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A now classical result in the theory of variable Lebesgue spaces due to Lerner [24] is that a modular inequality for the Hardy-Littlewood maximal function in L p(•) (R n ) holds if and only if the exponent is constant. We generalize this result and give a new and simpler proof. We then find necessary and sufficient conditions for the validity of the weaker modular inequality

where c 1 , c 2 are non-negative constants and Ω is any measurable subset of R n . As a corollary we get sufficient conditions for the modular inequality

where T is any operator that is bounded on L p (Ω), 1 < p < ∞.

Introduction

The variable Lebesgue spaces are a generalization of the classical Lebesgue spaces, where the constant exponent p is replaced by a variable exponent function p(•). They have been studied extensively for the past twenty years, particularly for their applications to PDEs, the calculus of variations [START_REF] Acerbi | Regularity results for stationary electro-rheological fluids[END_REF][START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF][START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF], but also for their use in a variety of physical and engineering contexts: the modeling of electrorheological fluids [START_REF] Růžička | Electrorheological fluids: modeling and mathematical theory[END_REF], the analysis of quasi-Newtonian fluids [START_REF] Zhikov | Meyer-type estimates for solving the nonlinear Stokes system[END_REF], fluid flow in porous media [START_REF] Amaziane | Nonlinear flow through double porosity media in variable exponent Sobolev spaces[END_REF], magnetostatics [START_REF] Cekic | estimates of vector fields and some applications to magnetostatics problems[END_REF] and image reconstruction [START_REF] Blomgren | Total variation image restoration: numerical methods and extensions[END_REF].

Let Ω ⊂ R n be a Lebesgue measurable set, 0 < |Ω| ≤ ∞. Given a measurable exponent function p(•) : Ω → [1, ∞), hereafter denoted by p(•) ∈ P(Ω), for any measurable set E ⊂ R n , |E ∩ Ω| > 0, we set For brevity, we set p -= p -(Ω) and p + = p + (Ω). The space L p(•) (Ω) is defined as the set of all measurable functions f such that for some λ > 0, ρ p(•),Ω (f /λ) < ∞, where ρ p(•),Ω is the modular functional defined by

ρ p(•),Ω (f ) = Ω |f (x)| p(x) dx.
In situations where there is no ambiguity we will simply write ρ p(•) (f ) or ρ(f ). The space L p(•) (Ω) is a Banach function space when equipped with the Luxemburg norm

f L p(•) (Ω) = inf{λ > 0 : ρ p(•)
,Ω (f /λ) 1}.

(1.1)

When p(•) = p, a constant, then L p(•) (Ω) = L p (Ω) and (1.1) reduces to the classical norm on L p (Ω). For the properties of these spaces, we refer the reader to [START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF][START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF].

Given a function f ∈ L 1 loc (R n ), the (uncentered) Hardy-Littlewood maximal function Mf is defined for x ∈ R n by

Mf (x) = sup Q x 1 |Q| Q |f (y)|dy,
where the supremum is taken over all cubes Q ⊂ R n containing x and whose sides are parallel to the coordinate axes. (See [START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF][START_REF] Duoandikoetxea | Fourier analysis[END_REF].) If f ∈ L 1 loc (Ω), then we define M f by extending f to be identically 0 on R n \ Ω. The following result, proved by Neugebauer and the first and third authors [START_REF] Cruz-Uribe | The maximal function on variable L p spaces[END_REF][START_REF]The maximal function on variable L p spaces[END_REF], gives a nearly optimal sufficient condition on the exponent p(•) for the maximal operator to satisfy a norm inequality on L p(•) (Ω).

Theorem 1.1. Given an open set Ω ⊂ R n , let p(•) ∈ P(Ω) be such that 1 < p -≤ p + < ∞ and p(•) ∈ LH(Ω), i.e., p(•)
is log-Hölder continuous both locally and at infinity:

|p(x) -p(y)| C 0 -log(|x -y|) , |x -y| < 1 2 , x, y ∈ Ω, |p(x) -p ∞ | C ∞ log(e + |x|) , x ∈ Ω .
Then M is bounded on L p(•) (Ω):

Mf L p(•) (Ω) C f L p(•) (Ω) . (1.2) 
In the constant exponent case, Theorem 1.1 reduces to the classical result that the maximal operator is bounded on L p (Ω), 1 < p < ∞. In this case, the norm inequality is equivalent to the modular inequality

