Effective Properties of Phononic Crystals in Bragg Regime

N. Nemati¹, C. Perrot¹, D. Duhamel², D. Lafarge³, Y. E. Lee⁴, N. Fang⁴

We present how the full account of temporal dispersion and spacial dispersion leads to the precise description of effective-medium parameters of a phononic crystal made of periodic arrangement of rigid inclusions embedded in a viscothermal fluid in high-frequency regime where Bragg scattering phenomena appear. We discuss the interplay between micro-geometry, frequency, fluid motions, and dissipative processes, and its impact on the emergence of macroscopic temporal and spacial dispersion effects. In this respect, we compare the local approach based on a two-scale asymptotic homogenization method, and a general nonlocal homogenization scheme.

¹ Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est UMR 8208, 77454 Marne-la-Vallée, France

² Laboratoire Navier, Ecole des Ponts, UMR 8205, 77455 Marne-la-Vallée, France

³ Laboratoire d'Acoustique de l'Université du Maine, UMR 6613, Le Mans, France

⁴ Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA