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Abstract

We consider the Stokes system in a thin porous medium Ωε of thickness ε which is perforated by periodically
distributed solid cylinders of size ε. On the boundary of the cylinders we prescribe non-homogeneous Fourier
boundary condition depending on a parameter γ. The aim is to give the asymptotic behavior of the velocity
and the pressure of the fluid as ε goes to zero. Using an adaptation of the unfolding method, we give, following
the values of γ, different limit systems.
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1 Introduction

We consider a viscous fluid obeying the Stokes system in a thin porous medium Ωε of thickness ε which is perforated
by periodically distributed solid cylinders of size ε. On the boundary of the solid cylinders, we prescribe a non-
homogeneous Fourier boundary condition depending on a parameter γ ∈ R. The aim of this work is to prove the
convergence of the homogenization process depending on the different values of γ.

The domain: the periodic porous medium is defined by a domain ω and an associated microstructure, or periodic
cell Y ′ = [−1/2, 1/2]2, which is made of two complementary parts: the fluid part Y ′f , and the solid part T ′

(Y ′f
⋃
T ′ = Y ′ and Y ′f

⋂
T ′ = ∅). More precisely, we assume that ω is a smooth, bounded, connected set in R2,

and that T ′ is an open connected subset of Y ′ with a smooth boundary ∂T ′, such that T̄ ′ is strictly included in Y ′.

The microscale of a porous medium is a small positive number ε. The domain ω is covered by a regular mesh
of square of size ε: for k′ ∈ Z2, each cell Y ′k′,ε = εk′ + εY ′ is divided in a fluid part Y ′fk′ ,ε and a solid part T ′k′,ε,

i.e. is similar to the unit cell Y ′ rescaled to size ε. We define Y = Y ′ × (0, 1) ⊂ R3, which is divided in a fluid part
Yf = Y ′f × (0, 1) and a solid part T = T ′× (0, 1), and consequently Yk′,ε = Y ′k′,ε× (0, 1) ⊂ R3, which is also divided
in a fluid part Yfk′ ,ε and a solid part Tk′,ε.
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Figure 1: Views of a periodic cell in 2D (left) and 3D (right)

The fluid part ωε ⊂ R2 of a porous medium is defined by ωε = ω\
⋃
k′∈Kε T̄

′
k′,ε, where Kε = {k′ ∈ Z2 : Y ′k′,ε∩ω 6=

∅}.

The whole fluid part Ωε ⊂ R3 in the thin porous medium is defined by (see Figures 3 and 2)

Ωε = {(x1, x2, x3) ∈ ωε × R : 0 < x3 < ε}. (1.1)

"

" "

"

Figure 2: Views from lateral (left) and from above (right)

We denote by Sε the set of the solid cylinders contained in Ωε, i.e. Sε =
⋃
k′∈Kε T

′
k′,ε × (0, ε).

We define
Ω̃ε = ωε × (0, 1), Ω = ω × (0, 1), Λε = ω × (0, ε). (1.2)

We observe that Ω̃ε = Ω\
⋃
k′∈Kε T̄k′,ε, and we define Tε =

⋃
k′∈Kε Tk′,ε as the set of the solid cylinders contained

in Ω̃ε.
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Figure 3: View of the domain Ωε

The problem: let us consider the following Stokes system in Ωε, with a Dirichlet boundary condition on the
exterior boundary ∂Λε and a non-homogeneous Fourier boundary condition on the cylinders ∂Sε:

−µ∆uε +∇pε = fε in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Λε,

−pε · n+ µ
∂uε
∂n

+ αεγuε = gε on ∂Sε,

(1.3)

where uε = (uε,1, uε,2, uε,3) denotes the velocity field, pε is the (scalar) pressure, fε = (fε,1(x1, x2), fε,2(x1, x2), 0)
is the field of exterior body force and gε = (gε,1(x1, x2), gε,2(x1, x2), 0) is the field of exterior surface forces. The
constants α and γ are given, with α ≥ 0, µ is the viscosity and n is the outward normal to Sε.

This choice of f and g is usual when we deal with thin domains. Since the thickness of the domain, ε, is small
then vertical component of the forces can be neglected and, moreover the force can be considered independent of
vertical variable.

The boundary condition on ∂Sε means that the stress vector gives rise to a breaking phenomenon due to the
presence of the term αεγuε and to a proportionality with the exterior surface forces due to the presence of gε (see
[1] for more details).

Problem (1.3) models in particular the flow of an incompressible viscous fluid through a thin porous medium
under the action of an exterior electric field. This system is derived from a physical model well detailed in the
literature (see Cioranescu et al. [1], Sanchez-Palencia [2] and references therein for more details).

The Stokes problem in a periodically perforated domain with holes of the same size as the periodic has been
treated in the literature. More precisely, with Dirichlet conditions on the boundary of the holes was studied by
Ene and Sanchez-Palencia [3], where the limit law describing the homogenized medium is a Darcy’s law. And with
non-homogeneous Fourier boundary condition was studied by Cioranescu et al. [1], where using the variational
method introduced by Tartar [4], a Darcy’s law, a Brinkmann-type equation or a Stokes-type equation are obtained
depending of the valued of γ.

The Stokes and Navier-Stokes equations in a perforated domain with holes of size rε, with rε � ε is considered
by Allaire [5]. On the boundary of the holes, the normal component of the velocity is equal to zero and the
tangential velocity is proportional to the tangential component of the normal stress. The type of the limit law is
determined by the size rε, i.e. by the geometry of the domain.

The earlier results relate to a fixed height domain. For a thin domain, in [6] Anguiano considers a non-
stationary incompressible non-Newtonian Stokes system, in a thin porous medium of thickness ε that is perforated
by periodically distributed solid cylinders of size aε, with Dirichlet conditions on the boundary of the cylinders.
Applying an adaptation of the unfolding method introduced by Cioranescu et al. [7], time-dependent Darcy’s laws
are obtained rigorously. The behavior observed when aε ≈ ε has motived the fact of considering non-homogeneous
Fourier conditions on the boundary of the cylinders. In this sense, our aim in the present paper is to consider a
Newtonian fluid flow, in the thin porous medium (1.1), with a non-homogeneous Fourier boundary condition. We
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prove the convergence of the homogenization process depending on the different values of γ. One of the major
difficulty in the present paper is to treat the surface integrals. The papers mentioned above about problems
with non-homogeneous boundary conditions use a generalization (see Cioranescu and Donato [8]) of the technique
introduced by Vanninathan [9] for the Steklov problem, which transforms the surface integrals into volume integrals.
An excellent alternative, in our opinion, of this technique was made possible with the development of the unfolding
method (see Cioranescu et al. [7]), which allows to treat quite elementary in the surface integrals. In the present
paper, we extend some abstract results for thin domains, using an adaptation of the unfolding method, in order to
treat all the surface integrals and we obtain in this way directly the corresponding homogenized terms. A similar
approach is made by Cioranescu et al. [10], Zaki [11] and Capatina and Ene [12] for a fixed height domain.

We show that the asymptotic behavior of the system (1.3) depends on the values of γ:

- For γ < −1, we obtained a 2D Darcy’s law as an homogenized model. The flow is only driven by the pressure.

- For −1 ≤ γ < 1, we also obtain a 2D Darcy’s law but in this case the flow depends on the pressure, the
external body forces and the mean value of the external surface forces.

- For γ ≥ 1, we obtain a 2D Darcy’s law where the flow is only driven by the pressure. The flow behaves as if
there were not any solid cylinders.

The paper is organized as follows. In Section 2, we formulate the problem and state or main result, which is
proved in Section 3.

2 Main result

Along this paper, the points x ∈ R3 will be decomposed as x = (x′, x3) with x′ ∈ R2, x3 ∈ R. We also use the
notation x′ to denote a generic vector of R2.

In this section we describe the asymptotic behavior of a viscous fluid obeying (1.3) in the geometry Ωε described
in (1.1). The proof of the corresponding results will be given in the next section.

The variational formulation: let us introduce the spaces

Hε =
{
ϕ ∈ H1(Ωε)

3 : ϕ = 0 on ∂Λε
}
,

and
H̃ε =

{
ϕ̃ ∈ H1(Ω̃ε)

3 : ϕ̃ = 0 on ∂Ω
}
.