Ω M f (x) p dx ≤ C Ω |f (x)| p dx.
Similar modular inequalities hold in the scale of Orlicz spaces: see, for instance, [START_REF] Kokilashvili | Weighted inequalities in Lorentz and Orlicz spaces[END_REF]. It is therefore natural to consider the analogous question of modular inequalities for the maximal operator on the variable Lebesgue spaces:

Ω Mf (x) p(x) dx C Ω |f (x)| p(x) dx. (1.3)
Since inequality (1.3) implies the norm inequality (1.2), it is clear that stronger hypotheses may be needed on the exponent function p(•) for the modular inequality to hold. The following example from [START_REF] Cruz-Uribe | The Hardy-Littlewood maximal operator on variable-L p spaces[END_REF] shows that log-Hölder continuity is not sufficient and the modular inequality need not hold even for a smooth exponent function.

Example 1.2. Let p(•) ∈ P(R) be a measurable exponent function which is equal to 2 on the interval [0, 1] and equal to 3 on [2, 3] (we make no other assumptions on p(•)). Define the sequence of functions

{f k } k∈N = {kχ [0,1] } k∈N . Then for any x ∈ [2, 3], Mf k (x) 1 3 3 0 |f k (y)| dy = k 3 , so that ρ p(•),R (Mf k ) 3 2 k 3 3 dx = k 3 27 .
On the other hand

ρ p(•),R (f k ) = k 2 , so (1.3) cannot hold.
In fact, when Ω = R n and p + < ∞, Lerner [START_REF] Lerner | On modular inequalities in variable L p spaces[END_REF] showed that inequality (1.3) never holds unless p(•) is constant.

Theorem 1.3. Let p(•) ∈ P(R n ), p + < ∞. Then the modular inequality R n Mf (x) p(x) dx C p(•),n R n |f (x)| p(x) dx,
where C p(•),n is a constant depending on n, p(•) but independent of f , holds if and only if there is a constant p > 1 such that p(•) = p almost everywhere.

Remark 1.4. The original proof of Theorem 1.3 in [START_REF] Lerner | On modular inequalities in variable L p spaces[END_REF] (see also [START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF]Theorem 3.31]) used the theory of Muckenhoupt A p weights from harmonic analysis. For a simpler proof, see [START_REF] Izuki | The Hardy-Littlewood maximal operator on Lebesgue spaces with variable exponent, Harmonic analysis and nonlinear partial differential equations[END_REF] and Corollary 1.22 below.

However, weaker modular inequalities that include an error term are true. These results played a role in the original proofs of Theorem 1.1. For instance, we have the following result [START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF]Theorem 3.33].

Theorem 1.5. Given p(•) ∈ P(R n ) such that 1 < p -≤ p + < ∞ and p(•) ∈ LH(R n ), suppose f ∈ L p(•) (R n ) and f p(•) 1. Then R n Mf (x) p(x) dx C p(•),n R n |f (x)| p(x) dx + C p(•),n R n dx (e + |x|) np -,
where the constant C p(•),n depends on n, p(•) but is independent of f . The goal of this paper is to give necessary and sufficient conditions for modular inequalities of the form

Ω Mf (x) p(x) dx c 1 Ω |f (x)| q(x) dx + c 2 , (1.4) 
to hold for all measurable functions f , where p(•), q(•) ∈ P(Ω), and c 1 > 0, c 2 ≥ 0 are constants depending on n, p(•), q(•) and |Ω|, but are independent of f . We are interested in the weakest possible conditions on the exponent functions p(•) and q(•) for (1.4) to hold.

In particular, we want to prove modular inequalities without assuming any smoothness conditions on the exponents.

In this paper we will only consider the case p(•) ≡ 1. The endpoint case when p(•) ≡ 1 is substantially different. If Ω is bounded and q -> 1, then (1.4) always holds: this is an immediate consequence of [START_REF] Cruz-Uribe | L log L results for the maximal operator in variable L p spaces[END_REF]Theorem 1.2]. If Ω = R n , then (1.4) never holds, since M f is never in L 1 (R n ) unless f = 0 a.e. More generally, given any set Ω with infinite measure, then arguing as in Example 1.7 below, we would have L q(•) (Ω) ⊂ L 1 (Ω), which is impossible: see [START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF]Theorem 2.45]. When q -= 1 the problem of characterizing q(•) is open. Some delicate results in [START_REF] Futamura | Maximal functions for Lebesgue spaces with variable exponent approaching 1[END_REF][START_REF] Hästö | The maximal operator in Lebesgue spaces with variable exponent near 1[END_REF] show that this problem depends on how quickly q(•) approaches 1.

