ ≤ C

ε

(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dεϕ̃‖L2(Ω̃ε)3×3

)
. (4.26)

In particular, if g = 1, there exists a positive constant C, independent of ε, such that∣∣∣∣∫
∂Tε

ϕ̃(x′, y3)dσ(x′)dy3

∣∣∣∣ ≤ C

ε

(
‖ϕ̃‖L1(Ω̃ε)3

+ ε‖Dεϕ̃‖L1(Ω̃ε)3×3

)
. (4.27)

Proof. Since ϕ̃ ∈ H1(Ω̃ε)
3, then ϕ̂bε has similar properties as ϕ̂ε. By using Proposition 4.4 with p = 1 and Remark

4.3, we have ∣∣∣∣∫
∂Tε

g(x′/ε) · ϕ̃(x′, y3)dσ(x′)dy3

∣∣∣∣ =
1

ε|Y ′|

∣∣∣∣∫
R2×∂T

g(y′) · ϕ̂ε(x′, y) dx′dσ(y)

∣∣∣∣ ,
and by Proposition 4.5, we can deduce estimates (4.26) and (4.27).

12
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Moreover, for the proof of the a priori estimates for the velocity, we need the following lemma due to Conca
[26] generalized to a thin domain Ωε.

Lemma 4.7. There exists a constant C independent of ε, such that, for any function ϕ ∈ Hε, one has

‖ϕ‖L2(Ωε)3
≤ C

(
ε ‖Dϕ‖L2(Ωε)3×3 + ε

1
2 ‖ϕ‖L2(∂Sε)3

)
. (4.28)

Proof. We observe that the microscale of the porous medium ε is similar than the thickness of the domain ε, which
lead us to divide the domain Ωε in small cubes of lateral length ε and vertical length ε. We consider the periodic

cell Y . The function ϕ→
(
‖Dϕ‖2L2(Yf )3×3 + ‖ϕ‖2L2(∂T )3

)1/2

is a norm in H1(Yf )3, equivalent to the H1(Yf )3-norm

(see Nečas [32]). Therefore, for any function ϕ(z) ∈ H1(Yf )3, we have∫
Yf

|ϕ|2 dz ≤ C
(∫

Yf

|Dzϕ|2 dz +

∫
∂T

|ϕ|2 dσ(z)

)
, (4.29)

where the constant C depends only on Yf .

Then, for every k′ ∈ Z2, by the change of variable

k′ + z′ =
x′

ε
, z3 =

x3

ε
, dz =

dx

ε3
, ∂z = ε∂x, dσ(x) = ε2 dσ(z), (4.30)

we rescale (4.29) from Yf to Qfk′ ,ε = Y ′fk′ ,ε × (0, ε). This yields that, for any function ϕ(x) ∈ H1(Qfk′ ,ε)
3, one has∫

Qf
k′ ,ε

|ϕ|2 dx ≤ C

(
ε2

∫
Qf

k′ ,ε

|Dxϕ|2 dx+ ε

∫
T ′
k′,ε×(0,ε)

|ϕ|2 dσ(x)

)
, (4.31)

with the same constant C as in (4.29). Summing the inequality (4.31) for all the periods Qfk′ ,ε and T ′k′,ε × (0, ε),
gives ∫

Ωε

|ϕ|2 dx ≤ C

(
ε2

∫
Ωε

|Dxϕ|2 dx+ ε

∫
∂Sε

|ϕ|2 dσ(x)

)
.

In fact, we must consider separately the periods containing a portion of ∂ω, but they yield at a distance O(ε) of ∂ω,
where ϕ is zero. Therefore, using Poincare’s inequality one can easily verify that in this part (4.28) holds without
considering the boundary term occuring in (4.28).

Considering the change of variables given in (3.7) and taking into account that dσ(x) = εdσ(x′)dy3, we obtain

the following result for the domain Ω̃ε.

Corollary 4.8. There exists a constant C independent of ε, such that, for any function ϕ̃ ∈ H̃3
ε , one has

‖ϕ̃‖L2(Ω̃ε)3
≤ C

(
ε ‖Dεϕ̃‖L2(Ω̃ε)3×3 + ε

1
2 ‖ϕ̃‖L2(∂Tε)3

)
. (4.32)

The presence in (1.3) of the stress tensor in the boundary condition implies that the extension of the velocity
is no longer obvious. If we consider the Stokes system with Dirichlet boundary condition on the obstacles, the
velocity would be extended by zero in the obstacles. However, in this case, we need another kind of extension for
the case in which the velocity is non-zero on the obstacles. Since in the extension required, the vertical variable
is not concerned, therefore the proof of the required statement is basically the extension of the result given in
Cioranescu and Saint-Jean Paulin [33, 34] to the time-depending case given in Cioranescu and Donato [35], so we
omit the proof. We remark that the extension is not divergence free, so we cannot expect the homogenized solution
to be divergence free. Hence we cannot use test functions that are divergence free in the variational formulation,
which implies that the pressure has to be included.
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Lemma 4.9. There exists an extension operator Πε ∈ L(H3
ε ;H1

0 (Λε)
3) and a positive constant C, independent of

ε, such that
Πεϕ(x) = ϕ(x), if x ∈ Ωε,

‖DΠεϕ‖L2(Λε)3×3 ≤ C‖Dϕ‖L2(Ωε)3×3 , ∀ϕ ∈ H3
ε .

Considering the change of variables given in (3.7), we obtain the following result for the domain Ω̃ε.

Corollary 4.10. There exists an extension operator Π̃ε ∈ L(H̃3
ε ;H1

0 (Ω)3) and a positive constant C, independent
of ε, such that

Π̃εϕ̃(x′, y3) = ϕ̃(x′, y3), if (x′, y3) ∈ Ω̃ε,

‖DεΠ̃εϕ̃‖L2(Ω)3×3 ≤ C‖Dεϕ̃‖L2(Ω̃ε)3×3 , ∀ ϕ̃ ∈ H̃3
ε .