Then, the variational formulation of system (1.3) is the following one:
µ

∫
Ωε

Duε : Dϕdx−
∫

Ωε

pε divϕdx+ αεγ
∫
∂Sε

uε · ϕdσ(x) =

∫
Ωε

f ′ε · ϕ′ dx+

∫
∂Sε

g′ε · ϕ′ dσ(x), ∀ϕ ∈ Hε,∫
Ωε

uε · ∇ψ dx = 0, ∀ψ ∈ D(Ωε).

(2.4)

Assume that fε ∈ L2(Ω)2 and gε(x) = g(x′/ε), where g is a Y ′-periodic function in L2(∂T )2. Under these
assumptions, it is well known that (2.4) has a unique solution (uε, pε) ∈ Hε × L2(Ωε). This solution is unique up
to an additive constant for pε, i.e. it is unique if we consider the corresponding equivalence class: pε ∈ L2(Ωε)/R
(see [13] for more details).

Our aim is to study the asymptotic behavior of uε and pε when ε tends to zero. For this purpose, we use the
dilatation in the variable x3, i.e.

y3 =
x3

ε
, (2.5)
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in order to have the functions defined in the open set with fixed height Ω̃ε defined by (1.2).

Namely, we define ũε ∈ H̃ε, p̃ε ∈ L2(Ω̃ε)/R by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3), a.e. (x′, y3) ∈ Ω̃ε.

Using the transformation (2.5), the system (1.3) can be rewritten as
−µ∆x′ ũε − ε−2µ∂2

y3 ũε +∇x′ p̃ε + ε−1∂y3 p̃εe3 = fε in Ω̃ε,

divx′ ũ
′
ε + ε−1∂y3 ũε,3 = 0 in Ω̃ε,

ũε = 0 on ∂Ω,

(2.6)

with non-homogeneous Fourier boundary condition,

−p̃ε · n+ µ
∂ũε
∂n

+ αεγ ũε = gε on ∂Tε, (2.7)

where e3 = (0, 0, 1)t.

Taking in (2.4) as test function ϕ̃ (x′, x3/ε) with ϕ̃ ∈ H̃ε and ψ̃ (x′, x3/ε) with ψ̃ ∈ D(Ω̃ε), applying the change
of variables (2.5) and taking into account that dσ(x) = εdσ(x′)dy3, the variational formulation of system (2.6)-(2.7)
is then the following one:

µ

∫
Ω̃ε

Dεũε : Dεϕ̃ dx
′dy3 −

∫
Ω̃ε

p̃ε divε ϕ̃ dx
′dy3 + αεγ

∫
∂Tε

ũε · ϕ̃ dσ(x′)dy3

=

∫
Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +

∫
∂Tε

g′ε · ϕ̃′ dσ(x′)dy3, ∀ ϕ̃ ∈ H̃ε,∫
Ω̃ε

(
ũ′ε · ∇x′ ψ̃ + ε−1ũε,3∂y3 ψ̃

)
dx = 0, ∀ ψ̃ ∈ D(Ω̃ε).

(2.8)

In the sequel, we assume that the data f ′ε satisfies that there exists f ′ ∈ L2(Ω)2 such that

εf ′ε ⇀ f ′ weakly in L2(Ω)2. (2.9)

Main result: our goal then is to describe the asymptotic behavior of this new sequence (ũε, p̃ε). The sequence

of solutions (ũε, p̃ε) ∈ H̃ε×L2(Ω̃ε)/R is not defined in a fixed domain independent of ε but rather in a varying set

Ω̃ε. In order to pass the limit if ε tends to zero, convergences in fixed Sobolev spaces (defined in Ω) are used which
requires first that (ũε, p̃ε) be extended to the whole domain Ω. Then, an extension (Ũε, P̃ε) ∈ H1

0 (Ω)3 × L2(Ω)/R
of (ũε, p̃ε) is defined on Ω and coincides with (ũε, p̃ε) on Ω̃ε.

Our main result referred to the asymptotic behavior of the solution of (2.8) is given by the following theorem.

Theorem 2.1. We distingue three cases:

i) For γ < −1, then (ε−1Ũε, ε
−γP̃ε) converges weakly to (ũ(x′, y3), p̃(x′)), in H1(0, 1;L2(ω)3) × L2(ω)/R, with

ũ3 = 0. Moreover, we have that (ṽ, p̃) satisfies the following Darcy law: ṽ′(x′) = −
|Y ′f |
α|∂T ′|

∇x′ p̃(x′)

ṽ3(x′) = 0,

in ω , (2.10)

where ṽ(x′) =
∫ 1

0
ũ(x′, y3)dy3.
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ii) For −1 ≤ γ < 1, then (εγŨε, εP̃ε) converges weakly to (ũ(x′, y3), p̃(x′)) in H1(0, 1;L2(ω)3) × L2(ω)/R, with
ũ3 = 0 and ũ′ = 0 on y3 = {0, 1}. Moreover, we have that (ṽ′, p̃) satisfies the following Darcy law: ṽ′(x′) =

|Y ′f |
α|∂T ′|

(
f ′ −∇x′ p̃(x′) +

|∂T ′|
|Y ′|

M∂T ′ [g
′]

)
ṽ3(x′) = 0.

in ω , (2.11)

where ṽ(x′) =
∫ 1

0
ũ(x′, y3)dy3.

iii) For γ ≥ 1, then (Ũε, ε
2P̃ε) converges weakly to (ũ(x′, y3), p̃(x′)) in H1(0, 1;L2(ω)3) × L2(ω)/R, with ũ = 0

on y3 = {0, 1}. Moreover, we have that (ṽ′, p̃) satisfies the following Darcy law:

ṽ′(x′) = − 1

12µ
∇x′ p̃(x′) in ω , (2.12)

where ṽ′(x′) =
∫ 1

0
ũ′(x′, y3)dy3.

Remark 2.2. We have to point out that in the homogenized problems related to system (2.6)-(2.7), the limit
function does not satisfy the incompressibility condition. This is a consequence of the fact that the normal component
of ũε does not vanish on the boundary of the solid cylinders.

3 Proof of the main result

In this section we prove our main result. In particular, Theorem 2.1 is proved in Subsection 3.3 by means of an
adaptation of the unfolding method (see Arbogast et al. [14] and Cioranescu et al. [7, 10]), which is strongly
related to the two-scale convergence method (see Allaire [15] and Nguetseng [16]). To apply this method, a priori
estimates are established in Subsection 3.1 and some compactness results are proved in Subsection 3.2.

Some notations: in order to apply the unfolding method, we need the following notation: for k′ ∈ Z2, we define
κ : R2 → Z2 by

κ(x′) = k′ ⇐⇒ x′ ∈ Y ′k′,1 . (3.13)

Remark that κ is well defined up to a set of zero measure in R2, which is given by ∪k′∈Z2∂Y ′k′,1. Moreover, for
every ε > 0, we have

κ

(
x′

ε

)
= k′ ⇐⇒ x′ ∈ Y ′k′,ε.

Now, let us introduce some notation which will be useful in the following: for a vectorial function v = (v′, v3) and
a scalar function w, we introduce the operators: Dε, ∇ε and divε, by

(Dεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2, (Dεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

∇εw = (∇x′w,
1

ε
∂y3w)t, divεv = divx′v

′ +
1

ε
∂y3v3.

We denote by |O| the Lebesgue measure of |O| (3-dimensional if O is a 3-dimensional open set, 2-dimensional
of O is a curve).

For every bounded set O and if ϕ ∈ L1(O), we define the average of ϕ on O by

MO[ϕ] =
1

|O|

∫
O
ϕdx . (3.14)
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Similarly, for every compact set K of Y , if ϕ ∈ L1(∂K) then

M∂K [ϕ] =
1

|∂K|

∫
∂K

ϕdσ ,

is the average of ϕ over ∂K.