Our two main results completely characterize the exponents p(•) and q(•) so that the modular inequality holds. Our characterization depends strongly on whether Ω has finite or infinite measure; When Ω has finite measure our result is remarkably simple.

Theorem 1.6. Given a set Ω ⊆ R n , 0 < |Ω| < ∞, let p(•), q(•) ∈ P(Ω), p(•) ≡ 1. Then the modular inequality (1.4) holds if and only if p + (Ω) q -(Ω).
As our second result below shows, the assumption that |Ω| < ∞ is critical in Theorem 1.6. But to motivate this result, we first give the following example.

Example 1.7. If Ω ⊆ R n , |Ω| = ∞, and if p(•) ∈ P(Ω), q(•) ∈ P(Ω), then the assumption that p + (Ω) ≤ q -(Ω) is not sufficient for (1.4) to be true. We first consider the case p + (Ω) = q -(Ω). Fix an open set Ω, |Ω| = ∞, and constants 1 < p < q < ∞. Define p(•) ≡ p and

q(x) = p if x ∈ Q q if x ∈ Ω\Q,
where Q ⊂ Ω is a cube. Then p + (Ω) = q -(Ω). Suppose (1.4) holds; then we would have

Ω |f (x)| p dx Ω Mf (x) p dx c 1 Q |f (x)| p dx + c 1 Ω\Q |f (x)| q dx + c 2 .
But then, if we let f := gχ Ω\Q , we would get the embedding L q (Ω\Q) ⊂ L p (Ω\Q), which does not hold when p < q since Ω has infinite measure [START_REF] Kabaila | Inclusion of the space L p (µ) in L r (ν)[END_REF][START_REF] Villani | Another note on the inclusion L p (µ) ⊂ L q (µ)[END_REF]. The case p + (Ω) < q -(Ω) is obtained from the same argument by taking Q = ∅.

The problem in Example 1.7 arises because the exponents p(•) and q(•) behave differently at infinity. To avoid this, we make the following definition. Definition 1.8. Given a set Ω, |Ω| = ∞, let F Ω denote the collection of subsets of Ω that havie infinite measure. Given p(•), q(•) ∈ P(Ω), we say that p(•) and q(•) touch at infinity, and denote this by

p(•) q(•), if for every E ∈ F Ω , p + (E) = p + (Ω) = q -(Ω) = q -(E).
The exponents in Example 1.7 do not touch at infinity. We consider three additional examples.

Example 1.9. Let Ω = R.

(1) The exponents p(x) = 2 -

(1 + x 2 ) -1 , q(x) = 2 + (1 + x 2 ) -1 touch at infinity.
(2) On the other hand, if we let q(x) = a + (1 + x 2 ) -1 , a > 2, then p(•) and q(•) do not touch at infinity. (3) Finally, if p(x) ≡ 2 and q(x) = 2 + χ E , where E is any bounded measurable set, then p(•) and q(•) touch at infinity.

We can now state our second main result, characterizing the modular inequality on sets Ω with infinite measure. Theorem 1.10. Given a set Ω ⊆ R n , |Ω| = ∞, let p(•), q(•) ∈ P(Ω), p(•) ≡ 1. Define D := {x ∈ Ω : p(x) < q(x)} = ∅. Then the following are equivalent:

(i) The modular inequality (1.4) holds;

(ii) p(•) q(•) and L q(•) (Ω) → L p(•) (Ω);

(iii) p(•) q(•) and there exists λ > 1 such that

ρ r(•),D (1/λ) = D λ -r(x) dx < ∞, (1.5) 
where r(•) is the defect exponent defined by 1 r(x) = 1 p(x) -1 q(x) ; (iv) p(•) q(•) and there exists a measurable function ω, 0 < ω(•) 1, such that

