
HAL Id: hal-01665546
https://hal.science/hal-01665546

Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ClusPath: a temporal-driven clustering to infer typical
evolution paths

Marian-Andrei Rizoiu, Julien Velcin, Stéphane Bonnevay, Stéphane Lallich

To cite this version:
Marian-Andrei Rizoiu, Julien Velcin, Stéphane Bonnevay, Stéphane Lallich. ClusPath: a temporal-
driven clustering to infer typical evolution paths. Data Mining and Knowledge Discovery, 2016, 30
(5), pp.1324 - 1349. �10.1007/s10618-015-0445-7�. �hal-01665546�

https://hal.science/hal-01665546
https://hal.archives-ouvertes.fr

Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

ClusPath: A Temporal-driven Clustering to Infer Typical
Evolution Paths

Marian-Andrei Rizoiu · Julien Velcin ·
Stéphane Bonnevay · Stéphane Lallich

Received: date / Accepted: date

Abstract We propose ClusPath, a novel algorithm for detecting general evolution tenden-
cies in a population of entities. We show how abstract notions, such as the Swedish socio-
economical model (in a political dataset) or the companies fiscal optimization (in an eco-
nomical dataset) can be inferred from low-level descriptive features. Such high-level regular-
ities in the evolution of entities are detected by combining spatial and temporal features into
a spatio-temporal dissimilarity measure and using semi-supervised clustering techniques.
The relations between the evolution phases are modeled using a graph structure, inferred si-
multaneously with the partition, by using a “slow changing world” assumption. The idea is
to ensure a smooth passage for entities along their evolution paths, which catches the long-
term trends in the dataset. Additionally, we also provide a method, based on an evolutionary
algorithm, to tune the parameters of ClusPath to new, unseen datasets. This method assesses
the fitness of a solution using four opposed quality measures and proposes a balanced com-
promise.

Keywords detection of long-term trends · evolutionary clustering · temporal clustering ·
temporal cluster graph · semi-supervised clustering · Pareto front estimation.

1 Introduction

Knowledge is often hidden in plain view, within the sheer amount of available data. Refining
data into information by discovering patterns is the main purposes of Data Mining. In this
paper, we are interested in the more specific problem of discovering general temporal trends,
also known as typical evolution paths. This makes the problem of pattern mining more diffi-
cult, by adding to it the temporal dimension of data. It changes the definition of the learning
problem, since the description of entities is temporally contextualized. We study a popula-
tion of entities, described over a period of time by low-level descriptive features. Our final

Marian-Andrei Rizoiu
NICTA & Australian National University, 7 London Circuit, Canberra, Australia.
E-mail: Marian-Andrei.Rizoiu@nicta.com.au

Julien Velcin · Stéphane Bonnevay · Stéphane Lallich
ERIC laboratory, Université de Lyon, Lyon, France.
E-mail: Julien.Velcin@univ-lyon2.fr, Stephane.Bonnevay@univ-lyon1.fr,
Stephane.Lallich@univ-lyon2.fr

2 Marian-Andrei Rizoiu et al.

aim is to detect the typical paths of evolution taken by most of these entities over the extent
of recorded time. Considering that an entity’s description can change over time, we define
an evolution phase as a period of limited extent in time during which multiple entities in the
dataset share similar descriptions. Therefore, to be informative, evolution phases should be
coherent in time and in the descriptive space. An evolution path is defined as a succession
of evolution phases followed by a large number of entities in the dataset, which can also be
seen as a typical trajectory through the evolution space. Such general evolution trends can
reveal information about the more complex hidden phenomena which happen in the popula-
tion of entities. We show, in Sect. 4, that high-level concepts such as socio-political regimes
or fiscal strategies can be detected from the low-level descriptive features. For example, the
“Swedish Social and Economical Model” (Erixon, 2000) can be mapped on the evolution
path followed by the northern European countries, in a dataset described using features such
as debt-to-GDP ratio, unemployment rate and political coloring of the parliament. Simi-
larly, we detect a strong trend in a population of companies, in which significantly less tax is
payed, while the net income increases: the fiscal optimization of international corporations.

To this end, we propose ClusPath, an algorithm that organizes a set of observations into
a structured partition, coherent both in the descriptive space and in the temporal space. We
use a temporal-aware dissimilarity measure for assessing the similarity between observa-
tions. Furthermore, we use a semi-supervised technique using must-link pairwise constraints
to ensure the contiguous segmentation of observations associated to an entity. The resulted
clusters are interpreted as evolution phases. The main novelty of ClusPath is that the three
components of the clusters: i) descriptive, ii) temporal and iii) the graph of relations between
them are inferred simultaneously, in one optimization procedure. This creates an intertwin-
ing, which allows the three components to influence each other, during the optimization
process. The major advantage over other approaches (like co-clustering or post-clustering
structure inference) is that it allows more flexibility during the optimization process and cre-
ates a partition more adequate to describe the data. Furthermore, it ensures that the entities
have a smooth passage between the phases on the evolution path. While we run the risk of
losing non-smooth entity evolutions, the purpose of our application is to detect the evolution
paths followed by the majority of the population. This is due to the “slow changing world”
assumption, which states that the long-term trends detectable in a population have a higher
inertia and they evolve more slowly than entities. This assumption might not be desirable
for all contexts, for example i) in applications in which it is important to capture the fined-
grained evolutions of entities. (e.g., stock exchange market) or ii) in which the general trend
does not possess a high inertia (e.g., popularity in social networks, online memes etc.). For
these applications, ClusPath has a parameter (i.e. λ2, defined in Sect. 3.2) which allows the
modulation of the degree in which this hypothesis is enforced. Additionally, we propose an
optional method, based on an evolutionary algorithm, to automatically tune the parameters
of ClusPath on new, unseen datasets.

The remainder of this paper is structured as follows. In Sect. 2, we present some previous
related work. In Sect. 3, we define the learning objectives, we translate them into an opti-
mization problem, we introduce ClusPath and the evolutionary heuristic for automatically
tuning the values of parameters. Sect. 4 presents the datasets we use, the quality measures
and the performed experimentations. We conclude in Sect. 5 and plan some future work.

2 State of the Art

The purpose of Evolutionary clustering is to capture the temporal evolution of clusters,
given data observations and their creation time. A good clustering result should fit the
current data well, while simultaneously not deviate too dramatically from the recent his-

Inferring Typical Evolution Paths 3

tory (Chi et al, 2007). Initial frameworks have been designed for distance-based clustering,
such as K-Means and agglomerative hierarchical clustering (Chakrabarti et al, 2006). Chi
et al (2007) have extended the evolutionary framework to spectral clustering with the em-
phasis on smoothing clustering results over time to avoid sudden changes. Xu et al (2012)
take a generative models approach and apply it to dynamic social network analysis. All of
these evolutionary clustering approaches rely on time discretization into temporal windows
of arbitrary size, whereas ClusPath integrates the temporal dimension as a variable, without
the need of discretization.

TDCK-Means (Rizoiu et al, 2012) was introduced to detect typical evolution phases in
a population of entities. The main contributions of this work were i) proposing a temporal-
aware dissimilarity measure, used to assess the similarity between two observations, both
in the multidimensional descriptive and temporal spaces and ii) assuring a contiguous seg-
mentation by imposing semi-supervised must-link constraints (Wagstaff et al, 2001) and a
continuous time-dependent penalty function for breaking the constraints. Other algorithms
in the literature use constraints for segmentation purposes. tcK-Means (Lin and Hauptmann,
2006) uses must-link constraints and inflicts a fixed penalty when the following conditions
are fulfilled simultaneously: the observations are not assigned to the same cluster and the
time difference between their timestamps is less than some threshold. Similarly, De la Torre
and Agell (2007) detect tasks performed during a day, based on video, sound and GPS data.
Aligned Cluster Analysis (Araujo and Kamel, 2014) is an extension of the kernel k-means
clustering algorithm, in which side information is added in the form of pairwise constraints
to its objective function. Its purpose is segmenting time-series and clustering them together.

A recent extension of TDCK-Means (Rizoiu et al, 2014) proposes an a posteriori method
for organizing the constructed clusters as a graph. The construction is based on the transi-
tions of entities between phases. While the aim of ClusPath is also to identify the links
between clusters, it differs fundamentally from the a posteriori construction by inferring the
relations simultaneously while clustering of the observations. This creates an intertwining,
by allowing the partitioning to influence the structure of clusters, and, conversely, the links
between clusters influence the assignment of observations to clusters.

ClusPath infers the relations between clusters by combining multiple criteria into an
objective function and optimizing it using a gradient descent method. A related learning
problem is relational multicriteria clustering. The aim is to detect clusters of alternatives in
a multicriteria context and to identify relations between these clusters. In Rocha et al (2013),
a classical clustering is first applied to the set of possible alternative and each cluster is eval-
uated using predefined measures. A partial order outranking relation is established between
clusters, based on the scores of the evaluation measures and the preferences of the decision
maker. The outranking relations are constructed as a post-treatment (after clustering), using
a multi-criteria pair-wise comparison procedure. De Smet and Eppe (2009) use a distance
measure that is based on binary preference relations between different alternatives. The dis-
tance is extended to construct a binary outranking matrix between clusters. The outranking
matrix is constructed at each clustering iteration, but it has no influence over the assignment
of actions to clusters and it is calculated solely based on the composition of clusters.