We denote by L2
] (Y ), H1

] (Y ), the functional spaces

L2
] (Y ) =

{
v ∈ L2

loc(Y ) :

∫
Y

|v|2dy < +∞, v(y′ + k′, y3) = v(y) ∀k′ ∈ Z2, a.e. y ∈ Y
}
,

and

H1
] (Y ) =

{
v ∈ H1

loc(Y ) ∩ L2
] (Y ) :

∫
Y

|∇yv|2dy < +∞
}
.

We denote by : the full contraction of two matrices, i.e. for A = (ai,j)1≤i,j≤2 and B = (bi,j)1≤i,j≤2, we have

A : B =
∑2
i,j=1 aijbij .

Finally, we denote by Oε a generic real sequence, which tends to zero with ε and can change from line to line,
and by C a generic positive constant which also can change from line to line.

3.1 Some abstract results for thin domains and a priori estimates

The a priori estimates independent of ε for ũε and p̃ε will be obtained by using an adaptation of the unfolding
method.

Some abstract results for thin domains: let us introduce the adaption of the unfolding method in which we
divide the domain Ω̃ε in cubes of lateral lengths ε and vertical length 1. For this purpose, given ϕ̃ ∈ Lp(Ω̃ε)

3,
1 ≤ p < +∞, (assuming ϕ̃ extended by zero outside of ωε), we define ϕ̂ε ∈ Lp(R2 × Yf )3 by

ϕ̂ε(x
′, y) = ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
, a.e. (x′, y) ∈ R2 × Yf , (3.15)

where the function κ is defined in (3.13).

Remark 3.1. The restriction of ϕ̂ε, to Y ′f ′k,ε
× Yf does not depend on x′, whereas as a function of y it is obtained

from ṽε, by using the change of variables

y′ =
x′ − εk′

ε
, (3.16)

which transforms Yfk′ ,ε into Yf .

Proposition 3.2. We have the following estimates:

i) for every ϕ̃ ∈ Lp(Ω̃ε), 1 ≤ p+∞, we have

‖ϕ̂ε‖Lp(R2×Yf )3 = |Y ′|
1
p ‖ϕ̃‖Lp(Ω̃ε)3

, (3.17)

where ϕ̂ε is given by (3.15),

ii) for every ϕ̃ ∈W 1,p(Ω̃ε)
3, 1 ≤ p < +∞, we have that ϕ̂ε, given by (3.15), belongs to Lp(R2;W 1,p(Yf )3), and

‖Dyϕ̂ε‖Lp(R2×Yf )3×3 = ε|Y ′|
1
p ‖Dεϕ̃‖Lp(Ω̃ε)3×3 . (3.18)
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Proof. Let us prove i). Using Remark 3.1 and definition (3.15), we have∫
R2×Yf

|ϕ̂ε(x′, y)|p dx′dy =
∑
k′∈Z2

∫
Y ′
k′,ε

∫
Yf

|ϕ̂ε(x′, y)|p dx′dy

=
∑
k′∈Z2

∫
Y ′
k′,ε

∫
Yf

|ϕ̃(εk′ + εy′, y3)|p dx′dy.

We observe that ϕ̃ does not depend on x′, then we can deduce∫
R2×Yf

|ϕ̂ε(x′, y)|p dx′dy = ε2|Y ′|
∑
k′∈Z2

∫
Yf

|ϕ̃(εk′ + εy′, y3)|p dy.

For every k′ ∈ Z2, by the change of variable (3.16), we have

k′ + y′ =
x′

ε
, dy′ =

dx′

ε2
∂y′ = ε∂x′ , (3.19)

and we obtain ∫
R2×Yf

|ϕ̂ε(x′, y)|p dx′dy = |Y ′|
∫
ωε×(0,1)

|ϕ̃(x′, y3)|p dx′dy3

which gives (3.17).

Let us prove ii). Taking into account the definition (3.15) of ϕ̂ε and observing that ϕ̃ does not depend on x′,
then we can deduce∫

R2×Yf
|Dy′ ϕ̂ε(x

′, y)|p dx′dy = ε2|Y ′|
∑
k′∈Z2

∫
Yf

|Dy′ ϕ̃(εk′ + εy′, y3)|p dy.

By (3.19), we obtain∫
R2×Yf

|Dy′ ϕ̂ε(x
′, y)|p dx′dy = εp|Y ′|

∑
k′∈Z2

∫
Y ′f
k′ ,ε

∫ 1

0

|Dx′ ϕ̃(x′, y3)|p dx′dy3

= εp|Y ′|
∫
ωε×(0,1)

|Dx′ ϕ̃(x′, y3)|p dx′dy3. (3.20)

For the partial of the vertical variable, proceeding similarly to (3.17), we obtain∫
R2×Yf

|∂y3 ϕ̂ε(x′, y)|p dx′dy = |Y ′|
∫
ωε×(0,1)

|∂y3 ϕ̃(x′, y3)|p dx′dy3

= εp|Y ′|
∫
ωε×(0,1)

∣∣∣∣1ε∂y3 ϕ̃(x′, y3)

∣∣∣∣p dx′dy3 ,

which together with (3.20) gives (3.18).

In a similar way, let us introduce the adaption of the unfolding method on the boundary of the solid cylinders
∂Tε (see Cioranescu et al. [10] for more details). For this purpose, given ϕ̃ ∈ Lp(∂Tε)3, 1 ≤ p < +∞, we define
ϕ̂bε ∈ Lp(R2 × ∂T )3 by

ϕ̂bε(x
′, y) = ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
, a.e. (x′, y) ∈ R2 × ∂T, (3.21)

where the function κ is defined in (3.13).

Remark 3.3. Observe that from this definition, if we consider ϕ̃ ∈ Lp(∂T ), 1 ≤ p < +∞, a Y ′-periodic function,
and we define ϕ̃ε(x

′, y3) = ϕ̃(x′/ε, y3), it follows that ϕ̂bε(x
′, y) = ϕ̃(y).

Observe that for ϕ̃ ∈W 1,p(Ω̃ε)
3, ϕ̂bε is the trace on ∂T of ϕ̂ε. Therefore ϕ̂bε has a similar properties as ϕ̂ε.
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We have the following property.

Proposition 3.4. If ϕ̃ ∈ Lp(∂Tε)3, 1 ≤ p < +∞, then

‖ϕ̂bε‖Lp(R2×∂T )3 = ε
1
p |Y ′|

1
p ‖ϕ̃‖Lp(∂Tε)3 , (3.22)

where ϕ̂bε is given by (3.21).

Proof. We take (x′, y3) ∈ ∂Tk′,ε. Taking into account (3.21), we obtain∫
R2×∂T

|ϕ̂bε(x′, y)|p dx′dσ(y) = ε2|Y ′|
∑
k′∈Z2

∫
∂T

|ϕ̃(εk′ + εy′, y3)|p dσ(y).

For every k′ ∈ Z2, by taking x′ = ε(k′ + y′), we have dσ(x′) = εdσ(y′). Since the thickness of the solid cylinders is
one, we have that dσ(x′)dy3 = εdσ(y). Hence∫

R2×∂T
|ϕ̂bε(x′, y)|p dx′dσ(y) = ε|Y ′|

∫
∂Tε

|ϕ̃(x′, y3)|p dσ(x′)dy3,

which gives (3.22).

Now, let us give two results which will be useful for obtaining a priori estimates of the solution (ũε, p̃ε) of
problem (2.6)-(2.7). These results are an extension of Cioranescu et al. (Proposition 5.3 and Corollary 5.4 in [17])
to the thin domain case.