ρ p(•),D (ω) = D ω(x) p(x) dx < ∞ (1.6) and ω(•) -|p + -p(•)| L ∞ (D) • ω(•) -|q(•)-p + | L ∞ (D) < ∞. (1.7) 
Remark 1.11. There is a close connection between the embedding L q(•) (Ω) → L p(•) (Ω) and condition (1.5): we have that this embedding holds if and only if p(x) ≤ q(x) a.e. and (1.5) holds (see [START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF]Theorem 2.45]). However, (1.5) is independent of p(•) q(•). For one direction, let Ω = (2, ∞) and define p(•) and q(•) by

1 p(x) = 1 2 - 1 x 2 , 1 q(x) = 1 p(x) - 1 x 4 .
Then we have p(x) ≤ q(x) and the defect exponent is r(x) = x 4 , so (1.5) holds for any λ > 1. Thus L q(•) (Ω) → L p(•) (Ω). However, p + (Ω) = 4 and q -(Ω) = 2, so we do not have that p(•) and q(•) touch at infinity. Conversely, let Ω = (e 9 , ∞) and define p(•) and q(•) by

p(x) = 2, q(x) = 2 log log(x) (log log(x) -2)
.

Then q -(Ω) = 2 and it decreases to this value as x → ∞, so p(•) q(•). However, the defect exponent is r(x) = log log(x) and the integral in (1.5) is infinite for any value of λ > 1.

Remark 1.12. The condition (1.5) is closely related to the problem of finding sufficient conditions for the maximal operator to be bounded on L p(•) (Ω) when Ω is unbounded. Nekvinda [START_REF] Nekvinda | Hardy-Littlewood maximal operator on L p(x) (R n )[END_REF] showed that the log-Hölder continuity condition at infinity in Theorem 1.1 can be replaced by a weaker integral condition: for some λ > 1,

D λ -r(x) dx < ∞,
where now r(•) is defined by 1 r(x) = 1 p(x) -1 p∞ and D = {x ∈ Ω : p(x) = p ∞ }. For a thorough discussion of this condition and its relationship with (1.5) and the associated embedding theorem, see [START_REF] Cruz-Uribe | Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis[END_REF]Section 4.1].

Remark 1.13. As a consequence of the assumption that p(•) q(•), we have that for any

R > 0, p + (Ω \ B(0, R)) = p + (Ω) = q -(Ω) = q -(Ω \ B(0, R)).
Therefore, p(•) and q(•) have a common asymptotic value in the sense that

p + (Ω) = lim sup |x|→∞ p(x) = lim inf |x|→∞ = q -(Ω).
Denote this asymptotic value by p ∞ ; it is a generalization of the value p ∞ that occurs in the definition of log-Hölder continuity in Theorem 1.1 or in the Nekvinda condition discussed above. In particular, if |D| = ∞, then condition (1.7) is equivalent to

ω(•) -|p∞-p(•)| L ∞ (D) • ω(•) -|q(•)-p∞| L ∞ (D) < ∞. Remark 1.14.
It is a consequence of the proof that if the modular inequality (1.4) holds, then c 1 1: see the proof of the implication (i) ⇒ (ii).

In the proof of Theorems 1.6 and 1.10, we use the definition of the maximal operator to prove necessity. In the proof of sufficiency, we only use the fact that the maximal operator is a bounded operator on L p (Ω), 1 < p < ∞. Therefore, as an immediate corollary of the proofs we get the following result.

Corollary 1.15. Given a set Ω and p(•), q(•) ∈ P(Ω), suppose that either |Ω| < ∞ and p + (Ω) ≤ q -(Ω), or |Ω| = ∞, p(•) q(•), and (1.5) holds. If T is any operator that is bounded on L p (Ω) for all 1 < p < ∞, then

Ω |T f (x)| p(x) dx ≤ c 1 Ω |f (x)| q(x) dx + c 2 ,
with positive constants c 1 , c 2 that depend on p(•), q(•) and T but not on f .

