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We study a non-local version of the Cahn-Hilliard dynamics for phase separation in a two-component incompressible and immiscible mixture with linear mobilities. In difference to the celebrated local model with nonlinear mobility, it is only assumed that the divergences of the two fluxes -but not necessarily the fluxes themselves -annihilate each other. Our main result is a rigorous proof of existence of weak solutions. The starting point is the formal representation of the dynamics as a constrained gradient flow in the Wasserstein metric. We then show that time-discrete approximations by means of the incremental minimizing movement scheme converge to a weak solution in the limit. Further, we compare the non-local model to the classical Cahn-Hilliard model in numerical experiments. Our results illustrate the significant speed-up in the decay of the free energy due to the higher degree of freedom for the velocity fields.

1. Motivation and presentation of the model 1.1. Introduction. We are interested in a non-local Cahn-Hilliard system

∂ t c i -∇ • (m i c i ∇ (µ i + Ψ i )) = m i θ i ∆c i for i ∈ {1, 2}, (1a) 
c 1 + c 2 = 1, (1b) µ 1 -µ 2 = -α∆c 1 + χ(1 -2c 1 ), (1c)
modelling the flow of an incompressible and immiscible mixture in a bounded convex domain Ω. Above, m 1 and m 2 are positive mobility constants, χ > 0 is a parameter for the chemical activity, and the non-negative numbers θ 1 and θ 2 control the degree of thermal agitation. The system is complemented with initial conditions [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] (c i ) |t=0 = c 0 i ∈ H 1 (Ω) with c 0 i ≥ 0 and c 0 1 + c 0 2 = 1 in Ω, and boundary conditions [START_REF] Barrett | Finite element approximation of the Cahn-Hilliard equation with degenerate mobility[END_REF] 

c i ∇(µ i + Ψ i ) • n = ∇c i • n = 0 on ∂Ω × (0, ∞).
Equation (1a) can be rewritten as a conservation law (4)

∂ t c i + ∇ • J i = 0,
where

J i = -m i c i ∇ (µ i + Ψ i + θ i log(c i ))
. Summing (4) over i ∈ {1, 2} and using (1b) yields ∇ • J tot = 0 where J tot = J 1 + J 2 denotes the total flux. In particular, we do not require that J tot = 0 as for the classical (or local) degenerate Cahn-Hilliard model [START_REF] De Gennes | Dynamics of fluctuations and spinodal decomposition in polymer blends[END_REF][START_REF] Gurtin | Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance[END_REF][START_REF] Elliott | On the Cahn-Hilliard equation with degenerate mobility[END_REF]. The relaxation of the constraint from vanishing total flux to divergence free total flux was initially proposed by E and Palffy-Muhoray in [START_REF] Palffy-Muhoray | Phase separation in incompressible systems[END_REF] and studied formally by Otto and E in [START_REF] Otto | Thermodynamically driven incompressible fluid mixtures[END_REF]. It was in particular noticed in [START_REF] Otto | Thermodynamically driven incompressible fluid mixtures[END_REF] that the system (1) can be interpreted as the constrained Wasserstein gradient flow of some Ginzburg-Landau energy where the velocity field V = (v 1 , v 2 ) transporting the concentrations c = (c 1 , c 2 ) has to preserve the constraint (1b).

The nonlocal model is derived formally in Section 1.2, then compared to the classical (or local) degenerate Cahn-Hilliard model in Section 1.3. Numerical illustrations of its behavior are given in Section 1. [START_REF] Barrett | On fully practical finite element approximations of degenerate Cahn-Hilliard systems[END_REF]. In Section 2, we introduce the necessary material to prove our main result, that is the global existence of a weak solution to the model ( 1)- [START_REF] Barrett | Finite element approximation of the Cahn-Hilliard equation with degenerate mobility[END_REF]. This existence result is obtained by showing the convergence of a minimizing movement scheme à la Jordan, Kinderlehrer, and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. Section 3 is devoted to the proof of the convergence of the minimizing movement scheme. 1.2. Derivation of the model. We consider an incompressible mixture composed of two phases flowing within a bounded open convex subset Ω of R d with d ≤ 3. The fluid is incompressible, so its composition at time t ≥ 0 is fully described by the saturations c i (x, t) ∈ [0, 1], i ∈ {1, 2}, i.e., the volume ratio of the phase i in the fluid. This leads to the constraint [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] c 1 + c 2 = 1 in Ω × (0, ∞).

We assume that this constraint is already satisfied at the initial time t = 0, where the composition of the mixture is given by c 0 = (c 0 1 , c 0 2 ) : Ω → [0, 1] 2 , i.e. ( 6)

c 0 1 + c 0 2 = 1 in Ω.
We further assume that both phases have positive mass. The motions of each phase is governed by a linear transport equation ( 7)

∂ t c i + ∇ • (c i v i ) = 0 in Ω × (0, ∞),
where v i : Ω × R + → R d denotes the speed of the phase i, and V = (v 1 , v 2 ). To enforce mass conservation, the boundary ∂Ω of Ω is assumed to be impervious, hence

c 1 v 1 • n = c 2 v 2 • n = 0 on ∂Ω, (8) 
where n denotes the outward normal to ∂Ω, so that Gauss' theorem implies [START_REF] Cahn | The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature[END_REF])

Ω c i (x, t)dx = Ω c 0 i (x)dx = |Ω|c i , t ≥ 0, i ∈ {1, 2}.
Consequently, at each time t ≥ 0, the saturations c(t) belong to the set A = A 1 × A 2 , where

A i = c i : Ω → [0, 1] measurable Ω c i (x)dx = |Ω|c i , i ∈ {1, 2}.
To each configuration c ∈ A, we associate the energy

E(c) = E Dir (c) + E chem (c) + E therm (c) + E cons (c) + E ext (c),
whose components are as follows.

• Dirichlet energy: for given α 1 , α 2 > 0,

E Dir (c) :=      i∈{1,2} α i 2 Ω |∇c i | 2 dx if c ∈ H 1 (Ω) 2 , +∞ otherwise,
penalizes the spatial variations of the saturation profiles. • Chemical energy: for a given χ > 0,

E chem (c) = χ Ω c 1 c 2 dx
measures the impurity of the mixture.

• Thermal energy: for given θ 1 , θ 2 ≥ 0,

E therm (c) = i∈{1,2} θ i Ω H(c i )dx, with H(c) = c log(c) -c + 1 ≥ 0,
is the free thermal energy. The case θ 1 = θ 2 = 0 is called the deep quench limit [START_REF] Cahn | The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature[END_REF].

• Constraint:

E cons (c) = Ω E cons (c)dx, where E cons (c) = 0 if c 1 + c 2 = 1, +∞ otherwise, realizes the constraint (5). • Exterior potential: for given external potentials Ψ 1 , Ψ 2 ∈ H 1 (Ω), E ext (c) = i∈{1,2} Ω c i (x)Ψ i (x)dx
is the potential energy related to exterior forces like gravity or electrostatic forces. All of these components are convex in c except for the chemical energy E chem , which, however, is smooth. Denote by

X = c ∈ H 1 (Ω; [0, 1]) 2 c 1 + c 2 = 1 a.e.
in Ω the domain of E, i.e., [START_REF] Cancès | Simulation of multiphase porous media flows with minimizing movement and finite volume schemes[END_REF] 

E(c) < ∞ ⇔ c ∈ X .
Before entering into the rigorous derivation of the PDEs that govern the gradient flow of the energy E(c) with respect to a tensorized Wasserstein distance, we provide formal calculations based on the framework of generalized gradient flows of [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF][START_REF] Peletier | Variational modelling: Energies, gradient flows, and large deviations[END_REF][START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF] in order to identify the underlying PDEs.