Proposition 3.5. Let g ∈ L2(∂T ′)3 and ϕ̃ ∈ H1(Ω̃ε)
3, extended by zero in outside of wε. Let ϕ̂ε be given by

(3.15). Then, there exists a positive constant C, independent of ε, such that∣∣∣∣∫
R2×∂T

g(y′) · ϕ̂ε(x′, y) dx′dσ(y)

∣∣∣∣ ≤ CM∂T ′ [g]
(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dεϕ̃‖L2(Ω̃ε)3×3

)
. (3.23)

In particular, if g = 1, there exists a positive constant C, independent of ε, such that∣∣∣∣∫
R2×∂T

ϕ̂ε(x
′, y) dx′dσ(y)

∣∣∣∣ ≤ C (‖ϕ̃‖L1(Ω̃ε)3
+ ε‖Dεϕ̃‖L1(Ω̃ε)3×3

)
. (3.24)

Proof. Due to density properties, it is enough to prove this estimate for functions in D(R3)3. Let ϕ̃ ∈ D(R3)3, one
has ∣∣∣∣∫

R2×∂T
g(y′) · ϕ̂ε(x′, y) dx′dσ(y)

∣∣∣∣
=

∣∣∣∣∫
R2×∂T

g(y′) · ϕ̃
(
εκ

(
x′

ε

)
+ εy′, y3

)
dx′dσ(y)

∣∣∣∣
≤
∣∣∣∣∫

R2×∂T
g(y′) · ϕ̃

(
εκ

(
x′

ε

)
, y3

)
dx′dσ(y)

∣∣∣∣
+

∣∣∣∣∫
R2×∂T

g(y′) ·
(
ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
− ϕ̃

(
εκ

(
x′

ε

)
, y3

))
dx′dσ(y)

∣∣∣∣
≤ CM∂T ′ [g]

(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dx′ ϕ̃‖L2(Ω̃ε)3×3

)
≤ CM∂T ′ [g]

(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dεϕ̃‖L2(Ω̃ε)3×3

)
,

9
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which implies (3.23). In particular, if g = 1, proceeding as above, we have∣∣∣∣∫
R2×∂T

ϕ̂ε(x
′, y) dx′dσ(y)

∣∣∣∣
=

∣∣∣∣∫
R2×∂T

ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
dx′dσ(y)

∣∣∣∣
≤
∣∣∣∣∫

R2×∂T
ϕ̃

(
εκ

(
x′

ε

)
, y3

)
dx′dσ(y)

∣∣∣∣
+

∣∣∣∣∫
R2×∂T

(
ϕ̃

(
εκ

(
x′

ε

)
+ εy′, y3

)
− ϕ̃

(
εκ

(
x′

ε

)
, y3

))
dx′dσ(y)

∣∣∣∣
≤ C

(
‖ϕ̃‖L1(Ω̃ε)3

+ ε‖Dx′ ϕ̃‖L1(Ω̃ε)3×3

)
≤ C

(
‖ϕ̃‖L1(Ω̃ε)3

+ ε‖Dεϕ̃‖L1(Ω̃ε)3×3

)
,

which implies (3.24).

Corollary 3.6. Let g ∈ L2(∂T )3 be a Y ′-periodic function. Then, for every ϕ̃ ∈ H1(Ω̃ε)
3, we have that there exists

a positive constant C, independent of ε, such that∣∣∣∣∫
∂Tε

g(x′/ε) · ϕ̃(x′, y3)dσ(x′)dy3

∣∣∣∣ ≤ C

ε

(
‖ϕ̃‖L2(Ω̃ε)3

+ ε‖Dεϕ̃‖L2(Ω̃ε)3×3

)
. (3.25)

In particular, if g = 1, there exists a positive constant C, independent of ε, such that∣∣∣∣∫
∂Tε

ϕ̃(x′, y3)dσ(x′)dy3

∣∣∣∣ ≤ C

ε

(
‖ϕ̃‖L1(Ω̃ε)3

+ ε‖Dεϕ̃‖L1(Ω̃ε)3×3

)
. (3.26)

Proof. Since ϕ̃ ∈ H1(Ω̃ε)
3, then ϕ̂bε has similar properties as ϕ̂ε. By using Proposition 3.4 with p = 1 and Remark

3.3, we have ∣∣∣∣∫
∂Tε

g(x′/ε) · ϕ̃(x′, y3)dσ(x′)dy3

∣∣∣∣ =
1

ε|Y ′|

∣∣∣∣∫
R2×∂T

g(y′) · ϕ̂ε(x′, y) dx′dσ(y)

∣∣∣∣ ,
and by Proposition 3.5, we can deduce estimates (3.25) and (3.26).

Moreover, for the proof of the a priori estimates for the velocity, we need the following lemma due to Conca
[18] generalized to a thin domain Ωε.

Lemma 3.7. There exists a constant C independent of ε, such that, for any function ϕ ∈ Hε, one has

‖ϕ‖L2(Ωε)3
≤ C

(
ε ‖Dϕ‖L2(Ωε)3×3 + ε

1
2 ‖ϕ‖L2(∂Sε)3

)
. (3.27)

Proof. We observe that the microscale of the porous medium ε is similar than the thickness of the domain ε, which
lead us to divide the domain Ωε in small cubes of lateral length ε and vertical length ε. We consider the periodic

cell Y . The function ϕ→
(
‖Dϕ‖2L2(Yf )3×3 + ‖ϕ‖2L2(∂T )3

)1/2

is a norm in H1(Yf )3, equivalent to the H1(Yf )3-norm

(see Nečas [19]). Therefore, for any function ϕ(z) ∈ H1(Yf )3, we have∫
Yf

|ϕ|2 dz ≤ C

(∫
Yf

|Dzϕ|2 dz +

∫
∂T

|ϕ|2 dσ(z)

)
, (3.28)

10
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where the constant C depends only on Yf .

Then, for every k′ ∈ Z2, by the change of variable

k′ + z′ =
x′

ε
, z3 =

x3

ε
, dz =

dx

ε3
, ∂z = ε∂x, dσ(x) = ε2 dσ(z), (3.29)

we rescale (3.28) from Yf to Qfk′ ,ε = Y ′fk′ ,ε × (0, ε). This yields that, for any function ϕ(x) ∈ H1(Qfk′ ,ε)
3, one has

∫
Qf

k′ ,ε

|ϕ|2 dx ≤ C

(
ε2

∫
Qf

k′ ,ε

|Dxϕ|2 dx+ ε

∫
T ′
k′,ε×(0,ε)

|ϕ|2 dσ(x)

)
, (3.30)

with the same constant C as in (3.28). Summing the inequality (3.30) for all the periods Qfk′ ,ε and T ′k′,ε × (0, ε),
gives ∫

Ωε

|ϕ|2 dx ≤ C

(
ε2

∫
Ωε

|Dxϕ|2 dx+ ε

∫
∂Sε

|ϕ|2 dσ(x)

)
.

In fact, we must consider separately the periods containing a portion of ∂ω, but they yield at a distance O(ε) of ∂ω,
where ϕ is zero. Therefore, using Poincare’s inequality one can easily verify that in this part (3.27) holds without
considering the boundary term occuring in (3.27).

Considering the change of variables given in (2.5) and taking into account that dσ(x) = εdσ(x′)dy3, we obtain

the following result for the domain Ω̃ε.

Corollary 3.8. There exists a constant C independent of ε, such that, for any function ϕ̃ ∈ H̃ε, one has

‖ϕ̃‖L2(Ω̃ε)3
≤ C

(
ε ‖Dεϕ̃‖L2(Ω̃ε)3×3 + ε

1
2 ‖ϕ̃‖L2(∂Tε)3

)
. (3.31)

The presence in (1.3) of the stress tensor in the boundary condition implies that the extension of the velocity is
no longer obvious. If we consider the Stokes system with Dirichlet boundary condition on the solid cylinders, the
velocity would be extended by zero in the solid cylinders. However, in this case, we need another kind of extension
(see Conca [18] for more details).

Lemma 3.9. There exists an extension operator Πε ∈ L(Hε;H
1
0 (Λε)

3) and a positive constant C, independent of
ε, such that

Πεϕ(x) = ϕ(x), if x ∈ Ωε,

‖DΠεϕ‖L2(Λε)3×3 ≤ C‖Dϕ‖L2(Ωε)3×3 , ∀ϕ ∈ Hε.

Proof. From Cioranescu and Saint-Jean Paulin [20], we have that there exist an extension operator
Π ∈ L(H1(Yf )3;H1(Y )3) such that

Πϕ(z) = ϕ(z), if z ∈ Yf ,

and a positive constant C, independent of ε, such that

‖DΠϕ‖L2(Y )3×3 ≤ C‖Dϕ‖L2(Yf )3×3 , ∀ϕ ∈ H1(Yf )3. (3.32)

We define Πε by applying Π to each Qk′,ε = Y ′k′,ε × (0, ε). Using the change of variable (3.29), we rescale (3.32)
from Y, Yf to Qk′,ε, Qfk′ ,ε, respectively. And proceeding as the proof of Lemma 3.7, we deduce the desired result.