A distinct, but somewhat related field is that of clustering of multi-dimensional trajecto-
ries. The crucial difference between this field and our work is that the former usually seeks
to find similarities between entire multi-dimensional data series (e.g., storm path trajecto-
ries, drug therapy response) in order to find connections between the evolution of different
entities. These approaches usually treat the entire temporal series as single data points. For
example, Gaffney and Smyth (1999) model the set of trajectories as individual sequences
of points generated from a finite mixture model. Liang et al (2013) predict glaucoma evo-

4 Marian-Andrei Rizoiu et al.

lution in patients by using previous recorded disease evolutions. In the first step, clustering
is applied to gather patients similar to the target patient. The second step fits a predictive
model on the set of patients found in the first step, and predicts the future disease condition.
In (Siddiqui et al, 2012), a mixture model of Markov Chains is learned and used to predict
the next most likely state/cluster per object. Apart from serving a different purpose, the first
approach is unsupervised, the second and the third are supervised, whereas ClusPath is a
semi-supervised algorithm. Kalnis et al (2005) approach a related learning problem: detect-
ing of trajectories of moving clusters. Their underlying assumption is that the data contains
dense groups of individuals which move together in space and time (i.e., the moving clus-
ters). They construct individual partitions at each timestep and detecting pairs of clusters
in successive timesteps, susceptible of belonging to the same moving cluster. Our problem
differs mainly because an evolution path is not a unitary entity as a moving cluster. The in-
dividual evolution phases have arbitrary extents of time and each one can be part of multiple
evolution phases. Unlike the temporal instantiations of a single moving cluster, evolution
phases have meaning by themselves and they are loosely connected in evolution paths.

3 Our Proposal

3.1 Formalization and learning objectives

Definitions and intuitions. Each studied entity φl ∈Φ is described using multiple attributes,
which form the multidimensional description space. To each entity correspond N observa-
tions (entity, timestamp, description). An observation xi = (φl , tm,xd

i), i ∈ 1..N means that
the entity φl is described by the vector xd

i at the moment of time tm. To identify the entity
associated with a particular observation xi, we use the notation xφ

i . Therefore the notations
xφ

i and φl both denote the entities, and we use one or the other depending on the point of
view (i.e., observation- or entity- oriented). Similarly, xt

i is the timestamp associated with
the observation xi. Our learning problem, starting from such a dataset, aims at detecting typ-
ical evolution phases and evolution paths. There is a double interest: a) obtaining a broader
understanding of the phases that the collection of entities went through over time (e.g.,
detecting the periods of global political instability, economic crisis, wealthiness etc.); b)
constructing the trajectory of an entity through the different phases (e.g. a country may have
gone through a period of military dictatorship, followed by a period of wealthy democracy).
We define an evolution phase C as a set of observations xi, so that observations belong-
ing to C are as similar (in terms of a similarity function) as possible among themselves
and dissimilar to observations in other phases. Unlike in classical clustering (for example
K-Means (MacQueen, 1967)), observations should be similar both in the descriptive and in
the temporal space. We consider that each entity φl is associated at every moment of time
with one and only one evolution phase, i.e., each observation xi belongs to a single evolution
phase. Furthermore, phases are assumed to be linked to each other, to allow entities to tem-
porally navigate between them. A temporal succession of evolution phases forms an evolu-
tion path. Therefore, the “slow changing world” hypothesis, which assumes that long-term
trends evolve slowly, translates into evolution paths in which successive evolution phases
have high connection strengths.

Prototypes. We define µ = (µ t ,µd),µ ∈M the prototype of an evolution phase C ,
where M is the set of all prototypes. Just like centroids in traditional clustering, prototypes
behave likes “central tendencies” of their phases and characterize the phases both in the
temporal and in the descriptive space. Unlike centroids, the prototypes cannot be rigorously
defined outside the learning problem, as they are dependent not only on the observations

Inferring Typical Evolution Paths 5

C
4

ϕ
1
,ϕ

3 ϕ
1

ϕ
2

ϕ
3

C
3

C
2

C
5

C
1

(a)

ϕ
1

 C∈
1

ϕ
1

 C∈
3

 ϕ
1

 C∈
5

ϕ
1

ϕ
2

ϕ
3

 C∈
1

ϕ
3

 C∈
3

ϕ
3

ϕ
2

 C∈
4

ϕ
3

 C∈
4

tt
1

x
1
 = (ϕ

1
, t

1
, x

1

d) x
2
 = (ϕ

3
, t

1
, x

2

d)

ϕ
2

 C∈
2

(b)

Fig. 1: An example of a desired output, in which the evolutions of 3 entities (φ1,φ2 and
φ3) are described using 5 phases (Ci, i = 1, . . . ,5). For example, the evolution path of φ3 is
C1→C3→C3. (a) The graph structure of the evolution phases. The arcs between two phases
(Ci,C j) are labeled with the entities presenting the transition Ci→ C j. (b) The observations
of the 3 entities are partitioned contiguously into the 5 phases.

assigned with a phase, but also on the other prototypes and the choice of parameters (shown
in Sect. 3.3).

Method. We infer typical evolution paths, by clustering the observations corresponding
to entities into k clusters, which serve as evolution phases. The links between the evolution
phases are represented using a graph structure, defined by its adjacency matrix A = (ai j),
where ai, j ∈ [0,1] is the strength of the link between clusters Ci and C j. A value of 0 denotes
the absence of a link. The connection strength of the link is proportional to i) the similarity of
their prototypes µi and µ j, both in the temporal and descriptive space, and ii) the number of
entities presenting the passage from Ci to C j. The graph is oriented and, therefore, the matrix
A is not symmetrical. Fig. 1 shows the desired result of our clustering algorithm. Fig. 1a
shows how the phases C j are structured into a graph structure and, in Fig. 1b, the series
of observations belonging to each entity are assigned to phases, thus forming continuous
segments. The succession of segments is interpreted as the entity’s evolution path.

We define the following objectives for the resulting partition:
• Obj. 1: construct clusters which are coherent in the temporal and the descriptive space.

Observations under a cluster should have similar descriptions (just as traditional cluster-
ing does) and they should be temporally close. Each cluster should provide a trade-off
between the temporal and descriptive coherence, since the two might be contradictory.
For example, two different periods with similar evolutions (e.g., two economical crises)
should be regrouped separately, as they represent two distinct evolution phases;

• Obj. 2: segment, as contiguously as possible, the series of observations for each entity.
The sequence of segments is interpreted as the entity’s evolution path;

• Obj. 3: present smooth passages between phases on evolution paths. An evolution path
should take an entity through highly similar evolution phases, i.e., changes should come
in small increments.

3.2 Constructing the Objective Measure

ClusPath fulfills the aforementioned objectives by a) translating them into several objectives
and combining them into an overall objective function J and b) applying a gradient descent
optimization method, in which J is minimized, using a K-Means-like iterative relocation
framework. To optimize Obj 1, we use the temporal-aware dissimilarity measure proposed
by Rizoiu et al (2012):

||xi− x j||TA = 1−

(
1− γd

||xd
i − xd

j ||2

∆d2
max

)(
1− γt

||xt
i− xt

j||2

∆ t2
max

)
(1)

6 Marian-Andrei Rizoiu et al.

where γd and γt are controlled by the parameter α ∈ [−1,1], which acts like a slider, favoring
the temporal component for α =−1 or the descriptive component for α = 1:

γd =

{
1+α, if α ∈ [−1,0]
1, if α ∈ (0,1]

; γt =

{
1, if α ∈ [−1,0]
1−α, if α ∈ (0,1]

, (2)

||• ||TA ∈ [0,1] and a value of zero means identical observations. ∆dmax and ∆ tmax are the di-
ameters of the descriptive and temporal space respectively (the largest distance encountered
between two observations). The temporal-aware measure allows to simultaneously take into
account the similarity in the descriptive and temporal spaces, between two observations. By
using this measure, ClusPath minimizes the term: ∑µp∈M ∑xi∈Cp ||xi−µp||TA , where µp is
the abstraction of cluster Cp, to which the observation xi is assigned.