The motion of the phases induces the viscous dissipation

(11) D(c, V ) = i∈{1,2} 1 2m i Ω c i |v i | 2 dx, ∀c ∈ A, ∀V ∈ Z(c),
where m i is the mobility coefficient of the ith phase, and where

Z(c) = V = (v 1 , v 2 ) : Ω → R d 2 c i v i • n = 0 on ∂Ω
denotes the space of the admissible (but unconstrained) vector fields. This quantity is closely related to the tensorized Wasserstein distance through Benamou-Brenier formula [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF], see [START_REF] Junge | A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in multiple space dimensions[END_REF] later on. We suppose as in [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF] that at each time t ≥ 0, the phase speeds V = (v 1 , v 2 ) is selected by the following steepest descent condition:

(12) V ∈ argmin V =( v1, v2)∈Z(c)   D(c, V ) + sup w∈∂E(c) i∈{1,2} Ω c i v i • ∇w i dx   , where E's subdifferential ∂E(c) = w ∈ L 2 (Ω; R d ) 2 E( c) -E(c) - Ω w • ( c -c)dx ≥ o c -c L 2 (Ω)
is non-empty at each c ∈ X with c 1 ∈ H 2 (Ω) and f (c 1 ) ∈ L 2 (Ω), and there, its elements w = (w 1 , w 2 ) are characterized by (c.f. [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF])

(13) w 1 -w 2 = -α∆c 1 + χ(1 -2c 1 ) + f (c 1 ) + (Ψ 1 -Ψ 2 ).
In formula [START_REF] Cancès | Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations[END_REF], we have set α = α 1 + α 2 and ( 14)

f (c 1 ) = log c θ1 1 (1 -c 1 ) θ2 = θ 1 log(c 1 ) -θ 2 log(c 2 ).
The integral in [START_REF] Cancès | Incompressible immiscible multiphase flows in porous media: a variational approach[END_REF] has to be understood as the evaluation of the element w = (w 1 , w 2 ) in E's subdifferential at c on the infinitesimal changes ∂ t c i = -∇ • (c i v i ) induced by V . Since condition [START_REF] Cancès | Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations[END_REF] only determines the difference w 1w 2 , but not the w i individually, is easily seen that the maximum above is +∞ unless ∇ • (c 1 v 1 + c 2 v 2 ) = 0 holds. That implies that any minimizer V is such that the constraint ( 5) is preserved.

In order to identify V , we swap minimization and maximization in the variational problem [START_REF] Cancès | Incompressible immiscible multiphase flows in porous media: a variational approach[END_REF]. The inner minimization is a quadratic problem in V , with solution ( 15)

v i = -m i ∇w i on {c i > 0} for i ∈ {1, 2}.
The outer maximization in then a quadratic problem for w ∈ ∂E(c), which amounts to

-∇ •   i∈{1,2} m i c i ∇w i   = 0. ( 16 
)
Together with the condition [START_REF] Cancès | Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations[END_REF], this elliptic equation determines w uniquely.

To sum up, the system of partial differential equations implied on the solution to the variational problem [START_REF] Cancès | Incompressible immiscible multiphase flows in porous media: a variational approach[END_REF] is

∂ t c i -∇ • (m i c i ∇w i ) = 0 for i ∈ {1, 2}, (17a) c 1 + c 2 = 1, (17b) w 1 -w 2 = -α∆c 1 + χ(1 -2c 1 ) + f (c 1 ) + (Ψ 1 -Ψ 2 ), (17c) 
to be satisfied in Ω × (0, ∞). The system relation [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] is complemented by homogeneous Neumann boundary conditions [START_REF] Dolbeault | A new class of transport distances between measures[END_REF] -

∇c 1 • n = 0 on ∂Ω × R +
and the no-flux conditions [START_REF] Blowey | The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis[END_REF]. Notice that with these boundary conditions, the set (17) of equations is (formally) closed in the sense that if c is known at some instance of time, then the w i are uniquely determined (up to irrelevant global additive constants) by (17c) and by the elliptic equation ( 16) that follows from adding (17a) for i = 1, 2 in combination with the conservation 

∂ t (c 1 + c 2 ) = 0 implied by (17b
µ i = w i -θ i log(c i ) -Ψ i , i ∈ {1, 2}, so that (17c) turns to (20) µ 1 -µ 2 = -α∆c 1 + χ(1 -2c 1 ).
So far, µ= (µ 1 , µ 2 ) is only defined up to an additive constant. This degree of freedom is eliminated by imposing for almost all t > 0 that ( 21)

Ω µ(x, t)dx = 0, where µ = c 1 µ 1 + c 2 µ 2 .
Whilst the phase chemical potential µ i have a clear physical sense only on {c i > 0}, the global chemical potential µ remains meaningful in the whole Ω. In particular, its spatial variations can be controlled, and thus µ itself too thanks to a Poincaré-Wirtinger inequality.

With the help of the chemical potentials, the system (17) turns into (1), to be complemented with boundary conditions (3) and initial conditions (2).

In the next section, we highlight some differences between the non-local model (1) and the local degenerate Cahn-Hilliard model that has been studied for instance in [START_REF] Elliott | On the Cahn-Hilliard equation with degenerate mobility[END_REF].

1.3. Comparison with the classical degenerate Cahn-Hilliard model. Even in the simple situation where the external potentials Ψ i are equal to 0 and where θ 1 = θ 2 = 0, the system (17) differs as soon as d ≥ 2 from the local degenerate Cahn-Hilliard model that can be written as ( 22)

∂ t c -∇ • (η(c)∇µ) = 0, µ = -α∆c + χ(1 -2c), η(c) = m 1 m 2 c(1 -c) m 1 c + m 2 (1 -c) .
We refer to [START_REF] Elliott | On the Cahn-Hilliard equation with degenerate mobility[END_REF] for the existence of weak solutions to [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] (complemented with suitable boundary conditions) and to [START_REF] Barrett | On fully practical finite element approximations of degenerate Cahn-Hilliard systems[END_REF] for the extension of the model to the case of N phases (N ≥ 3). Here, µ is the generalized chemical potential that is defined as the difference of the phase chemical potentials.