Considering the change of variables given in (2.5), we obtain the following result for the domain Ω̃ε.

11
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Corollary 3.10. There exists an extension operator Π̃ε ∈ L(H̃ε;H
1
0 (Ω)3) and a positive constant C, independent

of ε, such that
Π̃εϕ̃(x′, y3) = ϕ̃(x′, y3), if (x′, y3) ∈ Ω̃ε,

‖DεΠ̃εϕ̃‖L2(Ω)3×3 ≤ C‖Dεϕ̃‖L2(Ω̃ε)3×3 , ∀ ϕ̃ ∈ H̃ε.

Using Corollary 3.10, we obtain a Poincaré inequality in H̃ε.

Corollary 3.11. There exists a constant C independent of ε, such that, for any function ϕ̃ ∈ H̃ε, one has

‖ϕ̃‖L2(Ω̃ε)3
≤ C ‖Dεϕ̃‖L2(Ω̃ε)3×3 . (3.33)

Proof. We observe that
‖ϕ̃‖L2(Ω̃ε)3

≤ ‖Π̃εϕ̃‖L2(Ω)3 , ∀ ϕ̃ ∈ H̃ε. (3.34)

Since Π̃εϕ̃ ∈ H1
0 (Ω)3, we can apply the Poincaré inequality in H1

0 (Ω) and then taking into account Corollary 3.10,
we get

‖Π̃εϕ̃‖L2(Ω)3 ≤ C‖DΠ̃εϕ̃‖L2(Ω)3×3 ≤ C‖DεΠ̃εϕ̃‖L2(Ω)3×3 ≤ C‖Dεϕ̃‖L2(Ω̃ε)3×3 .

This together with (3.34) gives (3.33).

Now, for the proof of the a priori estimates for the pressure, we also need the following lemma due to Conca
[18] generalized to a thin domain Ωε.

Lemma 3.12. There exists a constant C independent of ε, such that, for each q ∈ L2(Ωε), there exists ϕ = ϕ(q) ∈
Hε, such that

divϕ = q in Ωε, (3.35)

‖ϕ‖L2(Ωε)3 ≤ C ‖q‖L2(Ωε), ‖Dϕ‖L2(Ωε)3×3 ≤ C

ε
‖q‖L2(Ωε). (3.36)

Proof. Let q ∈ L2(Ωε) be given. We extend q inside the cylinders by means of the function:

Q(x) =


q(x) if x ∈ Ωε

−1

|Λε − Ωε|

∫
Ωε

q(x) dx if x ∈ Λε − Ωε.

It is follows that Q ∈ L2(Λε)/R and

‖Q‖2L2(Λε)
= ‖q‖2L2(Ωε)

+
1

|Λε − Ωε|

(∫
Ωε

q(x) dx

)2

. (3.37)

Since |Λε−Ωε| is bounded from below by a positive number, it follows from (3.37) and Cauchy-Schwartz inequality
that

‖Q‖L2(Λε) ≤ C‖q‖L2(Ωε). (3.38)

Besides that, since Q ∈ L2(Λε)/R, it follows from Marušić and Marušić-Paloka (Lemma 20 in [21]) that we can
find ϕ ∈ H1

0 (Λε)
3 such that

divϕ = Q in Λε, (3.39)

‖ϕ‖L2(Λε)3 ≤ C ‖Q‖L2(Λε), ‖Dϕ‖L2(Λε)3×3 ≤ C

ε
‖Q‖L2(Λε). (3.40)

Let us consider ϕ|Ωε : it belongs to Hε. Moreover, (3.35) follows from (3.39) and the estimates (3.36) follows from
(3.40) and (3.38).

12
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Considering the change of variables given in (2.5), we obtain the following result for the domain Ω̃ε.

Corollary 3.13. There exists a constant C independent of ε, such that, for each q̃ ∈ L2(Ω̃ε), there exists ϕ̃ =

ϕ̃(q̃) ∈ H̃ε, such that

divε ϕ̃ = q̃ in Ω̃ε,

‖ϕ̃‖L2(Ω̃ε)3
≤ C ‖q̃‖L2(Ω̃ε)

, ‖Dεϕ̃‖L2(Ω̃ε)3×3 ≤
C

ε
‖q̃‖L2(Ω̃ε)

.

A priori estimates for (ũε, p̃ε) in Ω̃ε: first, let us obtain some a priori estimates for ũε for different values of
γ.

Lemma 3.14. We distinguish three cases:

i) For γ < −1, then there exists a constant C independent of ε, such that

‖ũε‖L2(Ω̃ε)3
≤ Cε, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ C . (3.41)

ii) For −1 ≤ γ < 1, then there exists a constant C independent of ε, such that

‖ũε‖L2(Ω̃ε)3
≤ Cε−γ , ‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε−

1+γ
2 . (3.42)

iii) For γ ≥ 1, then there exists a constant C independent of ε, such that

‖ũε‖L2(Ω̃ε)3
≤ Cε−1, ‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε−1 . (3.43)

Proof. Taking ũε ∈ H̃ε as function test in (2.8), we have

µ ‖Dεũε‖2L2(Ω̃ε)3×3 + αεγ‖ũε‖2L2(∂Tε)3
=

∫
Ω̃ε

f ′ε · ũ′ε dx′dy3 +

∫
∂Tε

g′ε · ũ′ε dσ(x′)dy3 . (3.44)

Using Cauchy-Schwarz’s inequality and f ′ε ∈ L2(Ω)2, we obtain that∫
Ω̃ε

f ′ε · ũ′ε dx′dy3 ≤ C ‖ũε‖L2(Ω̃ε)3
,

and by using that g′ ∈ L2(∂T )2 is a Y ′-periodic function and estimate (3.25), we have∣∣∣∣∫
∂Tε

g′ε · ũ′ε dσ(x′)dy3

∣∣∣∣ ≤ C

ε

(
‖ũε‖L2(Ω̃ε)3

+ ε‖Dεũε‖L2(Ω̃ε)3×3

)
.

Putting these estimates in (3.44), we get

µ ‖Dεũε‖2L2(Ω̃ε)3×3 + αεγ‖ũε‖2L2(∂Tε)3
≤ C

(
‖Dεũε‖L2(Ω̃ε)3×3 + ε−1‖ũε‖L2(Ω̃ε)3

)
. (3.45)

In particular, if we use the Poincaré inequality (3.33) in (3.45), we have

‖Dεũε‖L2(Ω̃ε)3×3 ≤
C

ε
, (3.46)

therefore (independently of γ ∈ R), using again (3.33), we get

‖ũε‖L2(Ω̃ε)3
≤ C

ε
. (3.47)
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Maŕıa Anguiano and Francisco J. Suárez-Grau

These estimates can be refined following the different values of γ. To do so, observe that from estimate (3.31) we
have

ε−1‖ũε‖L2(Ω̃ε)3
≤ C

(
‖Dεũε‖L2(Ω̃ε)3×3 + ε−

1
2 ‖ũε‖L2(∂Tε)3

)
.

Using Young’s inequality, we get

ε−
1
2 ‖ũε‖L2(∂Tε)3 ≤ ε

− 1+γ
2 ε

γ
2 ‖ũε‖L2(∂Tε)3 ≤

2

α
ε−1−γ +

α

2
εγ‖ũε‖2L2(∂Tε)3

.

Consequently, from (3.45), we get

µ ‖Dεũε‖2L2(Ω̃ε)3×3 +
α

2
εγ‖ũε‖2L2(∂Tε)3

≤ C
(
‖Dεũε‖L2(Ω̃ε)3×3 + ε−1−γ

)
,

which applying in a suitable way the Young inequality gives

µ ‖Dεũε‖2L2(Ω̃ε)3×3 + αεγ‖ũε‖2L2(∂Tε)3
≤ C

(
1 + ε−1−γ) . (3.48)

For the case when γ < −1, estimate (3.48) reads

‖Dεũε‖L2(Ω̃ε)3×3 ≤ C, ‖ũε‖L2(∂Tε)3 ≤ Cε
− γ2 .