The second objective (Obj. 2) states that, for comprehension reasons, the series of ob-
servations belonging to an entity should be segmented contiguously. We extend the initial
segmentation mechanism of TDCK-Means, by setting temporally-oriented must-link soft
constraints between each pair of observations, belonging to the same entity. Each entity is
associated with N observations, therefore each observation is involved in N−1 constraints,
linking it to all the other observations. Each constraint xi has a direction, i.e., it is temporally-
oriented. i−1 of these constraints are incoming (from preceding observations to xi), while
N− i are outgoing, towards the subsequent observations. A total of (N−1)(N−2)/2 con-
straints are set for each entity. A must-link constraint indicates that the two observations
should be placed into the same cluster. Being soft constraints, ClusPath is allowed to break
any number of them, while a time-decaying penalty is inflicted for each violation. The
penalty is more severe when the observations are closer in time and less severe when the
two assigned clusters have a strong link (high value for ai, j). The penalty function is:

w(xi,xk) = β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2 (
1−a2

j,l
)
1

[
xφ

i = xφ

k

]
1

[
xt

i < xt
k
]

, (3)

where xi ∈ C j, xk ∈ Cl and β ∈ R+ is the weight of the penalty function; δ ∈ R+ is a pa-
rameter which controls the width of the function. The penalty function in Eq. 3 is inspired
from the Normal Distribution function and it does not require the discretization of time.
Respecting all constraints involves associating all observations of an entity to the same evo-
lution phase. Therefore, the segmentation mechanism strives to acquire a trade-off between
clustering observations together and putting them into separate, yet well connected clusters.
We obtain the first term (T1) of the objective function, dealing with assigning observations
to clusters:

T1 = ∑
µp∈M

∑
xi∈Cp

||xi−µp||TA +

xt
i<xt

k

∑
xk∈Cq

q 6=p,xφ

i =xφ

k

β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2 (
1−a2

p,q
)
 . (4)

The following terms of the objective function, leverage the influence of the graph struc-
ture into the objective function. In Sect. 3.1, we stated that the strength of the link between
Cp to Cq is proportional to the similarity of their respective prototypes, µp and µq. We
use the temporal-aware dissimilarity measure to assess the similarity of the prototypes. A

Inferring Typical Evolution Paths 7

low value for ||µp− µq||TA (high similarity) results in a high value for ap,q (powerful link
between Cp and Cq). This translates into the second term of the objective function:

T2 = ∑
µp∈M

∑
µq∈M

p 6=q

a2
p,q||µp−µq||TA . (5)

T2, together with
(
1−a2

p,q
)

in term T1 (Eq. 4), assures the smooth passage for entities. T1
encourages successive observations to be assigned to clusters with a high value for ap,q.
T2 ensures that similar clusters have a strong link (high value for ap,q). Therefore, succes-
sive observations belonging to an entity are assigned to similar clusters, satisfying the third
learning objective (Obj. 3). The strength of the link between two clusters Cp and Cq is also
dependent on the number of entities which present a transition from Cp to Cq. We con-

sider that an entity φl presents a transition between Cp to Cq (Cp
φl−→ Cq) if and only if two

consecutive observations exist, associated with the given entity, where the first observation
(ordered by their timestamp) is clustered under Cp and the second one under Cq. We define
the intersection similarity measure between two phases, based on the normalized number of
entities that present the transition between the two phases:

interφ (Cp,Cq) = 1−
|{φl ∈Φ |Cp

φl−→ Cq}|
|Φ |

, (6)

where interφ (Cp,Cq) ∈ [0,1] and a value of zero means that all entities present a transition
from Cp to Cq. We construct the third term of the objective function:

T3 = ∑
µp∈M

∑
µq∈M

p 6=q

a2
p,qinter2

φ (Cp,Cq) . (7)

We construct the objective function J as the weighted sum of the three terms in Eq. 4,
5 and 7:

J = λ1T1 +λ2T2 +λ3T3 =

= λ1 ∑
µp∈M

∑
xi∈Cp

||xi−µp||TA +

xt
i<xt

k

∑
xk∈Cq

q 6=p, xφ

i =xφ

k

β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2 (
1−a2

p,q
)


+λ2 ∑
µp∈M

∑
µq∈M

p 6=q

a2
p,q||µp−µq||TA +λ3 ∑

µp∈M
∑

µq∈M
p 6=q

a2
p,qinter2

φ (Cp,Cq) , (8)

where λ1,λ2,λ3 ∈ R+ are parameters of the algorithm and they represent the weights of the
different components. They allow to fine-tune the impact of each of the stated objectives.
For example, if it is desirable to obtain evolution paths with small increments, in which the
successive phases are very similar, it suffices to set λ2 to a high value. It would also result
in paths with a larger number of phases than for a combination of weights featuring a lower
λ2.

The objective function J in Eq. 8 is artificially minimized if apq = 0,∀p,q. Given that
J ∈ R+, we constrain the 1-norm of the adjacency matrix A:

||A||1 = 1⇔
k

∑
p=1

k

∑
q=1

ap,q = 1 . (9)

8 Marian-Andrei Rizoiu et al.

This strategy allows to set high values of ap,q for pairs of clusters for which
i) ||µp − µq||TA is low (similar prototypes) and ii) inter2

φ
(Cp,Cq) is low (a high number

of entities present a transition from Cp to Cq).

3.3 Optimizing the Objective Function. The ClusPath Algorithm.

We minimize the objective function J using a K-Means-like algorithm, by estimating the
inner variables: i) the assignment of observations to clusters, ii) the prototypes of clusters
and iii) the adjacency matrix. ClusPath uses an iterative relocation strategy, at each step con-
sidering as fixed two of the variables (e.g., the observations assignment and the prototypes)
and analytically computing the values of the third (the adjacency matrix).

Assignment of observations to clusters. For each observation xi, ClusPath chooses a
cluster Cp so that J is minimized. Considering that T2 and T3 in Eq. 8 are not dependent on
the assignment of observations to clusters, choosing a cluster for xi boils down to minimizing
T1:

best cluster(xi) = argmin
p=1,2,...,k

||xi−µp||TA +

xt
i<xt

k

∑
xk∈Cq
q 6=p

xφ

i =xφ

k

β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2 (
1−a2

p,q
)
 (10)

This guaranties that the contribution of xi to the value of J diminishes or stays constant.
Overall, this assures that J does not increase in the assignment phase.

Recomputing the prototypes of the clusters. ClusPath updates the prototypes by re-
computing one prototype at a time (e.g., µ j), while considering all the other prototypes fixed
at their values from the previous iteration. Each of the k prototypes µ j ∈M is composed
from a descriptive component and a temporal component: µ j = (µd

j ,µ
t
j). Given that the

subproblem of recomputing one prototype is quadratic and no additional constraints are im-
posed on µ j, each of the two components is updated individually, by calculating the fixed
point. Given that only the first two terms of the function J are dependent of µ j, from Eq. 8
we obtain the prototype update formulas (details of the complete calculations are in the
Supplementary Materials (SM) (sup, 2016)):

µ
d
j =

λ1 ∑xi∈C j xd
i

(
1− γt

||xt
i−µt

j ||
2

∆ t2
max

)
+λ2 ∑µp∈M

p 6= j
µd

p

(
1− γt

||µt
p−µt

j ||
2

∆ t2
max

)
(a2

j,p +a2
p, j)

λ1 ∑xi∈C j

(
1− γt

||xt
i−µt

j ||2

∆ t2
max

)
+λ2 ∑µp∈M

p 6= j

(
1− γt

||µt
p−µt

j ||2

∆ t2
max

)
(a2

j,p +a2
p, j)

µ
t
j =

λ1 ∑xi∈C j xt
i

(
1− γd

||xd
i −µd

j ||
2

∆d2
max

)
+λ2 ∑µp∈M

p6= j
µ t

p

(
1− γd

||µd
p−µd

j ||
2

∆d2
max

)
(a2

j,p +a2
p, j)

λ1 ∑xi∈C j

(
1− γd

||xd
i −µd

j ||2

∆d2
max

)
+λ2 ∑µp∈M

p 6= j

(
1− γd

||µd
p−µd

j ||2

∆d2
max

)
(a2

j,p +a2
p, j)

.

(11)

Similarly to K-Means, the prototypes computed in Eq. 11 represent prototypes of their
clusters. Unlike K-Means, µ j the prototype of a cluster C j is not only the average of the ob-
servations regrouped under C j, but it is also influenced by the prototypes of the other clus-
ters linked to C j. Moreover, it represents the average of the assigned observations on both
the temporal dimension, as well as on the descriptive dimension, with the two dimensions

Inferring Typical Evolution Paths 9

weighting each other. E.g., temporally central observations weight more in the calculation
of µd

j , the descriptive component of the new prototype. Furthermore, the contributions of
the other prototypes (µp) are weighted by the strength of the link between Cp and C j, the
cluster of the currently recomputed prototype µ j. Inferring the relations between clusters si-
multaneously with the clustering represents one of the advantages of ClusPath: the relations
between clusters can also influence their content. The orientation of the link is not important,
since both ap, j and a j,p appear in the update formula.