Using Corollary 4.10, we obtain a Poincaré inequality in H̃3
ε .

Corollary 4.11. There exists a constant C independent of ε, such that, for any function ϕ̃ ∈ H̃3
ε , one has

‖ϕ̃‖L2(Ω̃ε)3
≤ C ‖Dεϕ̃‖L2(Ω̃ε)3×3 . (4.33)

Proof. We observe that
‖ϕ̃‖L2(Ω̃ε)3

≤ ‖Π̃εϕ̃‖L2(Ω)3 , ∀ ϕ̃ ∈ H̃3
ε . (4.34)

Since Π̃εϕ̃ ∈ H1
0 (Ω)3, we can apply the Poincaré inequality in H1

0 (Ω) and then taking into account Corollary 4.10,
we get

‖Π̃εϕ̃‖L2(Ω)3 ≤ C‖DΠ̃εϕ̃‖L2(Ω)3×3 ≤ C‖DεΠ̃εϕ̃‖L2(Ω)3×3 ≤ C‖Dεϕ̃‖L2(Ω̃ε)3×3 .

This together with (4.34) gives (4.33).

Now, for the proof of the a priori estimates for the pressure, we also need the following lemma due to Conca
[26] generalized to a thin domain Ωε.

Lemma 4.12. There exists a constant C independent of ε, such that, for each q ∈ L2(Ωε), there exists ϕ = ϕ(q) ∈
Hε, such that

divϕ = q in Ωε, (4.35)

‖ϕ‖L2(Ωε)3 ≤ C ‖q‖L2(Ωε), ‖Dϕ‖L2(Ωε)3×3 ≤ C

ε
‖q‖L2(Ωε). (4.36)

Proof. Let q ∈ L2(Ωε) be given. We extend q inside the cylinders by means of the function:

Q(x) =


q(x) if x ∈ Ωε

−1

|Λε − Ωε|

∫
Ωε

q(x) dx if x ∈ Λε − Ωε.

It is follows that Q ∈ L2
0(Λε) = {p ∈ L2(Λε) :

∫
Λε
p dx = 0} and

‖Q‖2L2(Λε)
= ‖q‖2L2(Ωε)

+
1

|Λε − Ωε|

(∫
Ωε

q(x) dx

)2

. (4.37)

Since |Λε−Ωε| is bounded from below by a positive number, it follows from (4.37) and Cauchy-Schwartz inequality
that

‖Q‖L2(Λε) ≤ C‖q‖L2(Ωε). (4.38)
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Besides that, since Q ∈ L2
0(Λε), it follows from Marušić and Marušić-Paloka (Lemma 20 in [36]) that we can find

ϕ ∈ H1
0 (Λε)

3 such that
divϕ = Q in Λε, (4.39)

‖ϕ‖L2(Λε)3 ≤ C ‖Q‖L2(Λε), ‖Dϕ‖L2(Λε)3×3 ≤ C

ε
‖Q‖L2(Λε). (4.40)

Let us consider ϕ|Ωε : it belongs to Hε. Moreover, (4.35) follows from (4.39) and the estimates (4.36) follows from
(4.40) and (4.38).

Considering the change of variables given in (3.7), we obtain the following result for the domain Ω̃ε.

Corollary 4.13. There exists a constant C independent of ε, such that, for each q̃ ∈ L2(Ω̃ε), there exists ϕ̃ =

ϕ̃(q̃) ∈ H̃ε, such that

divε ϕ̃ = q̃ in Ω̃ε,

‖ϕ̃‖L2(Ω̃ε)3
≤ C ‖q̃‖L2(Ω̃ε)

, ‖Dεϕ̃‖L2(Ω̃ε)3×3 ≤
C

ε
‖q̃‖L2(Ω̃ε)

.

A priori estimates for (ũε, p̃ε) in Ω̃ε: first, let us obtain some a priori estimates for ũε for different values of
γ.

Lemma 4.14. We distinguish three cases:

i) for γ < −1, then there exists a constant C independent of ε, such that

‖ũε‖L2(Ω̃ε)3
≤ Cε, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ C . (4.41)

ii) for −1 ≤ γ < 1, then there exists a constant C independent of ε, such that

‖ũε‖L2(Ω̃ε)3
≤ Cε−γ , ‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε−

1+γ
2 . (4.42)

iii) for γ ≥ 1, then there exists a constant C independent of ε, such that

‖ũε‖L2(Ω̃ε)3
≤ Cε−1, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε−1 . (4.43)

Proof. Taking ũε ∈ H̃3
ε as function test in (3.10), we have

µ ‖Dεũε‖2L2(Ω̃ε)3×3 + αεγ‖ũε‖2L2(∂Tε)3
=

∫
Ω̃ε

f ′ε · ũ′ε dx′dy3 +

∫
∂Tε

g′ε · ũ′ε dσ(x′)dy3 . (4.44)

Using Cauchy-Schwarz’s inequality and f ′ε ∈ L2(Ω)2, we obtain that∫
Ω̃ε

f ′ε · ũ′ε dx′dy3 ≤ C ‖ũε‖L2(Ω̃ε)3
,

and by using that g′ ∈ L2(∂T )2 is a Y ′-periodic function and estimate (4.26), we have∣∣∣∣∫
∂Tε

g′ε · ũ′ε dσ(x′)dy3

∣∣∣∣ ≤ C

ε

(
‖ũε‖L2(Ω̃ε)3

+ ε‖Dεũε‖L2(Ω̃ε)3×3

)
.