Then, estimate (3.31) gives

‖ũε‖L2(Ω̃ε)3
≤ C(ε+ ε

1−γ
2 ) ≤ Cε,

since 1 ≤ (1− γ)/2, and so, we have proved (3.41).

For γ ≥ −1, estimate (3.48) reads

‖Dεũε‖L2(Ω̃ε)3×3 ≤ Cε−
1+γ
2 , ‖ũε‖L2(∂Tε)3 ≤ Cε

− 1
2−γ .

Applying estimate (3.31), we get

‖ũε‖L2(Ω̃ε)3
≤ C(ε

1−γ
2 + ε−γ) ≤ Cε−γ

since −γ ≤ (1 − γ)/2. Then, we have proved (3.42) for −1 ≤ γ < 1. Observe that for γ ≥ 1, the estimates
(3.46)-(3.47) are the optimal ones, so we have (3.43).

We will prove now a priori estimates for the pressure p̃ε for different values of γ.

Lemma 3.15. We distinguish three cases:

i) For γ < −1, then there exists a constant C independent of ε, such that

‖p̃ε‖L2(Ω̃ε)/R ≤ C ε
γ . (3.49)

ii) For −1 ≤ γ < 1, then there exists a constant C independent of ε, such that

‖p̃ε‖L2(Ω̃ε)/R ≤ C ε
−1. (3.50)

iii) For γ ≥ 1, then there exists a constant C independent of ε, such that

‖p̃ε‖L2(Ω̃ε)/R ≤ C ε
−2. (3.51)
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Proof. Let Φ̃ ∈ L2(Ω̃ε). From Corollary 3.13, there exists ϕ̃ ∈ H̃ε such that

divε ϕ̃ = Φ̃ in Ω̃ε, ‖ϕ̃‖L2(Ω̃ε)3
≤ C ‖Φ̃‖L2(Ω̃ε)

, ‖Dεϕ̃‖L2(Ω̃ε)3×3 ≤
C

ε
‖Φ̃‖L2(Ω̃ε)

. (3.52)

Taking ϕ̃ ∈ H̃ε as function test in (2.8), we have∣∣∣∣∫
Ω̃ε

p̃ε Φ̃ dx
′dy3

∣∣∣∣ ≤ µ ‖Dεũε‖L2(Ω̃ε)3×3 ‖Dεϕ̃‖L2(Ω̃ε)3×3 + αεγ
∣∣∣∣∫
∂Tε

ũε · ϕ̃ dσ(x′)dy3

∣∣∣∣
+C ‖ϕ̃‖L2(Ω̃ε)3

+

∣∣∣∣∫
∂Tε

g′ε · ϕ̃′ dσ(x′)dy3

∣∣∣∣ . (3.53)

By using that g ∈ L2(∂T )3 is a Y ′-periodic function and estimate (3.25), we have∣∣∣∣∫
∂Tε

g′ε · ϕ̃′ dσ(x′)dy3

∣∣∣∣ ≤ C (ε−1‖ϕ̃‖L2(Ω̃ε)3
+ ‖Dεϕ̃‖L2(Ω̃ε)3×3

)
.

Analogously, using estimate (3.26) and the Cauchy- Schwarz inequality, a simple computation gives

αεγ
∣∣∣∣∫
∂Tε

ũε · ϕ̃ dσ(x′)dy3

∣∣∣∣ ≤ εγ−1 C ‖ũε‖L2(Ω̃ε)
‖ϕ̃‖L2(Ω̃ε)

+ εγ C ‖ũε‖L2(Ω̃ε)
‖Dεϕ̃‖L2(Ω̃ε)

+ εγ C ‖Dεũε‖L2(Ω̃ε)
‖ϕ̃‖L2(Ω̃ε)

.

Then, turning back to (3.53) and using (3.52), one has∣∣∣∣∫
Ω̃ε

p̃ε Φ̃ dx
′dy3

∣∣∣∣ ≤ C (ε−1 + εγ
)
‖Dεũε‖L2(Ω̃ε)3×3 ‖Φ̃‖L2(Ω̃ε)

+C
(
εγ−1 ‖ũε‖L2(Ω̃ε)3

+ ε−1
)
‖Φ̃‖L2(Ω̃ε)

.

(3.54)

The a priori estimates for the pressure follow now from (3.54) and estimates (3.41)-(3.42) and (3.43), corresponding
to the different values of γ.

A priori estimates for the extension of (ũε, p̃ε) to the whole domain Ω: for the velocity, we will denote
Ũε = Π̃εũε the continuation of ũε in Ω, where Π̃ε is given in Corollary 3.10. For the pressure, we proceed as in the
proof of Lemma 3.12, and we will denote by P̃ε the continuation of p̃ε in Ω.

Lemma 3.16. We distinguish three cases:

i) For γ < −1, then there exists a constant C independent of ε, such that

‖Ũε‖L2(Ω)3 ≤ Cε, ‖DεŨε‖L2(Ω)3×3 ≤ C , (3.55)

‖P̃ε‖L2(Ω)/R ≤ C εγ . (3.56)

ii) For −1 ≤ γ < 1, then there exists a constant C independent of ε, such that

‖Ũε‖L2(Ω)3 ≤ Cε−γ , ‖DεŨε‖L2(Ω)3×3 ≤ Cε−
1+γ
2 , (3.57)

‖P̃ε‖L2(Ω)/R ≤ C ε−1. (3.58)

iii) For γ ≥ 1, then there exists a constant C independent of ε, such that

‖Ũε‖L2(Ω)3 ≤ Cε−1, ‖DεŨε‖L2(Ω)3×3 ≤ Cε−1 , (3.59)

‖P̃ε‖L2(Ω)/R ≤ C ε−2. (3.60)

Proof. For the velocity, using Corollary 3.10 and the a priori estimates in Ω̃ε given in Lemma 3.14, we deduce the
a priori estimates in Ω. For the pressure, taking into account the change of variable (2.5) in (3.38) and the a priori

estimates in Ω̃ε given in Lemma 3.15, we deduce the a priori estimates in Ω.
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A priori estimates of the unfolding functions (ûε, p̂ε): let us obtain some a priori estimates for the sequences
(ûε, p̂ε) where ûε and p̂ε are obtained by applying the change of variable (3.15) to (ũε, p̃ε).

Lemma 3.17. We distinguish three cases:

i) For γ < −1, then there exists a constant C independent of ε, such that

‖ûε‖L2(R2×Yf )3 ≤ Cε, ‖Dyûε‖L2(R2×Yf )3×3 ≤ Cε, (3.61)

‖p̂ε‖L2(R2×Yf ) ≤ Cε
γ . (3.62)

ii) For −1 ≤ γ < 1, then there exists a constant C independent of ε, such that

‖ûε‖L2(R2×Yf )3 ≤ Cε
−γ , ‖Dyûε‖L2(R2×Yf )3×3 ≤ Cε

1−γ
2 , (3.63)

‖p̂ε‖L2(R2×Yf ) ≤ Cε
−1. (3.64)

iii) For γ ≥ 1, then there exists a constant C independent of ε, such that

‖ûε‖L2(R2×Yf )3 ≤ Cε
−1, ‖Dyûε‖L2(R2×Yf )3×3 ≤ C, (3.65)

‖p̂ε‖L2(R2×Yf ) ≤ Cε
−2. (3.66)

Proof. Using properties (3.17) and (3.18) with p = 2 and the a priori estimates given in Lemma 3.14 and Lemma
3.15, we have the desired result.

3.2 Some compactness results

In this subsection we obtain some compactness results about the behavior of the sequences (Ũε, P̃ε) and (ûε, p̂ε)
satisfying a priori estimates given in Lemma 3.16 and Lemma 3.17, respectively.

Let us start giving a convergence result for the extended pressure P̃ε.