The energy E associated to [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] is similar to the one of our problem, i.e.,

E(c) = α 2 Ω |∇c| 2 dx + χ Ω c(1 -c)dx.
But both the equation governing the motion [START_REF] Blanchet | Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model[END_REF] and the dissipation [START_REF] Cancès | The gradient flow structure of immiscible incompressible two-phase flows in porous media[END_REF] have to be modified. More precisely, the continuity equation ( 7) must be replaced by its nonlinear counterpart

∂ t c + ∇ • (η(c)v) = 0,
while the dissipation is now given by

D(c, v) = Ω η(c)|v| 2 dx.
Therefore, the PDEs [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] can still be interpreted as the gradient flow of the energy E, but the geometry is different: rather than considering some classical quadratic Wasserstein distance for each phase and to constrain the sum of the concentrations to be equal to 1 (as it will be the case for our approach), the set

A = c ∈ L 1 (Ω; R + ) Ω c(x, t)dx = Ω c 0 1 (x)dx
has to be equipped with the weighted Wasserstein metric corresponding to the concave mobility η. We refer to [START_REF] Dolbeault | A new class of transport distances between measures[END_REF] for the description of the corresponding metric and to [START_REF] Lisini | Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics[END_REF] for the rigorous recovery of ( 22) by a gradient flow approach.

The difference between the non-local model [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] and the local one [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] can also be seen as follows. Summing the first equation of [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] for i ∈ {1, 2} yields [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] ∇ • J tot = 0, where

J tot = i∈{1,2} c i v i = - i∈{1,2} m i c i ∇µ i .
The equation for c 1 can then be rewritten (24)

∂ t c 1 + ∇ • (ρ(c 1 )J tot -η(c 1 )∇(µ 1 -µ 2 )) = 0, with ρ(c) = m 1 c m 1 c + m 2 (1 -c) .
Thus our model [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] boils down to the local Cahn-Hilliard equation as soon as J tot ≡ 0. This is the case when d = 1 because of ( 23), but no longer if d ≥ 2. Since our non-local model does not impose that J 1 = -J 2 , it allows for additional motions. These motions -corresponding to the transport term ∇ • (ρ(c 1 )J tot ) in ( 24)-contribute to the dissipation as shows the formula

D(c, -∇µ) = Ω |J tot | 2 m 1 c 1 + m 2 c 2 dx + D(c 1 , -∇(µ 1 -µ 2 )).
Therefore, and as already noticed by Otto and E in [START_REF] Otto | Thermodynamically driven incompressible fluid mixtures[END_REF], the instantaneous dissipation corresponding to a phase configuration c is greater for the non-local model [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] than for the local model ( 22) and the energy decreases faster.

1.4. Numerical illustration. The goal of this section is to illustrate the behavior of the model [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] and to compare it with the classical degenerate Cahn-Hilliard problem [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. In order to solve numerically [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] we use an implicit in time finite volume scheme with upstream mobility described in [START_REF] Cancès | Finite volume approximation of a degenerate immiscible two-phase flow model of cahnhilliard type[END_REF] and inspired from the oil engineering context [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. The mesh is triangular and assumed to fulfill the so-called orthogonality condition [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusionconvection problem on a triangular mesh[END_REF][START_REF] Eymard | Finite volume methods[END_REF] (this amounts to requiring the mesh to be Delaunay) so that the diffusive fluxes can be approximated thanks to a two-point flux approximation in a consistent way. As it is exposed in [START_REF] Cancès | Finite volume approximation of a degenerate immiscible two-phase flow model of cahnhilliard type[END_REF], the scheme is positivity preserving (i.e., 0 ≤ c i,h ≤ 1), it is energy diminishing (the discrete counterpart of the energy is decreasing) and entropy stable. It leads to a nonlinear system of algebraic equations to be solved at each time step. It is shown in [START_REF] Cancès | Finite volume approximation of a degenerate immiscible two-phase flow model of cahnhilliard type[END_REF] that this system admits (at least) one solution that is computed thanks to the Newton-Raphson method.

Concerning the problem ( 22), we use a similar approach, but since the mobility function η is no longer monotone, we have to use an implicit Godunov scheme to discretize it as a generalization of the upstream mobility (see for instance [START_REF] Cancès | Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations[END_REF]). Here again, the discrete solution remains bounded between 0 and 1, the energy is decreasing and the entropy remains bounded. Here again, the resulting nonlinear system is solved at each time step by the mean of the Newton-Raphson method.

Remark 1.1. Alternative numerical methods have been proposed in order to solve degenerate Cahn-Hilliard problems. We won't perform here an exhaustive list, but let us mention the contributions of Barrett et al. based on conformal finite elements [START_REF] Barrett | Finite element approximation of the Cahn-Hilliard equation with degenerate mobility[END_REF][START_REF] Barrett | On fully practical finite element approximations of degenerate Cahn-Hilliard systems[END_REF]. Even though very efficient, these methods have the drawback of requiring a small stabilization to be tuned following the mesh size. Unless one considers non-smooth energies as in [START_REF] Blowey | The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis[END_REF], the scheme does not preserve the bounds 0 ≤ c i,h ≤ 1. These difficulties are overpassed in our approach by using some entropy stable hyperbolic fluxes to discretize the mobilities.

Since our model has a Wasserstein gradient flow structure, it would be natural to use a Lagrangian method as for instance in [START_REF] Blanchet | Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model[END_REF][START_REF] Matthes | A convergent Lagrangian discretization for a nonlinear fourth-order equation[END_REF][START_REF] Junge | A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in multiple space dimensions[END_REF][START_REF] Carrillo | A lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes[END_REF]. The main problem with this approach is that both phase move with their own speed, therefore such an approach would impose to move two meshes simultaneously. It is then rather unclear how to manage the constraint (5) in this case. For this reason, it seems more suitable to stick to an Eulerian description. An alternative approach to solve numerically our problem would therefore be to adapt the ALG2-JKO algorithm of Benamou et al. [START_REF] Benamou | An augmented Lagrangian approach to Wasserstein gradient flows and applications[END_REF] to our setting , see [START_REF] Cancès | Simulation of multiphase porous media flows with minimizing movement and finite volume schemes[END_REF].

We propose two different test cases that will allow to illustrate the difference between the local model ( 22) and the non-local model [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF]. For both of them, we do not consider any exterior potential, i.e., Ψ i = 0, and we neglect the thermal diffusion, i.e., θ i = 0. Both phase mobilities m i are assumed to be equal to 1.

1.4.1. Test case 1: from a cross to a circle. We start from an initial data that is the characteristic function of a cross and we choose α = (3.6).10 -4 and χ = 0.8. Since α χ, it follows from the Modica and Mortola' result [START_REF] Modica | Un esempio di γ-convergenza[END_REF] that the free energy is close to the perimeter of a characteristic set (up to a multiplicative constant). This means that (up to a small regularization) both the local and the non-local Cahn-Hilliard models aim at minimizing the perimeter of the sets {c 1 = 0} and {c 1 = 1} corresponding to pure phases. Since the non-local model allows for more movements (cf. Section 1.3), the energy (thus the perimeter) should decay faster for the nonlocal model. This is indeed what we observe on Figures 1 and2 Similarly to the local model, the non-local model is able to reproduce the spinodal decomposition for mixtures. In order to illustrate this fact, we start from an initial data which consists in a constant concentration plus a small random perturbation:

c 0 1 (x) = 0.5 + r(x), r 1.
Since c 1 = 0.5 is very unfavorable from an energetic point of view, both phase will separate very rapidly, letting areas with pure phase appear. Then these area will cluster in order to minimize their perimeter. We choose α = 3.10 -4 and χ = 0.96 and we plot on Figure 3 some snapshots to illustrate the spinodal decomposition corresponding to models [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF] and [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. On Figure 4, we compare the evolution of the energy along time for spinodal decomposition corresponding to both models. As expected, the energy decay is faster for the non-local model than for the local one. But contrarily to Test case 1, the solutions seem to converge towards different steady states. 17) and the local one [START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] for the spinodal decomposition test case.