The assumption on the operator T is very general and is satisfied by most of the classical operators of harmonic analysis: for example, it holds for Calderón-Zygmund singular integral operators and square functions. In fact, a close examination of the proof shows that we can assume less: given fixed p(•) and q(•), we only require that the operator is bounded on L p + (Ω). As a consequence, we can prove a modular inequality for the Fourier transform

f (ξ) = R n f (x)e -2πix•ξ dx
on variable Lebesgue spaces, using the Plancherel theorem that f 2 = f 2 . The importance of this result follows from the fact that natural generalization of the Hausdorff-Young inequality fails in the variable exponent setting. (See [14, Section 5.6.10] for complete details.) Corollary 1.16. Given p(•), q(•) ∈ P(R n ), p + = 2, suppose p(•) q(•), and (1.5) holds. Then

R n | f (ξ)| p(ξ) dξ ≤ c 1 R n |f (x)| q(x) dx + c 2 ,
with positive constants c 1 , c 2 that depend on p(•) and q(•) but not on f . Remark 1.17. Modular inequalities for other operators that are bounded on L p (Ω) have been extensively studied in the setting of Orlicz spaces: see, for example, [START_REF] Bongioanni | Modular inequalities of maximal operators in Orlicz spaces[END_REF][START_REF] Capone | Maximal inequalities in weighted Orlicz spaces[END_REF][START_REF] Carro | Modular inequalities for the Calderón operator[END_REF][START_REF] Carro | Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities[END_REF][START_REF] Fusco | Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions[END_REF][START_REF] Kokilashvili | Weighted inequalities in Lorentz and Orlicz spaces[END_REF]. Modular inequalities in the variable Lebesgue spaces for operators other than the maximal operator have not been studied, though we refer the reader to [START_REF] Giannetti | The modular interpolation inequality in Sobolev spaces with variable exponent attaining the value 1[END_REF] for a modular interpolation inequality in variable Sobolev spaces.

Remark 1.18. There is a certain parallel between Corollary 1.15 and the theory of Rubio de Francia extrapolation in the scale of variable Lebesgue spaces. Roughly speaking, the theory of extrapolation says that if an operator T is bounded on L p (w), where 1 < p < ∞ and w is any weight in the Muckenhoupt A p class, then T is bounded on L p(•) provided that the maximal operator is bounded on L p(•) . (See [14, Section 5.4] for a precise statement of extrapolation.) We can restate Corollary 1.15 as saying that if T is bounded on L p (Ω), and the maximal operator satisfies a certain modular inequality, then (because Theorems 1.6 and 1.10 given necessary as well as sufficient conditions) T satisfies the same modular inequality (possibly with different constants).

Remark 1.19. It would be of interest to generalize Corollary 1.15 and modular inequalities on Orlicz spaces by considering the analogous question in the scale of Musielak-Orlicz spaces [START_REF] Musielak | Orlicz Spaces and Modular Spaces[END_REF]. It would also be interesting to determine if the conditions in Corollary 1.15 are necessary for any other operators to satisfy a modular inequality.

If we consider constant exponent functions p(•) = p and q(•) = q, then Theorems 1.6 and 1.10, and Corollary 1.15 have the following corollary.

Corollary 1.20. Given Ω ⊂ R n , suppose |Ω| < ∞. If 1 < p q < ∞, then the following inequality holds

Ω Mf (x) p dx c 1 Ω |f (x)| q dx + c 2 , (1.8)
for every f ∈ L q (Ω) and for some positive constants c 1 , c 2 depending on n, p, q, |Ω|, but independent of f . If |Ω| = ∞, then inequality (1.8) holds if and only if 1 < p = q. Moreover, if T is an operator that is bounded on L p (Ω), 1 < p < ∞, then these conditions are sufficient for T to satisfy the modular inequality

Ω |T f (x)| p dx ≤ c 1 Ω |f (x)| q dx + c 2 .
To prove Theorems 1.6 and 1.10, we will first prove the following proposition which establishes a necessary condition which for sets Ω of finite measure is also sufficient. Proposition 1.21. Given p(•), q(•) ∈ P(Ω), if the modular inequality (1.4) holds, then

p + (Ω) ≤ q -(Ω) .
(1.9)

As a corollary to Proposition 1.21, together with the classical theorem on the boundedness of the maximal operator on L p (Ω), 1 < p < ∞ (cf. [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]), we immediately get the following generalization of Theorem 1.3 to arbitrary domains and unbounded exponent functions.