Lemma 3.18. We distinguish three cases:

i) For γ < −1, then for a subsequence of ε still denote by ε, there exists p̃ ∈ L2(Ω)/R such that

ε−γP̃ε ⇀ p̃ in L2(Ω)/R. (3.67)

ii) For −1 ≤ γ < 1, then for a subsequence of ε still denote by ε, there exists p̃ ∈ L2(Ω)/R such that

εP̃ε ⇀ p̃ in L2(Ω)/R. (3.68)

iii) For γ ≥ 1, then for a subsequence of ε still denote by ε, there exists p̃ ∈ L2(Ω)/R such that

ε2P̃ε ⇀ p̃ in L2(Ω)/R. (3.69)

Proof. These convergences are a consequence of the a priori estimates of the extended pressure (3.56), (3.58) and
(3.60).

Now, we have a convergence result for the extended velocity Ũε.
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Lemma 3.19. We distinguish three cases:

i) For γ < −1, then for a subsequence of ε still denote by ε, there exists ũ ∈ H1(0, 1;L2(ω)3) where ũ = 0 on
y3 = {0, 1}, such that

ε−1Ũε ⇀ ũ in H1(0, 1;L2(ω)3). (3.70)

ii) For −1 ≤ γ < 1, then for a subsequence of ε still denote by ε, there exists ũ ∈ L2(Ω)3 where ũ = 0 on
y3 = {0, 1}, such that

εγŨε ⇀ ũ in L2(Ω)3. (3.71)

iii) For γ ≥ 1, then for a subsequence of ε still denote by ε, there exists ũ ∈ H1(0, 1;L2(ω)3) where ũ = 0 on
y3 = {0, 1}, such that

Ũε ⇀ ũ in H1(0, 1;L2(ω)3). (3.72)

Proof. From the a priori estimates (3.55) and (3.57), we deduce the desired results for the two first cases. For the last
one, using the a priori estimate (3.59) and Dirichlet boundary condition, we deduce ‖Ũε‖L2(Ω)3 ≤ ‖∂y3Ũε‖L2(Ω)3 ≤
C, and then we obtain the desired result.

Finally, we give a convergence result for ûε.

Lemma 3.20. We distinguish three cases:

i) For γ < −1, then for a subsequence of ε still denote by ε, there exists û ∈ L2(R2;H1
] (Yf )3), such that

ε−1ûε ⇀ û in L2(R2;H1(Yf )3), (3.73)

ε−1ûε ⇀ û in L2(R2;H
1
2 (∂T )3), (3.74)

|Y ′f |
|Y ′|
MY ′f

[û] = ũ a.e. in Ω. (3.75)

ii) For −1 ≤ γ < 1, then for a subsequence of ε still denote by ε, there exists there exists û ∈ L2(R2;H1
] (Yf )3),

independent of y, such that
εγ ûε ⇀ û in L2(R2;H1(Yf )3), (3.76)

εγ ûε ⇀ û in L2(R2;H
1
2 (∂T )3), (3.77)

û =
|Y ′|
|Y ′f |

ũ a.e. in Ω. (3.78)

iii) For γ ≥ 1, then for a subsequence of ε still denote by ε, there exists there exists û ∈ L2(R2;H1
] (Yf )3),

independent of y, such that
ε ûε ⇀ û in L2(R2;H1(Yf )3), (3.79)

ε ûε ⇀ û in L2(R2;H
1
2 (∂T )3). (3.80)

Proof. We proceed in three steps:

Step 1. For γ < −1, using (3.61), there exists û : R2 × Yf → R3, such that convergence (3.73) holds. Passing
to the limit by semicontinuity and using estimates (3.61), we get∫

R2×Yf
|û|2 dx′dy ≤ C,

∫
R2×Yf

|Dyû|2 dx′dy ≤ C,
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which, once we prove the Y ′-periodicity of û in y′, shows that û ∈ L2(R2;H1
] (Yf )3).

It remains to prove the Y ′-periodicity of û in y′. To do this, we observe that by definition of ûε given by (3.15)
applied to ũε, we have

ûε(x1 + ε, x2,−1/2, y2, y3) = ûε(x
′, 1/2, y2, y3) a.e. (x′, y2, y3) ∈ R2 × (−1/2, 1/2)× (0, 1) .

Multiplying by ε−1 and passing to the limit by (3.73), we get

û(x′,−1/2, y2, y3) = û(x′, 1/2, y2, y3) a.e. (x′, y2, y3) ∈ R2 × (−1/2, 1/2)× (0, 1) .

Analogously, we can prove

û(x′, y1,−1/2, y3) = û(x′, y1, 1/2, y3) a.e. (x′, y1, y3) ∈ ω × (−1/2, 1/2)× (0, 1) .

These equalities prove that û is periodic with respect to Y ′. Convergence (3.74) is straightforward from the
definition (3.21) and the Sobolev injections.

Finally, using Proposition 3.2, we can deduce

1

|Y ′|

∫
R2×Yf

ûε(x
′, y)dx′dy =

∫
Ω̃ε

ũε(x
′, y3)dx′dy3,

and multiplying by ε−1 and taking into account the first item in Corollary 3.10, we have

1

ε|Y ′|

∫
R2×Yf

ûε(x
′, y)dx′dy =

1

ε

∫
Ω

ũε(x
′, y3)dx′dy3.

Using convergences (3.70) and (3.73), we have (3.75).

Step 2. For −1 ≤ γ < 1, using (3.63) and taking into account that ε
1−γ
2 ≤ ε−γ , then there exists û : R2 × Yf →

R3, such that convergence (3.76) holds. Convergence (3.77) is straightforward from the definition (3.21) and the
Sobolev injections.

On the other hand, since εγDyûε = ε
γ+1
2 ε

γ−1
2 Dyûε and ε

γ−1
2 Dyûε is bounded in L2(R2 × Yf )3×3, using (3.76)

we can deduce that Dyû = 0. This implies that û is independent of y. Finally, (3.78) is obtained similarly to the
Step 1.

Step 3. For γ ≥ 1, using the first a priori estimate in (3.65), we can deduce that there exists û ∈ L2(R2 × Yf )3

such that
ε ûε ⇀ û in L2(R2 × Yf )3,

and by the second a priori estimate in (3.65) we deduce that

εDyûε ⇀ 0 in L2(R2 × Yf )3×3,

which implies that û does not depend on y. Convergence (3.80) is straightforward from the definition (3.21) and
the Sobolev injections.

3.3 Proof of Theorem 2.1

In this section, we will multiply system (2.8) by a test function having the form of the limit û (as explicated in
Lemma 3.20), and we will use the convergences given in the previous section in order to identify the homogenized
model in every cases.
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Proof of Theorem 2.1: We proceed in three steps.

Step 1. For γ < −1. Let ϕ̃ ∈ D(Ω)3 be a test function in (2.8). By Proposition 3.4, one has

µ

∫
Ω̃ε

Dεũε : Dεϕ̃ dx
′dy3 −

∫
Ω̃ε

p̃ε divε ϕ̃ dx
′dy3 + α

εγ−1

|Y ′|

∫
ω×∂T

ûε · ϕ̂ε dx′dσ(y)

=

∫
Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +
ε−1

|Y ′|

∫
ω×∂T

g̃′ · ϕ̂′ε dx′dσ(y),

i.e.,

µ

∫
Ω̃ε

Dx′ ũε : Dx′ ϕ̃ dx
′dy3 +

µ

ε2

∫
Ω̃ε

∂y3 ũε · ∂y3 ϕ̃ dx′dy3 −
∫

Ω̃ε

p̃ε divx′ ϕ̃
′ dx′dy3 −

1

ε

∫
Ω̃ε

p̃ε ∂y3 ϕ̃3 dx
′dy3

+α
εγ−1

|Y ′|

∫
ω×∂T

ûε · ϕ̂ε dx′dσ(y) =

∫
Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +
ε−1

|Y ′|

∫
ω×∂T

g̃′ · ϕ̂′ε dx′dσ(y).