2.1. Wasserstein distance. As a preliminary to the introduction of the minimizing movement scheme, we introduce some necessary material related to Wasserstein (or Monge-Kantorovich) distances between nonnegative measures of prescribed mass that are absolutely continuous w.r.t. to the Lebesgue measure. We refer to Santambrogio's monograph [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] for an introduction to optimal transportation and to the Wasserstein distances, and to Villani's big book [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF] for a more complete presentation.

Given two elements c i and či of

A i (i ∈ {1, 2}), a map t : Ω → Ω is said to send c i on či (we write či = t#c i ) if A či (x)dx = t -1 (A) c i (x)dx,
for all Borel subset A of Ω.

The Wasserstein distance W i (c i , či ) with quadratic cost function between c i and či is then defined by

(25) W i (c i , či ) = inf t s.t. či=t#ci 1 m i Ω |x -t(x)| 2 c i (x)dx 1/2 , i ∈ {1, 2}.
In [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusionconvection problem on a triangular mesh[END_REF], the infimum is in fact a minimum, and t is the gradient of a convex function. In our context of fluid flows, the cost for moving the mass of the phase i from a configuration c i to another configuration či regardless to the other phase is equal to W 2 i (c i , či ). The multiplying factor 1/m i is natural since the more mobile is the phase, the less expensive are its displacements. We can then define the tensorized Wasserstein distance W on A by

W 2 (c, č) = W 2 1 (c 1 , č1 ) + W 2 2 (c 2 , č2 ), ∀c, č ∈ A.
In the core of the proof, we will make an extensive use of the Kantorovich dual problem. More precisely, we will use the fact that

(26) 1 2 W 2 i (c i , či ) = sup ϕi∈L 1 (ci),ψi∈L 1 (či) ϕi(x)+ψi(y)≤ |x-y| 2 2m i Ω c i (x)ϕ i (x)dx + Ω či (y)ψ i (y)dy.
Here, L 1 (ρ) denotes the sets of integrable functions for the measure with density ρ. Here again, the supremum is in fact a maximum, and the Kantorovich potentials (ϕ i , ψ i ) achieving the sup in ( 26) are dc i ⊗ dč i unique up to an additive constant. The optimal transportation t i sending c i on či achieving the inf in [START_REF] Herbin | An error estimate for a finite volume scheme for a diffusionconvection problem on a triangular mesh[END_REF] is related to the Kantorovich potential by

t i (x) = x -m i ∇ϕ i (x), ∀x ∈ Ω
with ϕ i achieving the sup in [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. As a consequence, the formula ( 25) provides ( 27)

W 2 i (c i , či ) = m i Ω c i |∇ϕ i | 2 dx, i ∈ {1, 2}
to be used in the sequel.

2.2. The JKO scheme and the approximate solution.

We have now all the necessary material at hand to define the minimizing movement scheme. Let τ > 0 and c n-1 ∈ A ∩ X , then define the functional F n τ : A → R ∪ {+∞} by setting

F n τ (c) = E(c) + 1 2τ W 2 (c, c n-1 ), ∀c ∈ A.
The functional F n τ is bounded from below since all its components are. Then we define (28)

c n ∈ argmin c∈A F n τ (c).
In case that F n τ possesses several mimimizers, a selection must be made: if c n-1 1 and c n-1 2 are both positive a.e. in Ω, then any minimizer is fine. However, if one of the two densities vanishes on a set of positive measure, then we need to select c n such that it is an accumulation point in the weak H 2 (Ω) 2 -topology for δ → 0 of the set of minimizers of the functionals

F n,δ τ (c) = E(c) + 1 2τ W 2 (c, c n-1,δ ), with c n-1,δ i = (1 -δ)c n-1 i + δc i (29)
where c i is defined by [START_REF] Cahn | The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature[END_REF]. Under certain conditions, for instance in the thermally agitated situation where θ 1 , θ 2 > 0, it is known a priori that both c n 1 and c n 2 are strictly positive, and hence no selection is necessary, see e.g. Lemma 3.1. The proof of the existence of c n solution to ( 28) is given below. The proof that one can indeed select the minimizer in the way described above is postponed to Corollary 3.3 in Section 3.4, where we show compactness properties of the set of minimizers. Proposition 2.1. For any c n-1 ∈ A ∩ X , there exists (at least) one solution c n ∈ A ∩ X to the minimization scheme [START_REF] Lieb | Analysis[END_REF].

Proof. Let c n,k k≥0 be a minimizing sequence with c n,0 = c n-1 and such that ( 30)

E(c n,k ) ≤ E(c n-1 ) < ∞ for all k ≥ 0.
We infer from (10) that c n,k ∈ X , hence 0 ≤ c n,k i ≤ 1 for all k ≥ 0 and i ∈ {1, 2}. Moreover, in view of the presence of the Dirichlet energy in E, it follows by means of the Poincaré-Wirtinger inequality that the c n,k i are k-uniformly bounded in H 1 (Ω). Passing to a subsequence if necessary, the c n,k i converge to limits c n i , weakly in H 1 (Ω) thanks to Alaoglu's theorem, and also strongly in L 1 (Ω) by Rellich's compactness lemma. All the components of E are sequentielly lower semi-continuous with respect to this convergence, and so

E(c n ) ≤ lim inf k→∞ E(c n,k ).
Finally, also the Wasserstein distance is lower semi-continuous with respect to strong convergence in L 1 (Ω),

W (c n , c n-1 ) ≤ lim inf k→∞ W (c n,k , c n-1 ).
As a consequence, c n is a minimizer of F n τ . Each sequence (c n ) n≥1 of iterated solutions to the scheme ( 28) is accompanied by approximate phase potentials (µ n ) n≥1 : these are introduced in such a way that in the time-continuous limit, the continuity equations

∂ t c i = ∇ • [m i c i ∇(µ i + Ψ i )]
hold. The suitable quantities µ n i are identified (somewhat a posteriori ) by comparing the optimality conditions for (28) with the persued limit PDE system [START_REF] Ambrosio | A user's guide to optimal transport[END_REF].