Putting these estimates in (4.44), we get

µ ‖Dεũε‖2L2(Ω̃ε)3×3 + αεγ‖ũε‖2L2(∂Tε)3
≤ C

(
‖Dεũε‖L2(Ω̃ε)3×3 + ε−1‖ũε‖L2(Ω̃ε)3

)
. (4.45)
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In particular, if we use the Poincaré inequality (4.33) in (4.45), we have

‖Dεũε‖L2(Ω̃ε)3×3 ≤
C

ε
, (4.46)

therefore (independently of γ ∈ R), using again (4.33), we get

‖ũε‖L2(Ω̃ε)3
≤ C

ε
. (4.47)

These estimates can be refined following the different values of γ. To do so, observe that from estimate (4.32) we
have

ε−1‖ũε‖L2(Ω̃ε)3
≤ C

(
‖Dεũε‖L2(Ω̃ε)3×3 + ε−

1
2 ‖ũε‖L2(∂Tε)3

)
.

Using Young’s inequality, we get

ε−
1
2 ‖ũε‖L2(∂Tε)3 ≤ ε−

1+γ
2 ε

γ
2 ‖ũε‖L2(∂Tε)3 ≤

2

α
ε−1−γ +

α

2
εγ‖ũε‖2L2(∂Tε)3

.

Consequently, from (4.45), we get

µ ‖Dεũε‖2L2(Ω̃ε)3×3 +
α

2
εγ‖ũε‖2L2(∂Tε)3

≤ C
(
‖Dεũε‖L2(Ω̃ε)3×3 + ε−1−γ

)
,

which applying in a suitable way the Young inequality gives

µ ‖Dεũε‖2L2(Ω̃ε)3×3 + αεγ‖ũε‖2L2(∂Tε)3
≤ C

(
1 + ε−1−γ) . (4.48)

For the case when γ < −1, estimate (4.48) reads

‖Dεũε‖L2(Ω̃ε)3×3 ≤ C, ‖ũε‖L2(∂Tε)3 ≤ Cε−
γ
2 .

Then, estimate (4.32) gives

‖ũε‖L2(Ω̃ε)3
≤ C(ε+ ε

1−γ
2 ) ≤ Cε,

since 1 ≤ (1− γ)/2, and so, we have proved (4.41).

For γ ≥ −1, estimate (4.48) reads

‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε−
1+γ
2 , ‖ũε‖L2(∂Tε)3 ≤ Cε−

1
2−γ .

Applying estimate (4.32), we get

‖ũε‖L2(Ω̃ε)3
≤ C(ε

1−γ
2 + ε−γ) ≤ Cε−γ

since −γ ≤ (1 − γ)/2. Then, we have proved (4.42) for −1 ≤ γ < 1. Observe that for γ ≥ 1, the estimates
(4.46)-(4.47) are the optimal ones, so we have (4.43).

We will prove now a priori estimates for the pressure p̃ε for different values of γ.

Lemma 4.15. We distinguish three cases:

i) for γ < −1, then there exists a constant C independent of ε, such that

‖p̃ε‖L2(Ω̃ε)
≤ C εγ . (4.49)
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ii) for −1 ≤ γ < 1, then there exists a constant C independent of ε, such that

‖p̃ε‖L2(Ω̃ε)
≤ C ε−1. (4.50)

iii) for γ ≥ 1, then there exists a constant C independent of ε, such that

‖p̃ε‖L2(Ω̃ε)
≤ C ε−2. (4.51)

Proof. Let Φ̃ ∈ L2(Ω̃ε). From Corollary 4.13, there exists ϕ̃ ∈ H̃3
ε such that

divε ϕ̃ = Φ̃ in Ω̃ε, ‖ϕ̃‖L2(Ω̃ε)3
≤ C ‖Φ̃‖L2(Ω̃ε)

, ‖Dεϕ̃‖L2(Ω̃ε)3×3 ≤
C

ε
‖Φ̃‖L2(Ω̃ε)

. (4.52)

Taking ϕ̃ ∈ H̃3
ε as function test in (3.10), we have∣∣∣∣∫

Ω̃ε

p̃ε Φ̃ dx
′dy3

∣∣∣∣ ≤ µ ‖Dεũε‖L2(Ω̃ε)3×3 ‖Dεϕ̃‖L2(Ω̃ε)3×3 + αεγ
∣∣∣∣∫
∂Tε

ũε · ϕ̃ dσ(x′)dy3

∣∣∣∣
+C ‖ϕ̃‖L2(Ω̃ε)3

+

∣∣∣∣∫
∂Tε

g′ε · ϕ̃′ dσ(x′)dy3

∣∣∣∣ . (4.53)

By using that g ∈ L2(∂T )3 is a Y ′-periodic function and estimate (4.26), we have∣∣∣∣∫
∂Tε

g′ε · ϕ̃′ dσ(x′)dy3

∣∣∣∣ ≤ C (ε−1‖ϕ̃‖L2(Ω̃ε)3
+ ‖Dεϕ̃‖L2(Ω̃ε)3×3

)
.

Analogously, using estimate (4.27) and the Cauchy- Schwarz inequality, a simple computation gives

αεγ
∣∣∣∣∫
∂Tε

ũε · ϕ̃ dσ(x′)dy3

∣∣∣∣ ≤ εγ−1 C ‖ũε‖L2(Ω̃ε)
‖ϕ̃‖L2(Ω̃ε)

+ εγ C ‖ũε‖L2(Ω̃ε)
‖Dεϕ̃‖L2(Ω̃ε)

+ εγ C ‖Dεũε‖L2(Ω̃ε)
‖ϕ̃‖L2(Ω̃ε)

.

Then, turning back to (4.53) and using (4.52), one has∣∣∣∣∫
Ω̃ε

p̃ε Φ̃ dx
′dy3

∣∣∣∣ ≤ C (ε−1 + εγ
)
‖Dεũε‖L2(Ω̃ε)3×3 ‖Φ̃‖L2(Ω̃ε)

+C
(
εγ−1 ‖ũε‖L2(Ω̃ε)3

+ ε−1
)
‖Φ̃‖L2(Ω̃ε)

.