Corollary 1. [START_REF] Kabaila | Inclusion of the space L p (µ) in L r (ν)[END_REF]. Given an open set Ω and p(•) ∈ P(Ω), the modular inequality

Ω Mf (x) p(x) dx c 1 Ω |f (x)| p(x) dx + c 2 ,
with positive constants c 1 , c 2 depending on n, p(•), q(•) and |Ω| but independent of f , holds if and only if p(•) equals a constant p > 1 almost everywhere. Remark 1.23. Theorem 1.22 does not contradict Theorem 1.5, since in the latter result we need the additional hypothesis that

f L p(•) (R n ) ≤ 1.
The remainder of this paper is organized as follows. In Section 2 we first prove Proposition 1.21. In Section 3 we prove Theorem 1.6 and in Section 4 we prove Theorem 1.10.

Proof of Proposition 1.21

We begin with a definition and a lemma. Given a measurable set Ω ⊆ R n , |Ω| > 0, we denote by Q Ω the set of open cubes Q in R n (whose sides are parallel to the coordinate axes) such that |Ω ∩ Q| > 0.

Lemma 2.1. Given a set Ω ⊆ R n , let p(•) ∈ P(Ω), q(•) ∈ P(Ω). Then the following conditions are equivalent:

(i) p + (Q) q -(Q) for every Q ∈ Q Ω ; (ii) p + (Ω) q -(Ω).
Proof. The fact that (ii) implies (i) is easy: for any Q ∈ Q Ω we have

p + (Q) = p + (Q ∩ Ω) p + (Ω) q -(Ω) q -(Q ∩ Ω) = q -(Q).
In order to prove that (i) implies (ii), let {Q n } n∈N be a countable cover of Ω by elements of Q Ω . We then have that if

p + (Q) ≤ q -(Q) for every Q ∈ Q Ω , then p + (Q m ) ≤ q -(Q n ) ∀m, n ∈ N. (2.1) 
To see this, note that for every m, n ∈ N, there exists a cube

Q m,n ∈ Q Ω such that Q m ∪Q n ⊆ Q m,n . By hypothesis p + (Q m,n ) ≤ q -(Q m,n ), so p + (Q m ) p + (Q m,n ) q -(Q m,n ) q -(Q n ) .
Now, if we first take the supremum over m ∈ N and then take the infimum over n ∈ N, by (2.1) we get sup

m∈N p + (Q m ) inf n∈N q -(Q n ). Therefore, p + (Ω) = p + m∈N Q m = sup m∈N p + (Q m ) inf n∈N q -(Q n ) = q - n∈N Q n = q -(Ω).
The following argument is inspired by Example 1.2 and is similar to the proof of Theorem 1.3 in [21, Thm. 5.1].

Proof of Proposition 1.21. If (1.9) does not hold, then by Lemma 2.1 there exists a cube

Q ∈ Q Ω such that p + (Q) > q -(Q). Let α, β be such that q -(Q) < α < β < p + (Q) . Let E β ⊂ Q ∩ Ω, |E β | > 0, be such that p(x) ≥ β for a.e. x ∈ E β . Similarly, let E α ⊂ Q ∩ Ω, |E α | > 0, be such that q(x) ≤ α for a.e. x ∈ E α . Define f = λχ Eα , where λ > 1. Then for all z ∈ Q, Mf (z) ≥ 1 |Q| Q |f (y)| dy = λ|E α | |Q| . Moreover, if λ > |Q|/|E α |, then (λ|E α |/|Q|) p(x) ≥ (λ|E α |/|Q|) β for every x ∈ E β . Hence, Ω Mf (x) p(x) dx E β λ|E α | |Q| p(x) dx |E β | λ|E α | |Q| β .
On the other hand,

Ω |f (x)| q(x) dx = Eα λ q(x) dx ≤ |E α |λ α .
Therefore, if (1.4) holds, then we must have that

|E β | λ|E α | |Q| β ≤ c 1 |E α |λ α + c 2
for all λ sufficiently large, which is a contradiction since α < β.

Proof of Theorem 1.6

By Proposition 1.21 we have that if the modular inequality (1.4) holds, then p + (Ω) ≤ q -(Ω). Therefore, it remains to show that this condition is sufficient.