In order to justify the formal definition of µ n that we give below in [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF], we anticipate an auxiliary result from Section 3.4, that can be understood as a formulation of the time-discrete Euler-Lagrange equations. It involves the (backward) Kantorovich potentials ϕ n = (ϕ n 1 , ϕ n 2 ) sending c n on c n-1 . A subtle point is to overcome the inherent non-uniqueness of ϕ n 1 and ϕ n 2 -particularly if one of the c n i 's vanishes on a set of positive measure -by making a suitable selection, as will be explained in Section 3.4. We note that the intricate selection procedure for the minimizer c n in ( 28) enters precisely at this point. Lemma 2.2. At each step n ≥ 1, there exist Kantorovich potentials ϕ n = (ϕ n 1 , ϕ n 2 ) for sending c n to c n-1 such that F n : Ω → R, given by (31)

F n = ϕ n 1 τ - ϕ n 2 τ -α∆c n 1 + f (c n 1 ) + χ(1 -2c n 1 ) + Ψ 1 -Ψ 2 , satisfies F n ≤ 0 a.e. in {c n 1 > 0}, F n ≥ 0 a.e. in {c n 2 > 0}. ( 32 
)
With the particular choice of ϕ n from the lemma, we define

µ n = (µ n 1 , µ n 2 ) : Ω → R 2 by µ n 1 := - ϕ n 1 τ -Ψ 1 -θ 1 log(c n 1 ) + (F n ) + , and µ n 2 := - ϕ n 2 τ -Ψ 2 -θ 2 log(c n 2 ) + (F n ) -. (33) 
Actually, since F n is invariant under simultaneous addition of a global constant to both ϕ n 1 and ϕ n 2 , we can assume that their normalization is chosen such that

Ω µ n dx = 0, where µ n = c n 1 µ n 1 + c n 2 µ n 2 . ( 34 
)
Note that it follows directly from the definition of µ n that

µ n 1 -µ n 2 = -α∆c n 1 + χ(1 -2c n 1 )
a.e. in Ω. [START_REF] Otto | Thermodynamically driven incompressible fluid mixtures[END_REF] Moreover, thanks to (32), we have that

µ n i = - ϕ n i τ -Ψ i -θ i log(c n i ) a.e. in {c n i > 0}. ( 36 
)
With these quantities at hand, we define further the piecewise constant interpolants c τ : R + → A ∩ X and µ τ : R + → R 2 by (37)

c τ (t) = (c n 1 , c n 2 ), µ τ (t) = (µ n 1 , µ n 2 ) for t ∈ ((n -1)τ, nτ ].
Any pair (c τ , µ τ ) that has been obtained in this way from an iterated minimizer (c n ) n≥1 will be referred to as τ -approximate solution below.

2.3. Weak solutions. The goal of this section is to state our main result, that is the convergence of the JKO scheme. It requires the introduction of the notion of weak solution that will be obtained at the limit when the approximation parameter τ tends to 0. • Regularity of concentrations:

c i ∈ L ∞ (R + ; H 1 (Ω)) ∩ L 2 loc (R + ; H 2 (Ω)) ∩ C(R + ; L 2 (Ω)); • Regularity of potentials: µ i ∈ L 2 loc (R + ; L q d (Ω)) with q d = 2 if d ∈ {1, 2}
, and q d = 3 2 if d = 3, as well as c i ∇µ i ∈ L 2 (R + , L 2 (Ω)) d , and (normalization)

Ω (c 1 (x, t)µ 1 (x, t) + c 2 (x, t)µ 2 (x, t)) dx = 0,
for a.e. t ≥ 0;

• Initial and boundary conditions:

c i (•, 0) = c 0 i on Ω, and 
∇c i • n = 0 on ∂Ω × R + ; • Volume constraint: c 1 + c 2 = 1 a.e. in Ω × R + ; • Continuity equations: for all ξ ∈ C 2 (Ω) and all t 1 , t 2 ∈ R + with t 2 ≥ t 1 , (38) 
Ω (c i (x, t 2 ) -c i (x, t 1 ))ξ(x)dx + m i t2 t1 Ω (c i ∇(µ i + Ψ i ) + θ i ∇c i ) • ∇ξdxdt = 0;
• Steepest descent: (20) holds almost everywhere in Ω × R + , i.e.

(39)

µ 1 -µ 2 = -α∆c 1 + χ(1 -2c 1 ).
Here is the convergence theorem for the minimization scheme. The global existence of a weak solution is a by-product. All along the paper, T denotes an arbitrary finite time horizon, and we make use of the shorten notation Q T for the space-time cylinder Ω × (0, T ). Theorem 2.4 (Convergence of the minimizing movement scheme). Assume that parameters α 1 , α 2 , χ > 0 and θ 1 , θ 2 ≥ 0 as well as external potentials Ψ 1 , Ψ 2 ∈ H 1 (Ω) are prescribed. Let c 0 = (c 0 1 , c 0 2 ) be an initial condition satisfying [START_REF] Benamou | An augmented Lagrangian approach to Wasserstein gradient flows and applications[END_REF].

Then, for any sequence (τ n ) n≥1 ⊂ (0, 1) with τ n → 0 and a corresponding sequence of τ napproximate solutions c τn , µ τn n≥1 , one can select a sub-sequence (not relabeled) such that,

c i,τn -→ n→∞ c i in the L ∞ ((0, T ); H 1 (Ω))-weak-sense, c i,τn (•, t) -c i (•, t) L 2 (Ω) -→ n→∞ 0 for all t ∈ [0, T ], c i,τn -→ n→∞ c i in L 2 ((0, T ); W 1,d (Ω)), c i,τn -→ n→∞ c i weakly in L 2 ((0, T ); H 2 (Ω)), µ i,τn -→ n→∞ µ i for the weak topology of L 2 ((0, T ); L q d (Ω)), c i,τn ∇µ i,τn -→ n→∞ c i ∇µ i weakly in L 2 (Q T ) d ,
and the limit (c, µ) is a weak solution in the sense of Definition 2.3.

We recall that the definition of τ -approximate solutions involves the selection of particular minimizers in (28) unless all densities have full support.

Proof of Theorem 2.4

We first establish some estimates on the approximate solution c τ . The very classical energy estimate and some straightforward consequences are exposed in Section 3.1. In Section 3.2, we show that the approximate solution remains bounded away from 0 and 1 if the thermal diffusion coefficients θ i are positive. Then in Section 3.3, we make use of the flow interchange technique initially introduced in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF] to get enhanced regularity estimates on the approximate solutions. The Euler-Lagrange equation are then obtained in Section 3.4 thanks to a linearization technique inspired from the work of Maury et al. [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]. The convergence of the approximate solution towards a weak solution is finally established in Section 3.5.

3.1.

Energy and distance estimate. By definition of c n in ( 28), one has

F n τ (c n ) ≤ F n τ (c n-1 ), i.e., (40) E(c n ) + 1 2τ W 2 (c n , c n-1 ) ≤ E(c n-1 ), ∀n ≥ 1.
Summing (40) over n, and using that E(c) ≥ E > -∞ for all c ∈ A, we obtain the square distance estimate

(41) 1 τ n≥1 W 2 (c n , c n-1 ) ≤ 2 E(c 0 ) -E < +∞.
This readily gives the approximate 1/2-Hölder estimate

(42) W (c n2 , c n1 ) ≤ C |n 2 -n 1 |τ , ∀n 1 , n 2 ≥ 0.
Bearing in mind the definition [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] of the approximate solution c τ , we get that

(43) W (c τ (t), c τ (s)) ≤ C |t -s| + τ , ∀s, t ≥ 0.
We also deduce from the energy estimate (40) that ( 44)

E(c n ) ≤ E(c 0 ) < ∞.
We deduce that ( 45)

Ω |∇c n 1 | 2 dx ≤ 2 α   E(c 0 ) + i∈{1,2} Ψ i L 1   < ∞, ∀n ≥ 0.
3.2. Positivity of the discrete solution in presence of thermal agitation. The formula [START_REF] Peletier | Variational modelling: Energies, gradient flows, and large deviations[END_REF] suggests to give a proper sense to the quantity θ i log(c n i ). This is the purpose of the following lemma, which is an adaptation to our framework of [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Lemma 8.6].