(4.54)

The a priori estimates for the pressure follow now from (4.54) and estimates (4.41)-(4.42) and (4.43), corresponding
to the different values of γ.

A priori estimates of the unfolding functions (ûε, p̂ε): let us obtain some a priori estimates for the sequences
(ûε, p̂ε) where ûε and p̂ε are obtained by applying the change of variable (4.16) to (ũε, p̃ε).

Lemma 4.16. We distinguish three cases:

i) for γ < −1, then there exists a constant C independent of ε, such that

‖ûε‖L2(R2×Yf )3 ≤ Cε, ‖Dyûε‖L2(R2×Yf )3×3 ≤ Cε, (4.55)

‖p̂ε‖L2(R2×Yf ) ≤ Cεγ . (4.56)
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ii) for −1 ≤ γ < 1, then there exists a constant C independent of ε, such that

‖ûε‖L2(R2×Yf )3 ≤ Cε−γ , ‖Dyûε‖L2(R2×Yf )3×3 ≤ Cε
1−γ
2 , (4.57)

‖p̂ε‖L2(R2×Yf ) ≤ Cε−1. (4.58)

iii) for γ ≥ 1, then there exists a constant C independent of ε, such that

‖ûε‖L2(R2×Yf )3 ≤ Cε−1, ‖Dyûε‖L2(R2×Yf )3×3 ≤ C, (4.59)

‖p̂ε‖L2(R2×Yf ) ≤ Cε−2. (4.60)

Proof. Using properties (4.18) and (4.19) with p = 2 and the a priori estimates given in Lemma 4.14 and Lemma
4.15, we have the desired result.

4.2 Some compactness results

Let us remember that, for the velocity, we denote by Ũε the zero extension of ũε to the whole Ω, and for the
pressure we denote by P̃ε the zero extension of p̃ε to the whole Ω. In this subsection we obtain some compactness
results about the behavior of the sequences Π̃εũε, where Π̃ε is given in Corollary 4.10, (Ũε, P̃ε) and (ûε, p̂ε).

Lemma 4.17. There exists an extension operator Π̃ε, given in Corollary 4.10, such that

i) for γ < −1, then
Π̃εũε ⇀ 0 in H1

0 (Ω)3. (4.61)

Moreover, (ε−1Ũε, ε
−γP̃ε) is bounded in H1(0, 1;L2(ω)3) × L2(Ω) and any weak-limit point (ũ, p̃) of this

sequence satisfies
ε−1Ũε ⇀ ũ in H1(0, 1;L2(ω)3), (4.62)

ε−γP̃ε ⇀ p̃ in L2(Ω), (4.63)

ii) for −1 ≤ γ < 1, then

ε
γ+1
2 Π̃εũε ⇀ 0 in H1

0 (Ω)3. (4.64)

Moreover, (εγŨε, εP̃ε) is bounded in H1(0, 1;L2(ω)3)×L2(Ω) and any weak-limit point (ũ, p̃) of this sequence
satisfies

εγŨε ⇀ ũ in H1(0, 1;L2(ω)3), (4.65)

εP̃ε ⇀ p̃ in L2(Ω), (4.66)

iii) for γ ≥ 1, then
εΠ̃εũε ⇀ 0 in H1

0 (Ω)3. (4.67)

Moreover, (Ũε, ε
2P̃ε) is bounded in H1(0, 1;L2(ω)3)× L2(Ω) and any weak-limit point (ũ, p̃) of this sequence

satisfies
Ũε ⇀ ũ in H1(0, 1;L2(ω)3), (4.68)

ε2P̃ε ⇀ p̃ in L2(Ω). (4.69)
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Proof. We proceed in three steps:

Step 1. For γ < −1: from estimates (4.41) and (4.49), we have immediately the convergences, after eventual
extraction of subsequences, (4.62) and (4.63).

Moreover, we have
||ũε||L2(Ω̃ε)3

≤ C,

and we can apply Corollary 4.10 to ũε and we deduce the existence of u∗ ∈ H1
0 (Ω)3 such that Π̃εũε converges

weakly to u∗ in H1
0 (Ω)3. Consequently, by Rellich theorem, Π̃εũε converges strongly to u∗ in L2(Ω)3.

On the other side, we have the following indentity:

χΩ̃ε

(
Π̃εũε

)
= ε ε−1Ũε in Ω.

Due the periodicity of the domain Ω̃ε we have that χΩ̃ε
converges weakly-? to

|Y ′f |
|Y ′| in L∞(Ω), and we can pass to

the limit in the term of the left hand side. Thus, χΩ̃ε

(
Π̃εũε

)
converges weakly to

|Y ′f |
|Y ′|u

∗ in L2(Ω)3. In the right

hand side, Ũε converges to zero, so we obtain (4.61).

Step 2. For −1 ≤ γ < 1: from the estimates (4.42) and (4.50), we deduce convergences (4.65) and (4.66).

Moreover, as −1 ≤ γ < 1, we have

‖ε γ+1
2 ũε‖L2(Ω̃ε)3

≤ C,
and using Corollary 4.10, we have

ε
γ+1
2 Π̃εũε ⇀ u∗ in H1(Ω)3.

Consequently,

ε
γ+1
2 Π̃εũε → u∗ in L2(Ω)3,

and passing to the limit in the identity

χΩ̃ε

(
ε
γ+1
2 Π̃εũε

)
= ε

1−γ
2 εγŨε in Ω,

we deduce that u∗ = 0, and so (4.64) is proved.

Step 3. For γ ≥ 1: from estimate (4.43) and Dirichlet boundary condition, we deduce that

||Ũε||L2(Ω)3 ≤ ||∂y3Ũε||L2(Ω)3 ≤ C,

and we have immediately, after eventual extraction of subsequences, the convergence (4.68). From estimate (4.51),
we have immediately, after eventual extraction of subsequences, the convergence (4.69).