Updating the adjacency matrix. Similarly to recomputing the prototypes, the update of
the adjacency matrix is a quadratic problem. The difference is that the additional constraint
in Eq. 9 is imposed, in order to avoid a trivial null solution. A typical solution to optimizing
an equality constraint problem is to use a Lagrange multiplier on the constraint, similarly
to (Dunn, 1973). Consequently, the update formula for the adjacency matrix is the solution
of the following:

∂J ∗

∂ar,s
= 0, where J ∗ = J −λ

(
k

∑
p=1

k

∑
q=1

ap,q−1

)
. (12)

By computing the point in which the derivative of J ∗ is null, we obtain the adjacency
matrix update formulas (for complete calculations see SM (sup, 2016)):

ar,s =
1

Kr,s ∑
k
p=1 ∑

k
q=1

1
Kp,q

,

with Kr,s =−λ1 pen(Cr
φ−→ Cs)+λ2||µr−µs||TA +λ3 inter2

φ (Cp,Cq) ,

and pen(Cr
φ−→ Cs) = ∑

xi∈Cr

xt
i<xt

k

∑
xk∈Cs

xφ

i =xφ

k

β ∗ e
− 1

2

(
||xt

i−xt
k ||

δ

)2 . (13)

The pen(Cr
φ−→Cs) function in Eq. 13 is the influence that the contiguous penalty defined

in Eq. 3 has on the adjacency update process. Intuitively, this mechanism allows to take into
account the transitions of entities between phases, when computing the adjacency matrix. If
many entities present transitions between clusters Cr and Cs, then ar,s will be recomputed at
a large value. This, in turn, allows in the subsequent iteration to lower the contiguity penalty,
by lowering the 1−a2

r,s term in Eq. 3. The similarity between the prototypes µr and µs and
the number of entities presenting a transition between Cr and Cs also impact the adjacency
matrix update through Kr,s.

The ClusPath Algorithm. The outline of ClusPath is given in Algorithm 1. ClusPath
seeks to minimize J by iterating an assignment phase, a prototype update phase and an
adjacency matrix update phase until the partition does not change between two iterations.
Aside from k (the number of clusters), ClusPath uses six parameters: α , β , δ , λ1,λ2,λ3. In
Sect. 3.4, we discuss a technique for tuning these parameters to an unseen dataset. A random
subset of observations xl ∈X ,1 = 1,2, ..k can be used as M (0), the initial set of prototypes.
The up cluster and up adjacency are two functions used to recompute, respectively, the
prototypes and the adjacency matrix, as shown before in this section. Similarly to other gra-
dient descent algorithms, ClusPath may present the usual shortcomings, such as converging
to a local optima or slow convergence speeds near the minimum. While the convergence
speed of ClusPath has not been theoretically studied, the experiments in Section 4 show that
the optimization process practically stops in a few steps.

10 Marian-Andrei Rizoiu et al.

Algorithm 1: Outline of the ClusPath Algorithm.
Data: observations xi ∈X , set of initial prototypes M (0)

Result: prototypes µ j, j = 1, ..,k, clusters C j, j = 1, ..,k, adjacency matrix A
Parameters: number of clusters k, α , β , δ , λ1,λ2,λ3
// adjacency matrix initialization
a(0)i, j = 0, ∀i, j = 1,2, ..,k
iter← 0
P(iter)← /0 //set of phases
repeat

iter← iter+1
for j = 1,2, ...,k do

C
(iter)
j ← /0

// S1. observation assignment to phases
for xi ∈X do

j = best cluster(xi, X , M (iter−1), P(iter−1), A(iter−1))

C
(iter)
j = C

(iter)
j ∪{xi}

// S2. update prototypes
for j = 1,2, ...,k do

(µ
d,(iter)
j ,µ

t,(iter)
j)← up prototype(j, X , M (iter−1), P(iter−1), A(iter−1))

// S3. update adjacency matrix
A(iter)← up adjacency(X , M (iter−1), P(iter−1))

M (iter)←{µ(iter)
j | j = 1,2, ..,k}

P(iter)←{C (iter)
j | j = 1,2, ..,k}

until C
(iter)
j = C

(iter−1)
j ,∀ j = 1,2, ..,k

Algorithm complexity. We denote by T (x) the time complexity of subroutine x. From
Algorithm 1 is results T (ClusPath) = T (S1)+T (S2)+T (S3). If p is the number of entities
and N is the number of observations associated with each entity, then n = p×N is the total
number of observations. We assume that k << n. We compute T (S1) as nT (best cluster) =
pNT (best cluster). Due to the penalty term in Eq. 10, T (best cluster) = O(kN), therefore
T (S1) = O(pN2k). The complexity of updating centroids (S2) is kT (up prototype). From
Eq. 11 results T (up prototype) = 2(O(n)+O(k)) = O(n), therefore T (S2) = O(pNk)).
Lastly, T (S3) = T (up adjacency) = k2T (Kr,s), which can be obtained from Eq. 13. Com-
puting ar,s is dependent on computing Kr,s, which need be computed only once per iteration.

T (Kr,s)=T
(

inter2
φ
(Cp,Cq)

)
+T

(
pen(Cr

φ−→ Cs)
)

. From Eq. 6 results T
(

inter2
φ
(Cp,Cq)

)
=

O(pN) (since we need to iterate only once through the observations of an entity to detect

transitions). Furthermore, T
(

pen(Cr
φ−→ Cs)

)
=O(nN)=O(pN2). Consequently, T (Kr,s)=

O(pN2)⇒ T (S3) = O(pN2k2). This amounts to a complexity of ClusPath of O(pN2k2),
which is well adapted to Social Science and Humanities datasets, where often a large number
of entities is studied over a relatively short period of time (p > N).

Heuristics for Displaying the Constructed Graph. The adjacency matrix A = (ai, j)
shows the strength of the link between each pair of clusters. ai, j ∈ R, i, j = 1,2, ..,k. To
display the relation between clusters as a graph, we construct a binary matrix A∗, using a
simple heuristic: a threshold λ is chosen so that only the k−1 scores are retained. This value
is chosen to favor a tree structure, even if a tree cannot be guaranteed given the structure of
the graph (i.e., some nodes may be central, with many connections, while others are marginal
or even unconnected). All arcs having the selected scores are plotted, consequently, more
than k− 1 arcs might be used. a∗i, j = 1 iff ai, j > λ , and a∗i, j = 0 iff ai, j ≤ λ . Unconnected

Inferring Typical Evolution Paths 11

nodes are eliminated, as they are considered isolated evolution phases and, therefore, not
suitable for an evolution path. Given the adjacency matrix update formula in Eq. 13, ai, j
is low when entities do not present transitions between Ci and C j and µi and µ j are very
dissimilar. Therefore, entities which find themselves in these unconnected phases do not
transition into other phases and are dissimilar to the others. In other words, they act as
outliers of the typical evolution path.

3.4 Automatically Tuning the Parameters Using Evolutionary Algorithms

ClusPath uses six parameters: α , β , δ , λ1,λ2,λ3, which can prove challenging to tune,
especially on new, unseen datasets. Datasets issued from different domains, like the ones
presented in Sect. 4, may have different requirements for the ratio between the descriptive
and temporal dimensions (the α parameter) or the smoothness of the evolution path (the
λ2 parameter). We provide an optional method for automatically tunning the parameters of
ClusPath, at the expense of repeated runs of the algorithm. Using an evolutionary technique,
we optimize over the 6-dimensional space of the parameters in order to find a solution which
provides a balance between the four opposite measures used to evaluate its output.

Evaluating a partition. We use the classical Information Theory measures to numeri-
cally assess the four objectives defined in Sect. 3.1. The first three objectives are evaluated
using measures proposed by Rizoiu et al (2012). The coherence of the obtained partition in
the descriptive and temporal dimensions are measured using the classical variance on, re-
spectively, the multidimensional component (MDvar measure) and the temporal component
(Tvar measure). We compute the variance as the mean within-cluster dissimilarity between
observations and their associated prototype. The contiguous segmentation of the series of
observations corresponding to an entity is measured using a penalized Shannon entropy
(ShaP), in which a sequentiality component is added by weighting the value of the classical
entropy by a penalty factor depending on the number of continuous segments in the series
of each entity:

ShaP =
1
|Φ | ∑

φ∈Φ

k

∑
i=1

[
−pφ (Ci) log2(pφ (Ci))

](
1+

nch−nmin

N−1

)
, pφ (Ci) = ∑

x j∈Ci

xφ

j =φ

1
N

where nch is the number of changes in the cluster assignment series of an entity, nmin is the
minimal required number of changes and N is the number of observations for an entity. We
add a forth measure (SPass) to assess the smooth passage of entities along an evolution path
measure:

SPass = ∑
φ∈Φ

i, j∈1,...,k

∑

Ci
φ−→C j

||µi−µ j||TA

nch
.

which measures the average temporal-aware dissimilarity between successive phases. There-
fore, to each solution constructed by ClusPath corresponds a point in the four-dimensional
space of the measures: (MDvar, Tvar, ShaP, SPass)

Defining a balanced solution. The parameter tuning heuristic. The four objectives
defined in Sect. 3.1 and the four corresponding measures defined here above are contra-
dicting; completely fulfilling them at the same time is not possible. To acquire a trade-off
between the mutually contradicting objectives, we pose the problem of automatically tun-
ing the parameters of ClusPath as an optimization problem. We consider the parameters of
ClusPath as internal variables over which the search is performed and we evaluate using the
four evaluation criteria. To chose a balanced solution, we use the concept of Pareto opti-
mality (Sawaragi et al, 1985), originally developed in economics. Given a set of solutions, a

12 Marian-Andrei Rizoiu et al.

given solution is considered to be Pareto optimal if there exists no other that, simultaneously,
is better on all objectives. The set of Pareto optimal solutions form the Pareto front. Con-
sequently, no single optimum can be constructed, but rather a class of optima, depending
on the ratio between the objectives. With no a priori information, selecting the point on the
Pareto front closest (in terms of Euclidean distance) to the ideal point provides a good com-
promise between the different objectives. All measures need to be minimized, therefore the
ideal point is (0,0,0,0). By default, we use no weights on the dimensions when calculating
the distance from a solution to this point. Before computing the Euclidean distance to the
ideal point, the values of all measures are normalized, in order to receive equal importance.
Having the Pareto constructed allows using another methodologies for selecting the “good
trade-off” without re-executing the lengthy optimization procedure.