Fix a set Ω and p(•), q(•) ∈ P(Ω) such that p + (Ω) ≤ q -(Ω), and fix a function f . Given a set E ⊆ Ω, we define

I(E) = E M f (x) p(x) dx, F (E) = E |f (x)| p + dx, and 
D 1 (M f ) = {x ∈ Ω : M f (x) > 1}, D 1 (f ) = {x ∈ Ω : |f (x)| > 1}.
We now estimate as follows:

Ω M f (x) dx = I(D 1 (M f )) + I(Ω \ D 1 (M f )).
We immediately have that I(Ω\D 1 (M f )) ≤ |Ω|. On the other hand, since p(•) ≡ 1, p + > 1, so the maximal operator is bounded on L p + (Ω). Hence,

I(D 1 (M f )) ≤ D 1 (M f ) M f (x) p + dx ≤ c p + ,n Ω |f (x)| p + dx = c p + ,n F (Ω).
To estimate F (Ω) we argue similarly: since p + (Ω) ≤ q -(Ω),

F (Ω) = F (D 1 (f )) + F (Ω \ D 1 (f )) ≤ D 1 (f ) |f (x)| q(x) dx + |Ω|.
If we combine all of these inequalities, we get

Ω M f (x) dx ≤ c p + ,n Ω |f (x)| q(x) dx + (c p + ,n + 1)|Ω|.
This completes the proof of sufficiency.

Proof of Theorem 1.10

We will prove the following chain of implications:

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).
[(i) ⇒ (ii)] We first prove that if the modular inequality (1.4) holds, then L q(•) (Ω) → L p(•) (Ω). Since L p(•) is a Banach function space, the embedding L q(•) (Ω) → L p(•) (Ω) is equivalent (cf. [START_REF] Bennett | Interpolation of operators[END_REF]Thm. 1.8]) to the set-theoretical inclusion L q(•) (Ω) ⊆ L p(•) (Ω). Since Mf (x) |f (x)| a.e. in Ω, if (1.4) holds, then ρ p(•),Ω (f ) c 1 ρ q(•),Ω (f ) + c 2 . Fix f ∈ L q(•) (Ω); then for some λ > 0, ρ q(•),Ω (f /λ) < ∞. Therefore,

ρ p(•),Ω (f /λ) c 1 ρ q(•),Ω (f /λ) + c 2 < ∞,
and so f ∈ L p(•) (Ω).

We now prove that if (1.4) holds, then p(•) q(•). Given any measurable set E ∈ F Ω and any measurable function

f : E ⊆ Ω → R, (1.4) implies that E |f (x)| p(x) dx c 1 E |f (x)| q(x) dx + c 2 , (4.1) 
with c 1 , c 2 > 0 the same constants. Fix E ∈ F Ω and define f

(x) = λ • χ B δ ∩E (x), 0 < λ < 1 and B δ = B(0, δ). Since 0 < λ < 1, for x ∈ E, λ p + (E) λ p(x)
and λ q(x) λ q -(E) . Therefore, by (4.1),

|E ∩ B δ | λ p + (E) E∩B δ λ p(x) dx c 1 E∩B δ λ q(x) dx + c 2 c 1 |E ∩ B δ |λ q -(E) + c 2 . Since |E ∩B δ | → ∞ as δ → ∞, we get that λ p + (E) c 1 λ q -(E) +c 2 |E ∩B δ | -1
for δ sufficiently large. If we take the limit as δ → ∞, we get that if (1.4) holds, then

λ p + (E) c 1 λ q -(E) ∀ 0 < λ < 1 .
Since p + (E) q -(E) we must have that p + (E) = q -(E) and c 1 1. Finally, since by Theorem 1.21, p + (Ω) q -(Ω), and since p + (E) p + (Ω) q -(Ω) q -(E), we get that p(•) q(•).

[(ii) ⇒ (iii)] As noted above, this implication follows from the fact that the embedding L q(•) (Ω) → L p(•) (Ω) is equivalent to assuming p(x) ≤ q(x) and (1.5) holds. (See [14, Thm.

2.45].)

[(iii) ⇒ (iv)] We explicitly construct the function ω. Since p(•) q(•), we claim that there exists κ > 1 such that |E q(•),κ | < ∞, where E q(•),κ = {x ∈ Ω : q(x) > κ}. For if not, then for all κ > 1, |E q(•),κ | = ∞. In particular, if we set κ = p + (Ω) + 1, then E q(•),κ ∈ F Ω and q -(E q(•),κ ) > p + (Ω) ≥ p + (E q(•),κ ), a contradiction.