Lemma 3.1. Let c n be a minimizer of F n τ as in [START_REF] Lieb | Analysis[END_REF]. Assume that θ i > 0, then c n i > 0 a.e. in Ω. Moreover, θ i log(c n i ) ∈ L 1 (Ω). Proof. With a slight abuse of notation, we denote by c = (c 1 , c 2 ) the constant element of X ∩ A given by ( 9). Fix n. Given ∈ (0, 1), we introduce c ∈ X ∩ A by (46)

c i = c i + (1 -)c n i = c n i + (c i -c n i ).
Note that c i > 0 everywhere in Ω, and that

c i -c i = (1 -)(c n i -c i ) (47)
By optimality of c n , the inequality

E therm (c n ) -E therm (c ) ≤ E Dir (c ) -E Dir (c n ) + E chem (c ) -E chem (c n ) + E ext (c ) -E ext (c n ) + 1 2τ W 2 (c , c n-1 ) -W 2 (c n , c n-1 )
holds for all ∈ (0, 1). Then -with generic constants C that may change from line to line, but are independent of -it follows directly from the definition of c in ( 46) that

E Dir (c ) ≤ E Dir (c n ), that E chem (c ) ≤ E chem (c n ) + Ω (c 1 -c n 1 )(1 -2c n 1 )dx ≤ E chem (c n ) + C ,
and that

E ext (c ) = E ext (c n ) + i∈{1,2} c n i -c i , Ψ i L ∞ (Ω),L 1 (Ω) ≤ E ext (c n ) + C .
Moreover, the convexity of W 2 yields

W 2 (c , c n-1 ) ≤ W 2 (c n , c n-1 ) + W 2 (c, c n-1 ) -W 2 (c n , c n-1 ) ≤ W 2 (c n , c n-1 ) + C .
Combining the above inequalities, we obtain that

(48) E therm (c n ) -E therm (c ) = i∈{1,2} θ i Ω (H(c n i ) -H(c i ))dx ≤ C τ .
Let i ∈ {1, 2} be such that θ i > 0, and denote by

A = {x ∈ Ω | c n i (x) > 0}. Then convexity of H implies that (49) H(c n i ) -H(c i ) ≥ (c n i -c i ) log(c i ) = (c n i -c i ) log(c i ) a.
e. in A. On the other hand, since c i = c i a.e. in A c , (50)

H(c n i ) -H(c i ) = 1 -H( c i ) = -c i log( c i ) + c i a.
e. in A c . Integrating (49) over A and (50) over A c and using (48), we obtain after division by > 0 that (51)

-c i log( c i )|A c | + A (c n i -c i ) log(c i ) ≤ C τ .
In view of (47), we have

(c n i -c i ) log(c i ) ≥ (c n i -c i ) log(c i ), (52) 
and therefore

-c i log( c i )|A c | + A (c n i -c i ) log(c i ) ≤ C τ .
Letting tend to 0 produces a contradiction unless |A c | = 0. Thus we have proved that A = Ω (up to a negligible set). Moreover, in view of (52), and since (c n ic i ) log(c i ) ∈ L 1 (Ω), Fatou's Lemma applies and leads to

Ω (c n i -c i ) log(c n i )dx ≤ lim inf →0 Ω (c n i -c i ) log(c i )dx ≤ C τ .
This latter inequality imposes that log(c n i ) belongs to L 1 (Ω) for fixed τ > 0.

3.3. Flow interchange and entropy estimate. In the next lemma, our goal is to get an improved regularity estimate on c by the mean of the flow interchange technique.

Lemma 3.2.

There exists C depending only on α, χ, Ψ i , c 0 , m i , T , such that

(53) i∈{1,2} θ i T 0 Ω |∇ √ c i,τ | 2 dxdt + T 0 Ω |∆c τ | 2 dxdt ≤ C, ∀T > 0.
Since Ω is convex, it implies

(54) c τ L 2 ((0,T );H 2 (Ω)) ≤ C.
Moreover, there holds

(55) ∇c n i • n = 0 on ∂Ω.
Proof. Below, s ≥ 0 denotes an auxiliary time variable. Let či (i ∈ {1, 2}) be the unique solution to (56)

     ∂ s či = ∆č i in Ω × (0, ∞), ∇č i • n = 0 on ∂Ω × (0, ∞), (č i ) |s=0 = c n i in Ω. It is easy to check that Ω či (x, s)dx = Ω c 0 i (x)dx, hence each č(s) = (č 1 (s), č2 (s) 
) is an admissible competitor in [START_REF] Lieb | Analysis[END_REF], i.e., F n τ (c n ) ≤ F n τ (č(s)). After rearraging terms in F n τ and dividing by s > 0, the passage to the limit s → 0 in this inequality produces

-lim sup s→0 d ds E(č(s)) ≤ d ds s=0 1 2τ W 2 (č(s), c n-1 ) . (57) 
To estimate the derivative on the right hand side above, we use that the heat equation ( 56) is the gradient flow of the Boltzmann entropy functional H(c) = Ω H(c)dx, which is displacement convex. Therefore, solutions č to (56) satisfy the Evolution Variational Inequality [1, Definition 4.5] centered at c n-1 i , that is

1 2 d ds W 2 i (č i (s), c n-1 i ) ≤ H(c n-1 i ) -H(č i (s)) m i .
Division by τ and summation over i leads to

(58) d ds 1 2τ W 2 (č(s), c n-1 ) ≤ i∈{1,2} H(c n-1 i ) -H(č i (s)) m i τ , ∀s > 0.
The estimate for the left-hand side of (57) is more combersome. We estimate the s-derivate of the various parts of E individually. To begin with, notice that there is no contribution from E cons , since the constraint č1 (s) + č2 (s) = 1 is preserved by (56). For working on the other parts of E, we use that the solution či of (56) belongs to C ∞ ((0, ∞); H 2 (Ω)), is positive on Ω for s > 0, and satisfies homogeneous Neumann boundary conditions. That makes či regular enough to justify the following calculations, and in particular the integration by parts. For the Dirichlet energy, we obtain

(59) d ds E Dir (č(s)) = d ds α 2 Ω |∇č 1 (s)| 2 dx = -α Ω ∆č 1 (s)∂ s č1 (s)dx = -α Ω |∆č 1 (s)| 2 dx.
The derivative of the chemical energy amounts to

d ds E chem (č(s)) = d ds χ Ω č1 (s)(1 -č1 (s))dx = χ Ω (1 -2č 1 (s))∂ s č1 (s)dx = 2χ Ω |∇č 1 (s)| 2 dx,
and since s → E Dir (č(s)) is non-increasing by the previous calculation, we can further conclude that