Approximating the Pareto frontier using evolutionary algorithms. The heuristic we
propose is, for a given dataset, to construct the Pareto front in the measures space, which
is the 4-dimensional envelope of all the possible compromises. The solution closest to the
ideal point is chosen as the “best” compromise and its corresponding parameter values are
presented as the tuned values for the particular dataset. We formulate the problem of pa-
rameter tunning as a multi-objective optimization problem, optimizing in the 4-dimensional
space of evaluation measures, with the parameters of ClusPath serving as internal variables
over which the search is performed. Solving multiobjective optimization problems using
evolutionary algorithms (MOEAs) has been investigated by many authors (Deb et al, 2002;
Halsall-Whitney and Thibault, 2006; Kafafy et al, 2011; Mihăiţă et al, 2014; Zitzler et al,
2001). Pareto dominance based MOEAs such as NSGAII (Deb et al, 2002), SPEA2 (Zitzler
et al, 2001) and HEMH (Kafafy et al, 2011) have been dominantly used in the recent studies.
In multiobjective optimization, the set of Pareto optimal solutions is approximated using a
large number of non-dominated points. MOEAs operates on individuals of an initial popula-
tion to generate the individuals of the population of the next generation. The new population
is generated by applying some processes of selection, recombination and mutation.

Our technique The genome of each individual is a vector composed of the six param-
eters of ClusPath: α , β , δ , λ1,λ2,λ3. For each individual, ClusPath is executed with the
parameters in its genome, a solution is obtained and it is evaluated. Therefore, to each in-
dividual corresponds a point in the 4-dimensional space of the measures. The size of each
evolutionary population is fixed to 100. We use the Pareto dominance to evaluate the fitness
function: the number of individuals which dominate the given individual. An elitist selection
is used to filter the population: all the non-dominated solutions and 10% of the dominated
solutions are promoted in the next generation, while the rest are removed. We use two oper-
ators to construct, based on the selected elite, new solutions until the population reaches the
nominal size. We duplicate and mutate 5% of the survivors. The mutations affect one or two
parameters in the genome, which are set to a random value in their domain of definition.
New offsprings are generated through a Path-Relinking strategy: two parents are selected
from the survivors and the values for the newly generated individuals are averaged means
of the values of the parents. The weights are randomly generated. The process is iterated
until all the constructed solutions are Pareto non-dominated or until a maximum number
of generations (100) is reached. We choose as the “best” solution, the individual in the last
generation which is the closest to the ideal point. Given the elitist strategy, non-dominated
solutions always survive into successive generations.

The complexity of the evolutionary heuristic. For a given partition constructed by
ClusPath, we have T (MDvar) = T (T var) = T (ShaP) = O(pNk) and T (SPass) = O(pN).
Given m the number of individuals in each evolutionary generation, evaluating all the indi-
viduals in a generation takes O(mpNk). Calculating the fitness function at each generation

Inferring Typical Evolution Paths 13

has the complexity O(m2). Sorting the individuals by their fitness is done in O(m× log(m)).
ClusPath is executed for each individual, therefore a complexity of m×O(pN2k2)=O(mpN2k2)
(cf. complexity of ClusPath calculated in Sect. 3.3). Therefore, the complexity of each evo-
lutionary generation is O(mpNk)+O(m2)+O(mpN2k2) = O(mpN2k2), considering that
m << pN2k2. This results in a total complexity of the evolutionary heuristic of O(ngmax×
mpN2k2), where ngmax is the maximum number of generations.

Note that the calculated complexity is the worst case scenario. In practice, the elitist
technique speeds up the computation considerably, since the solutions promoted from the
previous generation do not require a re-execution of the ClusPath algorithm. Furthermore,
the elitist technique speeds up convergence and reduces the actual number of required gen-
erations. Finally, evolutionary algorithms are very well adapted for massive parallelization.
Each individual execution of ClusPath is independent of the others and all the individuals
in a generation can be computed in parallel, provided that the heuristic is ran on a machine
with at least m execution cores. In our experiments in Section 4, the evolutionary algorithm
proved to be only 6.12 times slower than ClusPath (standard deviation of 0,46 over 200
runs, all runtimes and hardware specs in SM (sup, 2016)).

4 Experiments

The experiments are conducted on two real-life datasets, one issued from political sci-
ences: Comparative Political Data Set I (CPDS1) (Armingeon, Klaus, Christian Isler, Laura
Knöpfel and Engler, 2011) and the second containing financial and accounting data: Eu-
ropean Companies (EC) (Siddiqui et al, 2012). CPDS1 is a collection of political and in-
stitutional data, which consists of annual data for 23 democratic countries for the period
from 1960 to 2009. The dataset was cleaned by removing redundant variables (e.g. country
identifier and postal code), resulting in each country being described using 207 political,
demographic, social and economic variables. The corpus was preprocessed by removing
entity-specific, time-invariant bias from the data. For every attribute, we compute its mean
for each entity. For every pair (attribute, observation) we substract from the attribute value
the mean of the corresponding entity. The obtained dataset1 is under the form of triples
(country,year,description). The EC dataset describes the activity of 836 companies over
a period of 5 years (2003-2007), using 7 economic variables. The dataset is preprocessed
similarly to CPDS1, by removing the entity specific means from each variable. Note that
the EC dataset is very different from CPDS1, in the sense that a consistently larger number
of entities are studied over a short time span (5 timepoints for EC vs. 50 for CPDS1) and
are described using few attributes (7 for EC vs. 207 for CPDS1). As the experiments in the
following sections show, this leads to less diverse evolution phases and shorter evolution
paths. All attributes are normalized prior to the execution of the algorithms (to avoid setting
artificial weights), whatsoever the results presented in this section are non-normalized, in
order to appreciate the amplitude of the time-varying component.

4.1 Choosing the Best Possible Solution Using an Evolutionary Algorithm

Throughout our experiments, the parameters of ClusPath (except for k, the number of clus-
ters) are chosen using the evolutionary heuristic described in Sect. 3.4. Being a clustering
algorithm, ClusPath suffers from the classical drawback of selecting the number of evolution
phases. Setting k to large values results in clusters containing less observations, more com-
pact in description and time, adapted for detecting granular evolutions. It also result in longer
evolution paths. Setting k to a low number results in more general evolution phases, more

1 Download pretreated version of the CPDS1 dataset here: http://goo.gl/17ihsf

http://goo.gl/17ihsf

14 Marian-Andrei Rizoiu et al.
T
v
a
r

MDvar

Evolutionary populations, MDvar-Tvar

S
h
a
P

MDvar

Evolutionary populations, MDvar-ShaP

S
P

a
s
s

MDvar

Evolutionary populations, MDvar-SPass

0

5

10

15

20

25

30

115 120 125 130
0.5

1

1.5

2

2.5

3

115 120 125 130

0.5

1

1.5

2

115 120 125 130

T
v
a
r

MDvar

Evolutionary populations, MDvar-Tvar
S

h
a
P

MDvar

Evolutionary populations, MDvar-ShaP

S
P

a
s
s

MDvar

Evolutionary populations, MDvar-SPass

Final generation Chosen solution local 2D Pareto FrontPrevious generations

0

0.5

1

1.5

2

2.5

3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1

1.5

2

2.5

3.5 4 4.5 5 5.5 6 6.5 7
0

100

200

300

400

500

3 3.5 4 4.5 5 5.5 6 6.5 7

Fig. 2: Typical example of execution of the evolutionary algorithm on CPDS1 (top row) and
on EC (bottom row). The obtained 4-dimensional Pareto front is projected onto the (MDvar,
Tvar) space (left), (MDvar, ShaP) space (middle) and (MDvar, SPass) space (right).

adapted to detecting more general evolutions. Fig. 2 presents a typical execution of the evo-
lutionary algorithm, together with the obtained Pareto front and the chosen solution. Each
individual in each evolutionary generation is associated with a point in the 4-dimensional
space of the measures: (MDvar, Tvar, ShaP, SPass). For presentation reasons, we project the
4-dimensional space onto 2-dimensional spaces, by selecting pairs of measures. In Fig. 2,
some of the points on the 4-dimensional Pareto front (indicated by the red triangles) seem
Pareto dominated in the 2-dimensional spaces. The 2-dimensional graphics present only
projections and, as discussed in Sect. 3.4, optimizing multiple criteria means finding a com-
promise which rarely yields the best results on the individual criteria. Similarly, the chosen
global solution is not necessarily the optimum in each of the 2-dimensional spaces. Whatso-
ever, Fig. 2 clearly shows that the chosen point is never too far from the local Pareto fronts
and, thus, it provides a good trade-off. On EC, the Tvar measure (bottom row, left and center
graphics) presents levels. This is due to the very limited temporal extent of the dataset (5
years, i.e., 5 data points), which in turn limits the number of values that can be taken by the
temporal variance.