(3.81)

First, we prove that p̃ does not depend on y3. Let ϕ̃ = (0, ε−γ+1ϕ̃3) ∈ D(Ω)3 be a test function in (3.81), we
have

µ ε−γ+1

∫
Ω̃ε

∇x′ ũε,3 · ∇x′ ϕ̃3 dx
′dy3 + µ ε−γ−1

∫
Ω̃ε

∂y3 ũε,3∂y3 ϕ̃3 dx
′dy3 − ε−γ

∫
Ω̃ε

p̃ε ∂y3 ϕ̃3 dx
′dy3

+
α

|Y ′|

∫
ω×∂T

ûε,3 · ϕ̂ε,3 dx′dσ(y) = 0.

Taking into account that P̃ε is the extension of p̃ε in Ω, we have∫
Ω̃ε

p̃ε ∂y3 ϕ̃3 dx
′dy3 =

∫
Ω

P̃ε ∂y3 ϕ̃3 dx
′dy3,

and by the second a priori estimate (3.41), the convergences (3.67) and (3.74), passing to the limit we have∫
Ω

p̃ ∂y3 ϕ̃3 dx
′dy3 = 0,

so p̃ does not depend on y3.

Let ϕ̃ = (ε−γϕ′(x′, y3), ε−γϕ̃3(x′)) ∈ D(Ω)3 be a test function in (3.81), we have

µε−γ
∫

Ω̃ε

Dx′ ũ
′
ε : Dx′ ϕ̃

′ dx′dy3 + µε−γ−2

∫
Ω̃ε

∂y3 ũ
′
ε · ∂y3 ϕ̃′ dx′dy3 − ε−γ

∫
Ω̃ε

p̃ε divx′ ϕ̃
′ dx′dy3

+α
ε−1

|Y ′|

∫
ω×∂T

û′ε · ϕ̂′ε dx′dσ(y) = ε−γ
∫

Ω̃ε

f ′ε · ϕ̃′ dx′dy3 +
ε−γ−1

|Y ′|

∫
ω×∂T

g̃′ · ϕ̂′ε dx′dσ(y),

and

µ ε−γ
∫

Ω̃ε

∇x′ ũε,3 · ∇x′ ϕ̃3 dx
′dy3 + α

ε−1

|Y ′|

∫
ω×∂T

ûε,3 ϕ̂ε,3 dx
′dσ(y) = 0.

Taking into account that P̃ε is the extension of p̃ε in Ω, we have∫
Ω̃ε

p̃ε divx′ ϕ̃
′ dx′dy3 =

∫
Ω

P̃ε divx′ ϕ̃
′ dx′dy3.

Using that ϕ̂ε converges strongly to ϕ̃ in L2(ω × ∂T )3 (see Proposition 2.6 in [17] for more details) and by the
second a priori estimate (3.41), the convergences (3.67) and (3.74), passing to the limit we have

−
∫

Ω

p̃(x′) divx′ ϕ̃
′(x′, y3)dx′dy3 +

α

|Y ′|

∫
ω×∂T ′

∫ 1

0

û′(x′, y) · ϕ̃′(x′, y3)dx′dσ(y′)dy3 = 0,
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and
α

|Y ′|

∫
ω×∂T

û3(x′, y) ϕ̃3(x′) dx′dσ(y) = 0,

which implies that M∂T ′ [û3] = 0.

Taking into account that∫
ω×∂T ′

∫ 1

0

û′(x′, y) · ϕ̃′(x′, y3)dx′dσ(y′)dy3 = |∂T ′|
∫

Ω

M∂T ′ [û
′](x′, y3) · ϕ̃′(x′, y3) dx′dy3,

implies that ∫
Ω

∇x′ p̃(x′) · ϕ′(x′, y3) dx′dy3 = −α|∂T
′|

|Y ′|

∫
Ω

M∂T ′ [û
′](x′, y3) · ϕ̃′(x′, y3) dx′dy3 . (3.82)

In order to obtain the homogenized system (2.10), we introduce the auxiliary problem

−∆y′χ(y) = −|∂T
′|

|Y ′f |
MY ′f

[û](x′, y3), in Y ′f ,

∂χ

∂n
= û, on ∂T ′,

MY ′f
[χ] = 0,

χ(y) Y ′ − periodic,

for a.e. (x′, y3) ∈ Ω, which has a unique solution in H1(Y ′f ) (see Chapter 2, Section 7.3 in Lions and Magenes [22]).
Using this auxiliary problem, we conclude that∫

Ω

M∂T ′ [û] · ϕ̃ dx′dy3 =

∫
Ω

MY ′f
[û] · ϕ̃ dx′dy3 , (3.83)

which together with (3.82) and M∂T ′ [û3] = 0 gives

MY ′f
[û′](x′, y3) = − |Y

′|
α|∂T ′|

∇x′ p̃(x′) ,

and
MY ′f

[û3] = 0,

which together with (3.75) gives

ũ′(x′, y3) = −
|Y ′f |
α|∂T ′|

∇x′ p̃(x′), ũ3(x′, y3) = 0.

This implies (2.10).

Step 2. For −1 ≤ γ < 1. First, we prove that p̃ does not depend on y3. Let ϕ̃ = (0, ε2ϕ̃3) ∈ D(Ω)3 be a test
function in (3.81). Reasoning as Step 1 and by the second a priori estimate (3.42), the convergence (3.68) and
(3.77), passing to the limit we deduce that p̃ does not depend on y3.

Let ϕ̃ = (εϕ′(x′, y3), εϕ̃3(x′)) ∈ D(Ω)3 be a test function in (3.81). Reasoning as Step 1 and by the second a
priori estimate (3.42), the convergences (2.9), (3.68) and (3.77), passing to the limit we have

−
∫

Ω

p̃(x′) divx′ ϕ̃
′(x′, y3)dx′dy3 +

α

|Y ′|

∫
ω×∂T ′

∫ 1

0

û′(x′) · ϕ̃′(x′, y3)dx′dσ(y′)dy3

=

∫
Ω

f ′(x′) · ϕ̃′(x′, y3)dx′dy3 +
1

|Y ′|

∫
ω×∂T ′

∫ 1

0

g′(y′) · ϕ̃′(x′, y3)dx′dσ(y′)dy3,
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and
α

|Y ′|

∫
ω×∂T

û3(x′) ϕ̃3(x′) dx′dσ(y) = 0,

which implies that û3 = 0.

Taking into account that∫
ω×∂T ′

∫ 1

0

û′(x′) · ϕ̃′(x′, y3)dx′dσ(y′)dy3 = |∂T ′|
∫

Ω

û′(x′) · ϕ̃′(x′, y3) dx′dy3,

implies that ∫
Ω

∇x′ p̃(x′) · ϕ′(x′, y3) dx′dy3 +
α|∂T ′|
|Y ′|

∫
Ω

û′(x′) · ϕ̃′(x′, y3) dx′dy3

=

∫
Ω

f ′(x′) · ϕ̃′(x′, y3)dx′dy3 +
|∂T ′|
|Y ′|

∫
Ω

M∂T ′ [g
′] · ϕ̃′(x′, y3)dx′dy3,

which together with (3.78) gives (2.11) after integrating the vertical variable y3 between 0 and 1. gives

Step 3. For γ ≥ 1. First, we prove that p̃ does not depend on y3. Let ϕ̃ = (0, ε3ϕ̃3) ∈ D(Ω)3 be a test function
in (3.81). Reasoning as Step 1 and by the second a priori estimate (3.59), the convergences (3.69) and (3.80),
passing to the limit we deduce that p̃ does not depend on y3.

Let ϕ̃ = (ε2ϕ′(x′, y3), 0) ∈ D(Ω)3 be a test function in (3.81). Reasoning as Step 1 and by the second a priori
estimate (3.59), the convergences (2.9), (3.69), (3.72) and (3.80), passing to the limit we have

µ

∫
Ω

∂y3 ũ
′ · ∂y3 ϕ̃′ dx′dy3 −

∫
Ω

p̃ divx′ ϕ̃
′ dx′dy3 = 0,

which is equivalent

ũ′(x′, y3) =
y3(y3 − 1)

2µ
∇x′ p̃(x′) a.e. in Ω.

Integrating the vertical variable y3 between 0 and 1 gives (2.12).
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Maŕıa Anguiano has been supported by Junta de Andalućıa (Spain), Proyecto de Excelencia P12-FQM-2466.
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