Moreover, we can apply Corollary 4.10 to ũε and we deduce the existence of u∗ ∈ H1
0 (Ω)3 such that εΠ̃εũε

converges weakly to u∗ in H1
0 (Ω)3. Consequently, by Rellich theorem, εΠ̃εũε converges strongly to u∗ in L2(Ω)3.

On the other side, we have the following indentity:

χΩ̃ε

(
εΠ̃εũε

)
= ε Ũε in Ω.

We can pass to the limit in the term of the left hand side. Thus, χΩ̃ε

(
εΠ̃εũε

)
converges weakly to

|Y ′f |
|Y ′|u

∗ in L2(Ω)3.

In the right hand side, ε Ũε converges to zero, so we obtain (4.67).

Finally, we give a convergence result for ûε.

Lemma 4.18. We distinguish three cases:
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i) for γ < −1, then for a subsequence of ε still denote by ε, there exists û ∈ L2(R2;H1
] (Yf )3), such that

ε−1ûε ⇀ û in L2(R2;H1(Yf )3), (4.70)

ε−1ûε ⇀ û in L2(R2;H
1
2 (∂T )3), (4.71)

|Y ′f |
|Y ′|MY ′f

[û] = ũ a.e. in Ω, (4.72)

ii) for −1 ≤ γ < 1, then for a subsequence of ε still denote by ε, there exists there exists û ∈ L2(R2;H1
] (Yf )3),

independent of y, such that
εγ ûε ⇀ û in L2(R2;H1(Yf )3), (4.73)

εγ ûε ⇀ û in L2(R2;H
1
2 (∂T )3), (4.74)

|Y ′f |
|Y ′| û = ũ a.e. in Ω, (4.75)

iii) for γ ≥ 1, then for a subsequence of ε still denote by ε, there exists there exists û ∈ L2(R2;H1
] (Yf )3) such

that

ûε −MYf [ûε] ⇀ û in L2(R2;H
1
2 (∂T )3). (4.76)

Dyûε ⇀ Dyû in L2(R2 × Yf )3×3. (4.77)

|Y ′f |
|Y ′|MY ′f

[û] = ũ a.e. in Ω, (4.78)

divyû = 0 in ω × Yf . (4.79)

Proof. We proceed in three steps:

Step 1. For γ < −1, using (4.55), there exists û : R2 × Yf → R3, such that convergence (4.70) holds. Passing
to the limit by semicontinuity and using estimates (4.55), we get∫

R2×Yf
|û|2 dx′dy ≤ C,

∫
R2×Yf

|Dyû|2 dx′dy ≤ C,

which, once we prove the Y ′-periodicity of û in y′, shows that û ∈ L2(R2;H1
] (Yf )3).

It remains to prove the Y ′-periodicity of û in y′. To do this, we observe that by definition of ûε given by (4.16)
applied to ũε, we have

ûε(x1 + ε, x2,−1/2, y2, y3) = ûε(x
′, 1/2, y2, y3) a.e. (x′, y2, y3) ∈ R2 × (−1/2, 1/2)× (0, 1) .

Multiplying by ε−1 and passing to the limit by (4.70), we get

û(x′,−1/2, y2, y3) = û(x′, 1/2, y2, y3) a.e. (x′, y2, y3) ∈ R2 × (−1/2, 1/2)× (0, 1) .

Analogously, we can prove

û(x′, y1,−1/2, y3) = û(x′, y1, 1/2, y3) a.e. (x′, y1, y3) ∈ ω × (−1/2, 1/2)× (0, 1) .

These equalities prove that û is periodic with respect to Y ′. Convergence (4.71) is straightforward from the
definition (4.22) and the Sobolev injections.

Finally, using Proposition 4.2, we can deduce

1

|Y ′|

∫
R2×Yf

ûε(x
′, y)dx′dy =

∫
Ω̃ε

ũε(x
′, y3)dx′dy3,
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and multiplying by ε−1 and taking into account that ũε is extended by zero to the whole Ω, we have

1

ε|Y ′|

∫
R2×Yf

ûε(x
′, y)dx′dy =

1

ε

∫
Ω

Ũε(x
′, y3)dx′dy3.

Using convergences (4.62) and (4.70), we have (4.72).

Step 2. For −1 ≤ γ < 1, using (4.57) and taking into account that ε
1−γ
2 ≤ ε−γ , then there exists û : R2 × Yf →

R3, such that convergence (4.73) holds. Convergence (4.74) is straightforward from the definition (4.22) and the
Sobolev injections.

On the other hand, since εγDyûε = ε
γ+1
2 ε

γ−1
2 Dyûε and ε

γ−1
2 Dyûε is bounded in L2(R2 × Yf )3×3, using (4.73)

we can deduce that Dyû = 0. This implies that û is independent of y. Finally, (4.75) is obtained similarly to the
Step 1.

Step 3. For γ ≥ 1, using the second a priori estimate in (4.59) and the Poincaré-Wirtinger inequality∫
Yf

∣∣ûε −MYf [ûε]
∣∣2 dy ≤ C ∫

Yf

|Dyûε|2dy, a.e. in ω,

we deduce that there exists û ∈ L2(R2;H1(Yf )3) such that

Ûε = ûε −MYf [ûε] ⇀ û in L2(R2;H1(Yf )3),

and (4.77) holds. Convergence (4.76) is straightforward from the definition (4.22) and the Sobolev injections.

It remains to prove the Y ′-periodicity of û in y′. To do this, we observe that by definition of ûε given by (4.16)
applied to ũε, we have

ûε(x1 + ε, x2,−1/2, y2, y3) = ûε(x
′, 1/2, y2, y3) a.e. (x′, y2, y3) ∈ R2 × (−1/2, 1/2)× (0, 1) ,

which implies
Ûε(x

′,−1/2, y2, y3)− Ûε(x′, 1/2, y2, y3) = −MYf [ûε](x
′ + ε e1) +MY [ûε](x

′),

which tends to zero (see the proof of Proposition 2.8 in [31]), and so

û(x′,−1/2, y2, y3) = û(x′, 1/2, y2, y3) a.e. (x′, y2, y3) ∈ R2 × (−1/2, 1/2)× (0, 1) .