(60) d ds E chem (č(s)) ≤ 2χ Ω |∇c n 1 | 2 dx ≤ C,
where the second inequality follows from (45). Next, for the thermal energy,

d ds E therm (č(s)) = i∈{1,2} θ i d ds Ω H(č i (s))dx = i∈{1,2} θ i Ω log(č i (s))∂ s či (s)dx = i∈{1,2} θ i Ω log(č i (s))∆č i (s)dx = - i∈{1,2} θ i Ω ∇ log(č i (s)) • ∇č i (s)dx,
and since či (t) is smooth on Ω and bounded away from 0, we conclude that

(61) d ds E therm (č(s)) = -4 i∈{1,2} θ i Ω |∇ či (s)| 2 dx.
Finally, we obtain for the derivative of the potential

d ds E ext (č(s)) = d ds i∈{1,2} Ω Ψ i či (s)dx = Ω (Ψ 1 -Ψ 2 )∂ s č1 (s)dx = Ω (Ψ 1 -Ψ 2 )∆č 1 (s)dx ≤ α 2 ∆č 1 (s) 2 L 2 + 1 2α Ψ 1 -Ψ 2 2 L 2 .
In combination with (59), this implies

(62) d ds E Dir (č(s)) + E ext (č(s)) ≤ - α 2 ∆č 1 (s) 2 L 2 + C, ∀s > 0.
Since the initial condition c n i in (56) belongs to H 1 (Ω), we have that či (s) → c n i in H 1 (Ω) as s → 0. In particular, H(č i (s)) → H(c n i ) as s → 0. Now we substitute (58) and ( 60), (61), (62) into (57), obtaining

lim sup s→0    Ω |∆č 1 (s)| 2 dx + i∈{1,2} θ i Ω ∇ či (t) 2 dx    ≤ C   1 + i∈{1,2} H(c n-1 i ) -H(c n i ) m i τ   . (63) 
Since the initial condition c n i in (56) belongs to H 1 (Ω), we have that či (s) → c n i in H 1 (Ω) as s → 0. Convexity of the the functionals c → |∆c| 2 dx and c → |∇ √ c| 2 dx implies lower semi-continuity with respect to convergence in H 1 (Ω), and therefore

Ω |∆c n 1 | 2 dx + i∈{1,2} θ i Ω ∇ c n i 2 dx ≤ C   1 + i∈{1,2} H(c n-1 i ) -H(c n i ) m i τ   , ∀n ≥ 1.
Multiplying by τ and summing over n ∈ 1, . . . , T τ leads to (53); here we use that 0 ≤ i∈{1,2} H(c i ) ≤ 2|Ω| for all measurable c 1 , c 2 : Ω → [0, 1], and that |∆c n 2 | = |∆c n 1 |. Concerning the boundary condition (55): observe that the solution či to (56) satisfies in particular ∇č i (s) • n = 0 at each s > 0. Since Ω is convex, one can show (see [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Chapter 3]) that

Ω ∇ 2 či (s) 2 dx ≤ Ω |∆č i (s)| 2 dx.
In combination with the fact that či (s) has values in [0, 1] only, it follows that the L 2 -norm of ∆č i (s) controls the full H 2 -norm of či (s), i.e., či (s

) 2 H 2 (Ω) ≤ C 1 + Ω |∆č i (s)| 2 dx . ( 64 
)
On the other hand, (63) implies in particular that ∆č i (s) remains bounded in L 2 as s → 0. By Alaoglu, and since we already know that či (s) tends to c n i in H 1 (Ω), it follows that či (s) converges to c n i weakly in H 2 (Ω) as s → 0. Now, since the trace operator mapping c ∈ H 2 (Ω) to ∇c • n ∈ L 2 (∂Ω) is weakly continuous, we conclude that ∇c n i • n = 0 as well. Finally, we obtain (54): since we have just shown that c n i satisfies homogeneous Neumann boundary conditions, the same argument as above shows that (64) holds also with c n i in place of či (s). Summation of (53) over n directly produces (54).

Corollary 3.3. At each step n ≥ 1, there exists among the minimizers in (28) at least one which is a weak H 2 (Ω) 2 -limit point for δ → 0 of the set of minimizers of the functionals F n,δ τ defined in [START_REF] Lisini | Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics[END_REF].

Proof. Since c n-1,δ → c n-1 in L 1 (Ω) 2 as δ → 0, the F n,δ τ Γ-converge to F n
τ , for instance in the topology induced by W on A. In complete analogy to the previous proof, we obtain for each minimizer c n,δ of F n,δ τ that

c n,δ 2 H 2 ≤ C   1 + i∈{1,2} H(c n-1,δ i ) -H(c n,δ i ) m i τ   ≤ C τ .
Therefore, there is a sequence c n,δ k that converges weakly in H 2 (Ω) 2 to a limit c n that minimizes F n τ . 3.4. Euler Lagrange equations. The goal of this section is to characterize the minimizer c n of (28). We have anticipated the main result already in Lemma 2.2. It is a consequence of the following linearized optimality condition for c n . Lemma 3.4. In each step n ≥ 1, there exist Kantorovich potentials ϕ n = (ϕ n 1 , ϕ n 2 ) such that the quantity F n given in [START_REF] Matthes | A convergent Lagrangian discretization for a nonlinear fourth-order equation[END_REF] satisfies the following linearized optimality condition:

(65) Ω F n c n 1 dx ≤ Ω F n c 1 dx, ∀c = (c 1 , c 2 ) ∈ A.
Proof. The proof is inspired from [32, Lemma 3.1], see also [START_REF] Cancès | Incompressible immiscible multiphase flows in porous media: a variational approach[END_REF]Lemma 3.2]. Assume first that c n-1 i > 0 almost everywhere in Ω, so that the Kantorovich potentials ϕ n 1 , ψ n 1 from c n 1 to c n-1 1 are unique up to addition of a global constant, that we fix at an arbitrary value for this proof. For any given c ∈ A ∩ X , we perturb c n into (66) c = (1 -)c n + c, ∀ ∈ (0, 1).

Clearly, c belongs to A ∩ X . Defining (ϕ i , ψ i ) the Kantorovich potential from c i to c n-1 i , we infer from [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] that

     1 2 W 2 i (c i , c n-1 i ) = Ω ϕ i (x)c i (x)dx + Ω ψ i (y)c n-1 i (y)dy, 1 2 W 2 i (c n i , c n-1 i ) ≥ Ω ϕ i (x)c n i (x)dx + Ω ψ i (y)c n-1 i (y)dy.
Subtracting the two above relations and using the definition (66) of c , one gets

1 2τ W 2 i (c i , c n-1 i ) -W 2 i (c n i , c n-1 i ) ≤ Ω ϕ i τ (c i -c n i ) dx.
Hence, using c n , c ∈ X , one gets that

(67) 1 2τ W 2 (c , c n-1 ) -W 2 (c n , c n-1 ) ≤ Ω ϕ 1 τ - ϕ 2 τ (c 1 -c n 1 ) dx.
On the other hand, the convexity of E Dir and E therm , the linearity of E ext , and the concavity of