Runtime An average run of ClusPath on CPDS1 takes 122.81s (stdev = 11.37) on our
24 cores Intel(R) Xeon(R) E5-2430 machine (see SM (sup, 2016) for full machine specs),
while the evolutionary technique takes 750.69s (stdev = 53.8). This makes an execution of
the evolutionary technique as long as roughly six sequential executions of ClusPath.

Qualitative Results Fig. 3 shows the typical evolution paths constructed by ClusPath
on CPDS1, when asked for 20 clusters. The heuristic used for displaying the constructed
graph eliminates unconnected phases. Fig. 3a shows how many countries belong in a certain
cluster for each year. Clusters C7 (black), C11 (magenta) and C15 (blue) contain most of
the observations, suggesting that the path C7 −→ C11 −→ C15 is a typical evolution path
followed by most entities. The meaning of each constructed cluster unravels when study-
ing the segmentation of countries over clusters, in Fig. 3b, as well as the proposed graph

Inferring Typical Evolution Paths 15

0

5

10

15

20

23

1960 1970 1980 1990 2000 2010

Cluster distribution over time

C
lu

s
te

r
d
is

tr
ib

u
ti

o
n

Time

(a)

1960 1970 1980 1990 2000 2010

Entity segmentation over time

Time

Japan

Switzerland
Sweden

Spain
Portugal
Norway

New Zealand
Netherlands
Luxembourg

Italy
Ireland

Greece
Germany

France
Finland

Denmark
Canada
Belgium
Austria

Australia

USA
UK

Iceland

(b)

4 | 1967
11 | 1983

7 | 1969

6 | 1969

`

3 ent. | 0.32

2 ent. | 0.29

2 ent. | 0.29

1 ent. | 0.27
12 | 1983

2 ent. | 0.29

2 ent. | 0.29

1 ent. | 0.27

11 ent. | 1.30

1 ent. | 0
.27

10 | 1978

5 | 1968 3 ent. | 0.32

1 ent. | 0.27

16 | 1999

19 | 2002

15 | 1998

20 | 2003

18 ent. | 5.23

2 ent. | 0.29

2
en

t.
| 0

.2
9

1 ent. | 0.27

3 en
t. | 0.32

1 en
t. | 0.27

(c)

Fig. 3: Typical evolution phases constructed by ClusPath on CPDS1, with 20 clusters. Num-
ber of entities in each phase per year (a), segmentation of entities over phases (b) and the
phase evolution graph (c)

structure in Fig. 3c. For example, the succession C5 −→ C11 is followed by Spain, Por-
tugal and Greece at the beginning of their evolution. Historically, this coincides with the
non-democratic regimes in those countries (Franco’s dictatorship in Spain, the “Regime
of the Colonels” in Greece). Likewise, the succession C4 −→ C11 (and the slightly longer
C4 −→ C7 −→ C11) is present for countries like Denmark, Finland, Iceland, Norway and
Sweden. This evolution path maps onto the “Swedish Social and Economical Model” of the
Nordic countries. For completeness reasons, we present in Fig. 7, the graph of phases con-
structed a posteriori by the extensions of TDCK-Means, proposed in (Rizoiu et al, 2014).
Visibly, the constructed paths are longer (most transitions are followed by a single entity)
and more difficult to interpret. Furthermore, the entities evolution through the graph is not
constrained during the clustering, which results in a significant number of backwards links
from phases with a higher timestamp to phases with a lower timestamp. Overall, the graph
generated by ClusPath is more synthetic and easier to interpret, since it contains less specific
arcs (followed by a single entity) and less backward links. This makes is more adapted for
our application: identifying typical evolution paths.

On the EC dataset, ClusPath is executed with 10 clusters, because of the considerably
shorter temporal extent of the dataset. Figure 4a shows that the phases C2, C3, C6 and C9 are
the predominant evolution phases, with the evolution C2 −→ C6 −→ C9 being the typical
evolution in the population of companies. The descriptions of these phases are given in
Table 1. Considering that the dataset was preprocessed to remove entity-specific values, the
negative and positive values in Table 1 indicate negative, respectively positive, tendencies.

16 Marian-Andrei Rizoiu et al.

2003 2004 2005 2006 2007

Phases distribution over time

Time

0
20

0
40

0
60

0
80

0

1
2
3
4
5
6
7
8
9
10

(a)

9 | 6/2006

3 | 8/2003

1 ent. | 0.02

807 ent. | 8.49

2 | 1/2003

6 | 6/2004

13 ent. | 1.29

2 ent. | 0.03

824 ent. | 8.98

1 ent. | 0.02

1 ent. | 0.02

Tax Rate lessmore

N
et

 I n
co

m
e

le
ss

m
o
re

(b)

Fig. 4: Typical evolution phases constructed by ClusPath on EC, with 10 clusters. Num-
ber of entities in each phase per year (a) the evolution graph projected in the space Net-
Income/TaxRate (b)

For example, phase C3 is a crisis phase, in which companies reduce slightly their debt, while
considerably reducing their revenues and income.

Figure 4b shows the obtained evolution graph, projected onto the 2-dimensional space
defined by NetIncome and TaxRate, two of the descriptive variables in the dataset EC. The
series of the NetIncome on the C2 −→ C6 −→ C9 evolution path is −0.09 −→−0.04 −→
0.15, whereas the TaxRate on the same evolution path is 0.08 −→ −0.04 −→ −0.06. It
depicts the “tax optimization” undertook by most companies in the dataset: most companies
arrive to decrease significantly their tax rate, while increasing the net income. Phase C3 is
a crisis phase, out of the 15 companies that enter it and only one exits it. This seems to
indicate that in the economical climate preceding the crisis of 2009, one of the ways to keep
a company profitable was fiscal optimization.

4.2 Quantitative Results

To handle the initialization bias present in clustering, we have constructed 20 sets of initial
prototypes. Each of the tested algorithms was initialized identically, with each of the sets
of initial prototypes and only the average values of the measures are reported. The perfor-
mances of six algorithms are compared:
• Simple K-Means MacQueen (1967) clusters the observations based solely on their re-

semblance in the multidimensional space. Optimizes MDvar;
• Temporal-Driven K-Means Rizoiu et al (2012) uses K-Means with the the temporal-

aware measure. Optimizes MDvar and Tvar. Parameters: α = 0 and β = 0;

Table 1: Most common evolution phases in EC, described over the 7 dimensions of the
dataset. The evolution path C2 −→ C6 −→ C9 is the path followed by most companies

Ph. Time FCFF TotalDebt Revenues NetCapExp EBITDA TaxRate NetIncome

C2 01/2003 -0.00 -0.01 -0.02 -0.00 -0.04 0.08 -0.09
C3 08/2003 -0.94 -0.06 -1.82 -0.67 -2.02 -0.07 -4.04
C6 06/2004 -0.01 -0.01 -0.02 -0.04 -0.02 -0.04 -0.04
C9 06/2006 0.05 0.01 0.07 0.04 0.07 -0.06 0.15

Inferring Typical Evolution Paths 17

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
3.09

3.59

4.09

4.59

5.09

5.59

6.09

6.59

0.01

0.21

0.41

0.61

0.81

1.01

1.21

1.41

1.61

1.81

MDvar and Tvar vs. α

MDvar

Tvar

α

M
D

v
a

r

T
v

a
r

(a)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
4.60

4.65

4.70

4.75

4.80

4.85

4.90

4.95

5.00

5.05

5.10

5.15

5.20

5.25

5.30

1.98

2.03

2.08

2.13

2.18

2.23

MDvar and ShaP vs. β

MDvar

ShaP

M
D

v
a

r

S
h

a
P

β * 103

(b)

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

2.23

2.24

2.24

2.25

2.25

2.26

2.26

2.27

2.27

2.28

Tvar and ShaP vs. δ

Tvar

ShaP

δ

T
v

a
r

S
h

a
P

(c)

Fig. 5: Determine, using the heuristics described in the original paper, the values of
TDCK-Means’ parameters for dataset EC: α (a), β (b) and δ (c)

• Constrained K-Means Rizoiu et al (2012) uses the Euclidean distance and a penalty.
Optimizes MDvar and ShaP. Parameters: α = 1, β = 0.0005 and δ = 3;

• tcK-Means Lin and Hauptmann (2006) is a temporal constrained clustering algorithm.
It uses a threshold penalty function, adapted to the multi-entity case. Optimizes MDvar
and ShaP. Parameters: α∗ = 2,d∗ = 4.

• TDCK-Means Rizoiu et al (2012) uses the temporal-aware dissimilarity measure, as
well as contiguity constraints. Optimizes MDvar, Tvar and ShaP. Parameters: α = 0.95,
β = 0.0002 and δ = 3;

• ClusPath is the algorithm we propose in Sect. 3. Unlike the aforementioned algorithms,
ClusPath is the sole algorithm to infer a graph structure for the clusters during the clus-
tering. Optimizes MDvar, Tvar, ShaP and SPass. Parameters: determined automatically
using the heuristic in Sect. 3.4.

Obtained results. The parameters of all algorithms, except ClusPath, are determined
as shown in their original articles. For example, in Figure 5 we reproduce the heuristic
of determining TDCK-Means’ parameters on EC. Table 2 shows the average values of the
measures, as well as the standard deviation (in italic) obtained by each algorithm. The best
results on each measure are indicated in boldface. Note that, while ClusPath is designed to
provide a compromise between the learning objectives, Simple K-Means, Temporal-Driven
K-Means and Constrained K-Means are designed to optimize mainly one component. Not
surprisingly, they show the best scores for, respectively, MDvar, Tvar and ShaP. ClusPath

Table 2: Mean value and standard deviation of evaluation measures for the different algo-
rithms. All measures need to be minimized (best results in bold)

Algorithm MDvar Tvar ShaP SPass

C
P
D
S
1

K-Means 114.89 3.8 46.08 8.03 1.80 0.18 3.19 0.63
Temporal Driven K-Means 125.32 3.4 4.56 0.35 2.96 0.07 1.52 0.31
Constrained K-Means 140.26 17.51 163.60 31.19 0.51 0.34 1.13 0.49
tcK-Means 131.54 10.8 156.15 19.23 0.61 0.20 2.15 0.51
TDCK-Means 121.27 4.34 38.58 7.16 1.60 0.13 1.52 0.55
ClusPath 118.68 5.18 6.26 3.21 2.81 0.31 0.86 0.23

E
C

K-Means 3.06 0.28 1.95 0.01 0.15 0.15 8.41 1.50
Temporal Driven K-Means 4.83 0.43 0.01 0.03 2.28 0.12 45.99 9.63
Constrained K-Means 4.96 0.69 1.99 0.01 0.21 0.03 4.49 6.56
tcK-Means 4.29 0.34 1.98 0.01 0.04 0.01 20.09 14.61
TDCK-Means 4.41 0.55 0.07 0.06 2.14 0.17 5.03 1.29
ClusPath 3.85 0.59 0.60 0.25 0.97 0.22 4.40 1.25

18 Marian-Andrei Rizoiu et al.

shows the best SPass score, proving that constructing the structure between clusters during
the clustering process results in evolution paths with smoother passages. Both TDCK-Means
and ClusPath seek to provide a trade-off between the measures, but ClusPath consistently
outperforms TDCK-Means, except for the temporal variance on EC. Overall, ClusPath suc-
ceeds in providing a good trade-off between the different contradicting measures, obtaining
the best SPass value and limited loss on the other measures.

4.3 Impact of Parameters and Result Stability

We launch the evolutionary heuristic on CPDS1 100 times with the same parameters of the
evolutionary algorithm and with the same initial prototypes for each execution of ClusPath.
This allows to i) assess the correlations between the chosen parameters and the obtained
measures and ii) study the stability of the chosen solution, while lowering th impact of
initialization randomness present in K-Means-like algorithms.

Impact of parameters on the evaluation measures Table 3 shows the Pearson correla-
tion between i) the parameters and the measure, ii) between the parameters and iii) between
the measures. Statistically significant correlations (with p = 0.05) are shown in boldface.
The table on the right shows that the evaluation measures are, by pairs of two, correlated
among themselves. The pairs a) MDvar and ShaP and b) Tvar and SPass are correlated pos-
itively. Conversely, MDvar and ShaP seem to be negatively correlated with Tvar and SPass.
The result is consistent with the multiobjective optimization task: all solutions are scattered
closely around the optimum solution and improving a measure mechanically involves de-
grading others, hence the negative correlations. The parameters with the most impact in
ClusPath are α and β . They also have a weak correlation among themselves. α is statisti-
cally significantly correlated, negatively with MDvar and ShaP, and positively with Tvar.
This was expected, considering that α is a slider variable, giving priority to the temporal
component for higher values. β is negatively correlated with MDvar and SPass and posi-
tively correlated with ShaP: the higher β , the higher the contiguity penalty, which results in
a more contiguous segmentation of observations for each entity.

Stability of the chosen solution for ClusPath We assess how stable are the solutions
constructed by the evolutionary technique by studying the variability of the obtained param-
eters of ClusPath and the the values of evaluation measures. For parameter α , for most of
the 100 execution described in this subsection, its values are distributed uniformly around
0.48. The exception are four cases in which α takes values around 0.35. These four “outlier”
values of α , together with another 16 samples “regular” values (only 16 for readability pur-
poses) are shown in Fig. 6a. There are no intermediary values between the two levels, which
indicates that the Pareto front has two regions close to the ideal point: a larger one defined
by values of α around 0.48 and a second, considerably smaller one, defined by α ≈ 0.35
(highlighted in Fig. 6a). Fig. 6b highlights the corresponding values of MDvar, Tvar and

Table 3: Correlation matrix i) between parameters and quality measures and ii) between
parameters (left table) and iii) between quality measures (right table).

MDvar Tvar ShaP SPass α β δ λ1 λ2 λ3

α -0.92 0.72 -0.90 0.14 1.00 0.34 0.15 -0.07 -0.08 -0.08
β -0.31 0.09 0.30 -0.21 1.00 -0.07 -0.20 -0.12 -0.06
δ -0.17 0.05 -0.15 0.14 1.00 -0.08 0.07 -0.11
λ1 0.05 -0.06 0.08 0.13 1.00 0.09 0.03
λ2 0.11 -0.01 0.09 -0.09 1.00 0.00
λ3 0.03 -0.06 0.03 0.07 1.00

MDvar Tvar ShaP SPass

MDvar 1.00 -0.68 0.95 -0.31
Tvar 1.00 -0.76 0.34
ShaP 1.00 -0.37
SPass 1.00

Inferring Typical Evolution Paths 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0,0

0,1

0,2

0,3

0,4

0,5

Value of parameter α for multiple executions

Execution number

V
a

lu
e

 o
f

α

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
116

117

117

118

118

119

119

120

120

0

1

2

3

4

5

6

7

8
Value of MDvar, Tvar and ShaP for multiple executions

MDvar Tvar ShaP

Execution number

V
a

lu
e

 o
f

T
v

a
r

a
n

d
 S

h
a

P

V
a

lu
e

 o
f

M
D

v
a

r

(b)

Fig. 6: Two local optima: the region identified by negative values of α is highlighted (a) and
the corresponding values for MDvar, Tvar and ShaP (b).

Table 4: Result stability: averages and coefficients of variation for all solutions (rows with
*) and after removing the local optimum corresponding to lower α values (rows with **)

α β ×105 δ λ1 λ2 λ3 MDvar Tvar ShaP SPass

* Average 0.477 7.727 3.02 484.74 536.51 522.35 117.69 7.33 2.61 0.76
Coef. var. 7.11% 54.48% 18.35% 55.97% 52.76% 56.34% 0.32% 3.12% 1.35% 1.83%

**

Average 0.480 7.5 2.99 587.54 535.91 502.65 117.65 7.39 2.61 0.77
Coef. var. 4.28% 59.63% 16.24% 37.22% 34.34% 61.48% 0.17% 2.07% 0.85% 0.91%

ShaP. This local minimum region of the Pareto front presents consistently elevated values
of MDvar, slightly higher values of ShaP and lower values of Tvar. These observations are
consistent with the conclusions of the previous paragraph, considering that α is correlated,
i) negatively with MDvar and ShaP and ii) positively with Tvar. The existence of two local
optima is confirmed by Table 4, which shows the mean and the coefficient of variation for
the six parameters and four measures of ClusPath over all the executions (denoted by *) and
after removing the four solutions corresponding to the local minima (denoted by **). The
coefficients of variation of the evaluation measures for case * consistently decrease in the
** case. This proves that the removed solutions were caught in a local optimum region and
the remaining solutions are grouped even more densely in the 4-dimensional space of the
measures.