Analogously, we can prove

û(x′, y1,−1/2, y3) = û(x′, y1, 1/2, y3) a.e. (x′, y1, y3) ∈ ω × (−1/2, 1/2)× (0, 1) .

These equalities prove that û is periodic with respect to Y ′.

Step 4. From the second variational formulation in (3.10), by Proposition 4.4, we have that∫
Ω̃ε

(
ũ′ε · ∇x′ ψ̃ + ε−1ũε,3∂y3 ψ̃

)
dx′dy3 =

ε−1

|Y ′|

∫
ω×∂T

(ûε · n)ψ̂ε dx
′dσ(y′)dy3, ∀ ψ̃ ∈ H̃ε, (4.80)

and using the extension of the velocity, we obtain∫
Ω

(
Ũ ′ε · ∇x′ ψ̃ + ε−1Ũε,3∂y3 ψ̃

)
dx′dy3 =

ε−1

|Y ′|

∫
ω×∂T

(ûε · n)ψ̂ε dx
′dσ(y′)dy3, ∀ ψ̃ ∈ H̃ε.

We remark that the second term in the left-hand side and the one in the right-hand side have the same order, so in
every cases when passing to the limit after multiplying by a suitable power of ε and using that ψ̂ε converges strongly
to ψ̃ in L2(ω×∂T ) (see Proposition 2.6 in [31] for more details), it is not possible to find the usual incompressibility
condition in thin domains given by

divx′

(∫ 1

0

ũ′(x′, y3) dy3

)
= 0 on ω.
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On the other hand, we focus in the third case. Thus, using Proposition 4.2 in the left-hand side of (4.80), we
have

ε−1

|Y ′|

∫
ω×Yf

ûε · ∇yψ̂ε dx′dy =
ε−1

|Y ′|

∫
ω×∂T

ûε · ψ̂ε dx′dσ(y′)dy3, (4.81)

which, multiplying by ε|Y ′| and since MYf [ûε] does not depend on the variable y, is equivalent to∫
ω×Yf

(ûε −MYf [ûε]) · ∇yψ̂ε dx′dy =

∫
ω×∂T

[(ûε −MYf [ûε]) · n] · ψ̂ε dx′dσ(y′)dy3 (4.82)

Thus, passing to the limit using convergences (4.77), we get condition (4.79).

4.3 Proof of Theorem 3.1

In this section, we will multiply system (3.10) by a test function having the form of the limit û (as explained in
Lemma 4.18), and we will use the convergences given in the previous section in order to identify the homogenized
model in every cases.

Proof of Theorem 3.1: We proceed in three steps:

Step 1. For γ < −1. Let ϕ̃ ∈ D(Ω)3 and ψ̃ ∈ D(Ω) be test functions in (3.10). By Proposition 4.4, one has

µ

∫
Ω̃ε

Dεũε : Dεϕ̃ dx
′dy3 −

∫
Ω̃ε

p̃ε divε ϕ̃ dx
′dy3 + α

εγ−1

|Y ′|

∫
ω×∂T

ûε · ϕ̂ε dx′dσ(y)

=

∫
Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +
ε−1

|Y ′|

∫
ω×∂T

g̃′ · ϕ̂′ε dx′dσ(y),

i.e.,

µ

∫
Ω̃ε

Dx′ ũε : Dx′ ϕ̃ dx
′dy3 +

µ

ε2

∫
Ω̃ε

∂y3 ũε · ∂y3 ϕ̃ dx′dy3

−
∫

Ω̃ε

p̃ε divx′ ϕ̃
′ dx′dy3 −

1

ε

∫
Ω̃ε

p̃ε ∂y3 ϕ̃3 dx
′dy3 + α

εγ−1

|Y ′|

∫
ω×∂T

ûε · ϕ̂ε dx′dσ(y)

=

∫
Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +
ε−1

|Y ′|

∫
ω×∂T

g̃′ · ϕ̂′ε dx′dσ(y),

(4.83)

Next, we prove that p̃ does not depend on y3. Let ϕ̃ = (0, ε−γ+1ϕ̃3) ∈ D(Ω)3 be a test function in (4.83), we
have

µ ε−γ+1

∫
Ω̃ε

∇x′ ũε,3 · ∇x′ ϕ̃3 dx
′dy3 + µ ε−γ−1

∫
Ω̃ε

∂y3 ũε,3∂y3 ϕ̃3 dx
′dy3

−ε−γ
∫

Ω̃ε

p̃ε ∂y3 ϕ̃3 dx
′dy3 +

α

|Y ′|

∫
ω×∂T

ûε,3 · ϕ̂ε,3 dx′dσ(y) = 0.

Taking into account that P̃ε is zero extension of p̃ε to the whole Ω, we have∫
Ω̃ε

p̃ε ∂y3 ϕ̃3 dx
′dy3 =

∫
Ω

P̃ε ∂y3 ϕ̃3 dx
′dy3,

and by the second a priori estimate (4.41), the convergences (4.63) and (4.71), passing to the limit we have∫
Ω

p̃ ∂y3 ϕ̃3 dx
′dy3 = 0,

so p̃ does not depend on y3.
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Let ϕ̃ = (ε−γϕ′(x′, y3), ε−γϕ̃3(x′)) ∈ D(Ω)3 be a test function in (4.83), we have

µε−γ
∫

Ω̃ε

Dx′ ũ
′
ε : Dx′ ϕ̃

′ dx′dy3 + µε−γ−2

∫
Ω̃ε

∂y3 ũ
′
ε · ∂y3 ϕ̃′ dx′dy3 − ε−γ

∫
Ω̃ε

p̃ε divx′ ϕ̃
′ dx′dy3

+α
ε−1

|Y ′|

∫
ω×∂T

û′ε · ϕ̂′ε dx′dσ(y) = ε−γ
∫

Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +
ε−γ−1

|Y ′|

∫
ω×∂T

g̃′ · ϕ̂′ε dx′dσ(y),

and

µ ε−γ
∫

Ω̃ε

∇x′ ũε,3 · ∇x′ ϕ̃3 dx
′dy3 + α

ε−1

|Y ′|

∫
ω×∂T

ûε,3 ϕ̂ε,3 dx
′dσ(y) = 0.