Fix such a κ and define

ω(x) := λ -r(x)/p(x) x ∈ D\E q(•),κ , 1 x ∈ D ∩ E q(•),κ ,
where r(•) is the defect exponent defined by 1 r(x) = 1 p(x) -1 q(x) . Since λ > 1, we have that 0 < ω(•) 1 and

ω(•) -|p + -p(•)| = λ p + -p(•) q(•)-p(•) q(•) λ q(•) λ κ on D\E q(•),κ , ω(•) -|q(•)-p + | = λ q(•)-p + q(•)-p(•) q(•) λ q(•) λ κ on D\E q(•),κ . Moreover, ω(•) -|p + -p(•)| = ω(•) -|q(•)-p + | = 1 λ κ on the set D ∩ E q(•)
,κ and therefore (1.7) holds.

Finally, to prove (1.6) we estimate as follows:

ρ p(•),D (ω) = D\E q(•),κ λ -r(x) dx + |E q(•),κ | D λ -r(x) dx + |E q(•),κ | < ∞.
[(iv) ⇒ (i)] The proof of this implication is similar to the proof of sufficiency in the proof of Theorem 1.6. However, since |Ω| = ∞ we need to introduce ω and use ρ p(•),D (ω) in place of |Ω|.

As before, given a measurable function f and a measurable set E ⊆ Ω, define

I(E) = E Mf (x) p(x) dx, F (E) = E |f (x)| p + dx.
Recall that D = {x ∈ Ω : p(x) < q(x)} and write Ω M f (x) p(x) dx = I(D) + I(Ω \ D).

Since p + q -, we have p(•) = p + = q -= q(•) on Ω \ D. Therefore, since p(•) ≡ 1, p + > 1, so the maximal operator is bounded on L p + (Ω). Hence, Together with inequality (4.2) this gives us the modular inequality (1.4). This completes the proof.

I

  (Ω \ D) = Ω\D M f (x) p + dx c p + ,n F (Ω)To estimate I(D), define D ω (M f ) = {x ∈ D : M f (x) > ω(x)} where ω is the function from our hypothesis (iv). ThenI(D) = D\Dω(Mf ) Mf (x) p(x) dx + Dω(M f ) M f (x) p(x) dx ρ p(•),D (ω) + Dω(Mf ) Mf (x) ω(x) p(x) ω(x) p(x) dx. Since Mf (•)/ω(•) > 1 on D ω (Mf ), ρ p(•),D (ω) + Dω(Mf 2 ) Mf (x) ω(x) p + ω(x) p(x) dx ρ p(•),D (ω) + ω -|p + -p(•)| L ∞ (D) D (Mf (x)) p + dx.Again since M is bounded on L p + (Ω),ρ p(•),D (ω) + c n,p + • ω -|p + -p(•)| L ∞ (D) F (Ω).If we combine the above inequalities we getI(Ω) c n,p + (1 + ω -|p + -p(•)| L ∞ (D) ) F (Ω) + ρ p(•),D (ω),(4.2)so to complete the proof we need to estimate F (Ω) = F (D) + F (Ω \ D). As before we have p(•) = p + = q -= q(•) on Ω \ D, soF (Ω \ D) = Ω\D |f (x)| p + = Ω\D |f (x)| q(x) dx.To estimateF (D), let D ω (f ) = {x ∈ D : |f (x)| > ω(x)}. Since 0 < ω 1 and p + p(•), we have ρ p + ,D (ω) ρ p(•),D (ω). Therefore, F (D) = D\Dω(f ) |f (x)| p + dx + Dω(f ) |f (x)| p + dx ρ p(•),D (ω) + Dω(f ) |f (x)| ω(x) p + • ω(x) p + dx. Since |f (•)|/ω(•) > 1 on D ω (f ) ρ p(•),D (ω) + Dω(f ) |f (x)| ω(x) q(x) • ω(x) p + dx ρ p(•),D (ω) + ω -|q(•)-p + | L ∞ (D) D |f (x)| q(x) dx.If we combine the previous two estimates, we getF (Ω) Ω\D |f(x)| q(x) dx + ρ p(•),D (ω) + ω -|q(•)-p + | L ∞ (D) D |f (x)| q(x) dx (1 + ω -|q(•)-p + | L ∞ (D) ) Ω |f (x)| q(x) dx + ρ p(•),D (ω).
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