5 Conclusion and Future Work

In this paper, we have studied the construction of typical evolution paths followed by a
collection of entities. We have proposed a novel algorithm, ClusPath, that partitions the ob-
servations belonging to entities into clusters, coherent in both the descriptive and temporal
spaces. The connexions between clusters are inferred during the clustering process and suc-
cessions of linked clusters are interpreted as evolution paths. A semi-supervised technique is
used to leverage the strength of the links between clusters in the assignment of observations.
An evolutionary technique is used to find the set of optimum parameters and choose the
“best” trade-off of measures. We perform experiments on two real-live datasets, one issued
from political sciences and the other issued from economics. We have shown how complex
notions, such as socio-economical models (i.e., the “Swedish” model) or tax policies (i.e.,
the tax optimization performed by companies) can be detected from the temporal evolution
of descriptive features.

20 Marian-Andrei Rizoiu et al.

The main novelty of ClusPath over other approaches (such as co-clustering) is that i) it
joins the temporal and descriptive features in the same objective function and ii) it combines
into the same optimization procedure the descriptive-temporal construction of the prototypes
with the inference of the relations between clusters. The major advantage over constructing
each component sequentially (like in TDCK-Means with a posteriori graph structure con-
struction) is that the content of a cluster and relations between clusters influence each other
during the optimization process. ClusPath is based on a “slow changing world” hypothesis,
which assumes that changes in the population are gradual and “smooth”. This hypothesis
holds for many application domains, e.g., scientific discussion topics, online communities
etc. In applications in which this hypothesis does not hold (e.g., stock market transactions,
in which it is desirable to detect sudden changes), ClusPath can still be used, by lowering
the degree in which this hypothesis is enforced.

Future work. We are currently experimenting with applying the algorithm to other ap-
plications, e.g., detection of social roles in social networks, by passing through temporal
behavioral roles. A social role is defined as a typical succession of behavioral roles. Another
direction of research is describing the clusters with an easily comprehensible description by
introducing temporal information into an unsupervised feature construction algorithm. Fi-
nally, it would be useful to compare the solution constructed by ClusPath with those issued
by algorithms for detecting trajectories of moving clusters (e.g., Kalnis et al (2005)).

6 Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.
Research involving Human Participants and/or Animals: The authors declare that no
part of the research presented in this manuscript involved any humans or animals.

Acknowledgements NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence Program.

References

(2016) Supplementary material: A temporal-driven clustering solution to inferring typical evolution paths. http://goo.
gl/KCWrSM

Araujo R, Kamel MS (2014) Semi-supervised Kernel-Based Temporal Clustering. In: International Conference on Machine
Learning and Applications, IEEE, ICMLA ’14, pp 123–128

Armingeon, Klaus, Christian Isler, Laura Knöpfel DW, Engler S (2011) Comparative Political Data Set 1960-2009. Univer-
sity of Berne.

Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary Clustering. In: International Conference on Knowledge Discovery
and Data Mining, ACM, SIGKDD ’06, pp 554–560

Chi Y, Song X, Zhou D, Hino K, Tseng BL (2007) Evolutionary Spectral Clustering by Incorporating Temporal Smoothness.
In: International Conference on Knowledge Discovery and Data Mining (KDD), San Jose, USA, pp 153–162

De la Torre F, Agell C (2007) Multimodal Diaries. In: Multimedia and Expo, IEEE, pp 839–842
De Smet Y, Eppe S (2009) Multicriteria Relational Clustering: The Case of Binary Outranking Matrices. In: Evolutionary

Multi-Criterion Optimization, vol 5467, pp 380–392
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary

Computation 6(2):182–197
Dunn JC (1973) A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters.

Journal of Cybernetics 3(3):32–57
Erixon L (2000) A Swedish Economic Policy: The Theory, Application and Validity of the Rehn-Meidner Model. Tech. rep.,

Department of Economics, Stockholm University
Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. In: International Conference on Knowl-

edge Discovery and Data Mining, ACM Press, New York, USA, SIGKDD ’99, pp 63–72, DOI 10.1145/312129.312198
Halsall-Whitney H, Thibault J (2006) Multi-objective optimization for chemical processes and controller design : Approxi-

mating and classifying the pareto domain. Computers & Chemical Engineering 30(6-7):1155–1168
Kafafy A, Bounekkar A, Bonnevay S (2011) A hybrid evolutionary metaheuristics (HEMH) applied on 0/1 multiobjective

knapsack problems. In: Genetic and Evolutionary Computation, ACM Press, New York, USA, GECCO ’11, p 497

http://goo.gl/KCWrSM
http://goo.gl/KCWrSM

Inferring Typical Evolution Paths 21

Kalnis P, Mamoulis N, Bakiras S (2005) On Discovering Moving Clusters in Spatio-temporal Data. In: Bauzer Medeiros
C, Egenhofer M, Bertino E (eds) Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science, vol
3633, Springer Berlin Heidelberg, chap 21, pp 364–381

Liang Z, Tomioka R, Murata H, Asaoka R, Yamanishi K (2013) Quantitative Prediction of Glaucomatous Visual Field Loss
from Few Measurements. In: International Conference on Data Mining, ICDM ’13, pp 1121–1126

Lin WH, Hauptmann A (2006) Structuring continuous video recordings of everyday life using time-constrained clustering. In:
Chang EY, Hanjalic A, Sebe N (eds) Multimedia Content Analysis, Management, and Retrieval, pp 60,730D–60,730D–9

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Berkeley Symposium on
Mathematical Statistics and Probability, vol 1, pp 281–297

Mihăiţă AS, Camargo M, Lhoste P (2014) Optimization of a complex urban intersection using discrete event simulation and
evolutionary algorithms. In: International Federation of Automatic Control, IFAC’14, vol 19, pp 8768–8774

Rizoiu MA, Velcin J, Lallich S (2012) Structuring typical evolutions using Temporal-Driven Constrained Clustering. In:
International Conference on Tools with Artificial Intelligence, IEEE, Athens, Greece, ICTAI ’12, vol 1, pp 610–617

Rizoiu MA, Velcin J, Lallich S (2014) How to Use Temporal-Driven Constrained Clustering to Detect Typical Evolutions.
International Journal on Artificial Intelligence Tools 23(04):1460,013

Rocha C, Dias LC, Dimas I (2013) Multicriteria Classification with Unknown Categories: A Clustering-Sorting Approach
and an Application to Conflict Management. Journal of Multi-Criteria Decision Analysis 20(1-2):13–27

Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization, vol 176. Academic Press New York
Siddiqui ZF, Oliveira M, Gama J, Spiliopoulou M (2012) Where Are We Going? Predicting the Evolution of Individuals. In:

Hollmén J, Klawonn F, Tucker A (eds) Advances in Intelligent Data Analysis V, Lecture Notes in Computer Science, vol
7619, Springer Berlin Heidelberg, pp 357–368

Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means Clustering with Background Knowledge. In:
International Conference on Machine Learning, ICML ’01, pp 577–584

Xu T, Zhang Z, Yu PS, Long B (2012) Generative models for evolutionary clustering. ACM Transactions on Knowledge
Discovery from Data (TKDD) 6(2):7

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. In: Evolutionary
Methods for Design, Optimisation and Control with Applications to Industrial Problems, EUROGEN ’01, pp 95–100

22 Marian-Andrei Rizoiu et al.

1
en

t.
| 4

.3
5

2
en

t.
 |

8.
70

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

5
| 1

97
1

1
en

t.
| 4

.3
5

1
en

t.
| 4

.3
5

12
 e

nt
. |

 5
2.

17

1
en

t.
| 4

.3
5

5
en

t.
 |

21
.7

4

1
en

t.
 |

4.
35

1
en

t.
 |

4.
35

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

9
en

t.
| 3

9.
13

5
en

t.
 |

21
.7

4

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

2
en

t.
| 8

.7
0

1
en

t.
| 4

.3
5

1
en

t.
| 4

.3
5

7
en

t.
 |

30
.4

3

1
en

t.
| 4

.3
5

3
en

t.
| 1

3.
04

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

1
en

t.
 |

4.
35

1
en

t.
 |

4.
35

1
en

t.
| 4

.3
5

2
en

t.
| 8

.7
0

1
| 1

96
3

10
 |1

98
3

7
| 1

97
3

4
| 1

97
0

11
 |1

98
7

8
| 1

97
4

3
| 1

96
6

9
| 1

97
8

2
| 1

96
6

12
 |

19
88

13
 |1

99
4

14
 |

19
96

16
 |

19
99

19
 |

20
03

15
 |

19
98

17
 |

20
00

18
 |

20
02

20
 |

20
03

6
| 1

97
1

Fig. 7: Graph structure constructed a posteriori by TDCK-Means, on Comparative Political
Data Set I with 20 clusters.

	Introduction
	State of the Art
	Our Proposal
	Experiments
	Conclusion and Future Work
	Compliance with Ethical Standards