Taking into account that P̃ε is zero extension of p̃ε to the whole Ω, we have∫
Ω̃ε

p̃ε divx′ ϕ̃
′ dx′dy3 =

∫
Ω

P̃ε divx′ ϕ̃
′ dx′dy3.

Using that ϕ̂ε converges strongly to ϕ̃ in L2(ω × ∂T )3 (see Proposition 2.6 in [31] for more details) and by the
second a priori estimate (4.41), the convergences (4.63) and (4.71), passing to the limit we have

−
∫

Ω

p̃(x′) divx′ ϕ̃
′(x′, y3)dx′dy3 +

α

|Y ′|

∫
ω×∂T ′

∫ 1

0

û′(x′, y) · ϕ̃′(x′, y3)dx′dσ(y′)dy3 = 0,

and
α

|Y ′|

∫
ω×∂T

û3(x′, y) ϕ̃3(x′) dx′dσ(y) = 0,

which implies that M∂T ′ [û3] = 0.

Taking into account that∫
ω×∂T ′

∫ 1

0

û′(x′, y) · ϕ̃′(x′, y3)dx′dσ(y′)dy3 = |∂T ′|
∫

Ω

M∂T ′ [û
′](x′, y3) · ϕ̃′(x′, y3) dx′dy3,

implies that ∫
Ω

∇x′ p̃(x′) · ϕ′(x′, y3) dx′dy3 = −α|∂T
′|

|Y ′|

∫
Ω

M∂T ′ [û
′](x′, y3) · ϕ̃′(x′, y3) dx′dy3 . (4.84)

In order to obtain the homogenized system (3.12), we introduce the auxiliary problem

−∆y′χ(y′) = −|∂T
′|

|Y ′f |
MY ′f

[û](x′, y3), in Y ′f ,

∂χ

∂n
= û, on ∂T ′,

MY ′f
[χ] = 0,

χ(y) Y ′ − periodic,

for a.e. (x′, y3) ∈ Ω, which has a unique solution in H1(Y ′f ) (see Chapter 2, Section 7.3 in Lions and Magenes [37]).
Using this auxiliary problem, we conclude that∫

Ω

M∂T ′ [û] · ϕ̃ dx′dy3 =

∫
Ω

MY ′f
[û] · ϕ̃ dx′dy3 , (4.85)

which together with (4.84) and M∂T ′ [û3] = 0 gives

MY ′f
[û′](x′, y3) = − |Y

′|
α|∂T ′|∇x′ p̃(x

′) ,
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and
MY ′f

[û3] = 0,

which together with (4.72) gives

ũ′(x′, y3) = −
|Y ′f |
α|∂T ′|∇x′ p̃(x

′), ũ3(x′, y3) = 0.

This together with the definition of θ and µ1, implies (3.12).

Step 2. For −1 ≤ γ < 1. First, we prove that p̃ does not depend on y3. Let ϕ̃ = (0, ε2ϕ̃3) ∈ D(Ω)3 be a test
function in (4.83). Reasoning as Step 1 and by the second a priori estimate (4.42), the convergence (4.66) and
(4.74), passing to the limit we deduce that p̃ does not depend on y3.

Let ϕ̃ = (εϕ′(x′, y3), εϕ̃3(x′)) ∈ D(Ω)3 be a test function in (4.83). Reasoning as Step 1 and by the second a
priori estimate (4.42), the convergences (3.11), (4.66) and (4.74), passing to the limit we have

−
∫

Ω

p̃(x′) divx′ ϕ̃
′(x′, y3)dx′dy3 +

α

|Y ′|

∫
ω×∂T ′

∫ 1

0

û′(x′) · ϕ̃′(x′, y3)dx′dσ(y′)dy3

=

∫
Ω

f ′(x′) · ϕ̃′(x′, y3)dx′dy3 +
1

|Y ′|

∫
ω×∂T ′

∫ 1

0

g′(y′) · ϕ̃′(x′, y3)dx′dσ(y′)dy3,

and
α

|Y ′|

∫
ω×∂T

û3(x′) ϕ̃3(x′) dx′dσ(y) = 0,

which implies that û3 = 0.

Taking into account that∫
ω×∂T ′

∫ 1

0

û′(x′) · ϕ̃′(x′, y3)dx′dσ(y′)dy3 = |∂T ′|
∫

Ω

û′(x′) · ϕ̃′(x′, y3) dx′dy3,

implies that ∫
Ω

∇x′ p̃(x′) · ϕ′(x′, y3) dx′dy3 +
α|∂T ′|
|Y ′|

∫
Ω

û′(x′) · ϕ̃′(x′, y3) dx′dy3

=

∫
Ω

f ′(x′) · ϕ̃′(x′, y3)dx′dy3 +
|∂T ′|
|Y ′|

∫
Ω

M∂T ′ [g
′] · ϕ̃′(x′, y3)dx′dy3,

which together with (4.75) gives (3.13) after integrating the vertical variable y3 between 0 and 1.

Step 3. For γ ≥ 1. For all ϕ̂(x′, y) ∈ D(ω;C∞] (Y )3), we choose ϕ̂ε(x) = ϕ̂(x′, x′/ε, y3) as test function in (4.83).
Then we get the following variational formulation:

µ

ε2

∫
ω×Yf

Dyûε : Dy′ ϕ̂ dx
′dy −

∫
ω×Yf

p̂ε divx′ ϕ̂
′ dx′dy − ε−1

∫
ω×Yf

p̂ε divy ϕ̂ dx
′dy

+αεγ−1

∫
ω×∂T

ûε · ϕ̂ dx′dσ(y) =

∫
ω×Yf

f ′ε · ϕ̂′ dx′dy + ε−1

∫
ω×∂T

g̃′ · ϕ̂′ dx′dσ(y) +Oε.

(4.86)

First, we remark that thanks to (4.60), there exists p̂ ∈ L2(ω × Yf ) such that ε2p̂ε converges weakly to p̂ in
L2(ω × Yf ). Now, we prove that p̂ does not depend on y. For that, we consider ε3ϕ̂ε in the previous formulation,
and passing to the limit by (4.76) and (4.77), we get∫

ω×Yf
p̂ divyϕ̂ dx

′dy3 = 0,

which shows that p̂ does not depend on y.
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Now, we consider ϕ̂ with divyϕ̂ = 0 in ω × Yf (which is necessary because û satisfies (4.79)), and similarly we
define ϕ̂ε. Then, taking ε2ϕ̂ε, the variational formulation (4.86) is the following:

µ

∫
ω×Yf

Dyûε : Dy′ ϕ̂ dx
′dy − ε2

∫
ω×Yf

p̂ε divx′ ϕ̂
′ dx′dy

+αεγ+1

∫
ω×∂T

ûε · ϕ̂ dx′dσ(y) = ε2

∫
ω×Yf

f ′ε · ϕ̂′ dx′dy + ε

∫
ω×∂T

g̃′ · ϕ̂′ dx′dσ(y) +Oε.

(4.87)

Reasoning as Step 1, and using the convergences (3.11), (4.76), (4.77) and the convergence of p̂ε, passing to the
limit we have

µ

∫
ω×Yf

Dyû : Dyϕ̂ dx
′dy −

∫
ω×Yf

p̂(x′) divx′ ϕ̂
′ dx′dy = 0. (4.88)

By density, this equation holds for every function ϕ̂(x′, y) ∈ L2(ω;H1
] (Y )3) such that divyϕ̂ = 0. This implies that

there exists q̂(x′, y) ∈ L2
] (ω × Yf ) such that (4.88) is equivalent to the following problem:

−µ∆yû+∇y q̂ = −∇x′ p̂ in ω × Yf ,
divyû = 0 in ω × Yf ,
∂û

∂n
= 0 on ω × ∂T,

û = 0 on y3 = 0, 1,

y′ → û(x′, y), q̂(x′, y) Y ′ − periodic .

We remark that p̂ is already the pressure p̃. This can be easily proved by multiplying equation (4.83) by a test
function ε2ϕ′(x′, y3) and identifying limits.

Finally, we will eliminate the microscopic variable y in the effective problem. Observe that we can easily deduce
that û3 = 0 and q̂ = q̂(x′, y′) and moreover, the derivation of (3.14) from the previous effective problem is an easy

algebra exercise. In fact, we can write
∫ 1

0
û(x′, y)dy3 = 1

µ

∑2
i=1 ∂xi p̃(x

′)wi(y′) and q̂(x′, y′) = 1
µ

∑2
i=1 ∂xi p̃(x

′)qi(y′)

with (wi, qi), i = 1, 2, the solutions of the local problems (3.15), and use property (4.78) which involves the functions∫ 1

0
û(x′, y)dy3 and

∫ 1

0
ũ(x′, y3)dy3. As well-known, the local problems (3.15) are well-posed with periodic boundary

conditions, and it is easily checked, by integration by parts, that

Aij =
1

|Yf |

∫
Yf

Dyw
i(y) : Dyw

j(y) dy =

∫
Yf

wi(y)ej dy, i, j = 1, 2.

By definition A is symmetric and positive definite.

5 Conclusions

The behavior of the flow of Newtonian fluids through periodic arrays of cylinders has been studied extensively,
mainly because of its importance in many applications in heat and mass transfer equipment. However, the literature
on Newtonian thin film fluid flows through periodic arrays of cylinders is far less complete, although these problems
have now become of great practical relevance because take place in a number of natural and industrial processes.
This paper deals with the modelization by means of homogenization techniques of a thin film fluid flow governed
by the Stokes system in a thin perforated domain Ωε which depends on a small parameter ε. More precisely, Ωε
has thickness ε and is perforated by a periodic array of cylindrical obstacles of period ε.

The main novelty here are the combination of the mixed boundary condition considered on the obstacles and
the thin thickness of the domain. Namely, a standard (no-slip) condition is imposed on the exterior boundary,
whereas a non-standard boundary condition of Robin type which depends on a parameter γ is imposed on the
interior boundary. This type of boundary condition is motivated by the phenomenon in which a motion of the
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fluid appears when a electrical field is applied on the boundary of a porous medium in equilibrium. The main
mathematical difficulties of this work are to treat the surface integrals and extend the solution to a fixed domain
in order to pass to the limit with respect to the parameter ε. We overcome the first difficulty by using a version
of the unfolding method which let us treat the surface integrals quite easily. Moreover, we need to develop some
extension abstract results and adapt them to the case of thin domain.

By means of a combination of homogenization and reduction of dimension techniques, depending on the pa-
rameter γ, we obtain three modified 2D Darcy type laws which model the behavior of the fluid and include the
effect of the surface forces and the measure of the obstacles. We remark that we are not able to prove a divergence
condition for the limit averaged fluid flow as obtained if we had considered Dirichlet boundary conditions, which
from the mechanical point of view means that some fluid “dissapear” through the cylinders and so, it is represented
by the motion of a compressible fluid. To conclude, it is our firm belief that our results will prove useful in the
engineering practice, in particular in those industrial applications where the flow is affected by the effects of the
surface forces, the fluid microstructure and the thickness of the domain.
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