E chem yield (68) E(c ) -E(c n ) ≤ Ω α∇c 1 • ∇(c 1 -c n 1 )dx + Ω χ(1 -2c n 1 )(c 1 -c n 1 )dx + Ω f (c 1 )(c 1 -c n 1 )dx + Ω (Ψ 1 -Ψ 2 ) (c 1 -c n 1 )dx.
Bearing in mind that c n 1 is a minimizer, the combination of ( 67) with (68) leads to

0 ≤ F n τ (c ) -F n τ (c n ) ≤ Ω ϕ 1 τ - ϕ 2 τ (c 1 -c n 1 ) dx + Ω α∇c 1 • ∇(c 1 -c n 1 )dx + Ω χ(1 -2c n 1 )(c 1 -c n 1 )dx + Ω f (c 1 )(c 1 -c n 1 )dx + Ω (Ψ 1 -Ψ 2 ) (c 1 -c n 1 )dx, ∀ > 0.
We can consider the limit → 0 in the right-hand side of the above expression. From the definition (66) of c , it is clear that c 1 converges in H 1 (Ω) towards c n 1 and that f (c 1 ) converges in L 1 (Ω) towards f (c n 1 ), while ϕ i converges uniformly towards ϕ n i (see for instance [37, Theorem 1.52]), so that (65) holds thanks to Lemma 3.2.

Assume now that c n-1 i = 0 on some part of Ω. By definition of c n in and after [START_REF] Lieb | Analysis[END_REF], there exists a sequence of minimizers c n,δ of the respective functionals F n,δ τ given in (29) that converge weakly in H 2 (Ω) 2 to c n . Defining F n,δ as F n in (31) upon replacing c n i by c n,δ i and ϕ n i by the Kantorovich potential ϕ n,δ i sending c n,δ i to c n-1,δ i , then we get from the reasoning above that (69)

Ω F n,δ (c 1 -c n,δ 1 ) ≥ 0, ∀c = (c 1 , c 2 ) ∈ A ∩ X .
The weak convergence of the c n,δ i to c n i in H 2 (Ω), and the induced uniform convergence of the Kantorovich potentials ϕ n,δ i to Kantorovich potentials ϕ n i sending c n i to c n-1 i (cf. [37, Theorem 1.52]) is sufficient to deduce (65) from (69) in the limit δ → 0.

We are now in the position to prove Lemma 2.2 which has been essential for the definition of the potentials µ.

we deduce from (72) the desired L 2 ((0, T ); L q d (Ω)) estimates on the phase potentials µ n i with q d defined in Definition 2.3. Finally, the combination of the relations (36), ( 27), ( 53) and (41) yields

Q T c i,τ |∇µ i,τ | 2 dxdt ≤ C.
The following lemma is a first step towards the recovery of the weak formulation [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF].

Lemma 3.6. For any ξ ∈ C 2 (Ω), there holds

(75) Ω c n i -c n-1 i ξdx + τ m i Ω (c n i ∇ (µ n i + Ψ i ) + θ i ∇c n i ) • ∇ξdx ≤ 1 2 W 2 i (c n i , c n-1 i ) D 2 ξ ∞ .
Proof. The optimal transport map

t n i (x) = x -m i ∇ϕ n i (x), ∀x ∈ Ω sending c n i to c n-1 i maps Ω into itself because Ω is convex. Therefore, since c n-1 i = t n i #c n i and thanks to (36), one gets that Ω c n i -c n-1 i ξdx + τ m i Ω (c n i ∇ (µ n i + Ψ i ) + θ i ∇c n i ) • ∇ξdx = Ω (ξ(x) -ξ(t n i (x)) -m i ∇ξ(x) • ∇ϕ n i (x)) c n i (x)dx
for all ξ ∈ C 2 (Ω). The Taylor expansion of ξ at point x provides

|ξ(t n i (x)) -ξ(x) + m i ∇ξ(x) • ∇ϕ i (x)| ≤ 1 2 D 2 ξ ∞ |t n i (x) -x| 2 , ∀x ∈ Ω, so that Ω (c n i -c n-1 i )ξdx + τ m i Ω (c n i ∇ (µ n i + Ψ i ) + θ i ∇c n i ) • ∇ξdx ≤ 1 2 D 2 ξ ∞ Ω |t n i (x) -x| 2 c n i (x)dx,
which is exactly the desired result.

3.5. Convergence towards a weak solution. The goal of this section is to consider the limit τ → 0. This requires some compactness on the approximate phase field c τ and on the approximate potential µ τ . In what follows, A is equipped with the topology corresponding to the distance W .

Proposition 3.7.

There exist c ∈ C([0, T ]; L 2 (Ω)) ∩ L 2 ((0, T ); H 2 (Ω)) ∩ L ∞ ((0, T ); H 1 (Ω)) with c(t) ∈ A ∩ X for a.e. t ∈ [0, T ],
and µ ∈ L 2 ((0, T ); L q d (Ω)) such that, up to the extraction of a subsequence, the following convergence properties hold:

c i,τ -→ τ →0 c i in the L ∞ ((0, T ); H 1 (Ω))-weak-sense, (76a) c i,τ (•, t) -c i (•, t) L 2 (Ω) -→ τ →0 0 for all t ∈ [0, T ], (76b) c i,τ -→ τ →0 c i in L 2 ((0, T ); W 1,d (Ω)), (76c) c i,τ -→ τ →0 c i weakly in L 2 ((0, T ); H 2 (Ω)), (76d) µ i,τ -→ τ →0
µ i for the weak topology of L 2 ((0, T ); L q d (Ω)), (76e)

c i,τ ∇µ i,τ -→ τ →0 c i ∇µ i weakly in L 2 (Q T ) d . (76f)
Proof. All the convergence properties stated below occur up to the extraction of a subsequence when τ tends to 0. We deduce from Estimate (45) that the family (c τ ) τ >0 is bounded in L ∞ ((0, T ); H 1 (Ω)). Hence we can assume that c τ tends to some c in the L ∞ ((0, T ); H 1 (Ω))-weak-sense. Moreover, since 0 ≤ c i,τ ≤ 1, we also have that 0 ≤ c i ≤ 1 a.e. in Q T . We also infer from Estimate (54) that c τ converges weakly in L 2 ((0, T ); H 2 (Ω)) towards c.

As a consequence of the L ∞ bound on c i,τ and of the Benamou-Brenier formula, we get that c

ic

(2) i H 1 (Ω) ≤ 1 m i W i (c (1) 
i , c

i ), ∀c

i , c

(2) i ∈ A i , (see more precisely [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF]Lemma 3.4]). Therefore, we infer from (43) that This implies in particular some strong convergence in L 2 (Q T ), which can be combined with the weak convergence in L 2 ((0, T ); H 2 (Ω)) thanks to interpolation arguments to derive some strong convergence in L 2 ((0, T ); H s (Ω)) for any s < 2. The continuous embedding of H s (Ω) into W 1,d (Ω) when s ≥ 1 + max(0, d-2 2 ) (see for instance [START_REF] Di Nezza | Hitchhikers guide to the fractional Sobolev spaces[END_REF]Theorem 6.7]) ensures that (77)

c τ -→ τ →0 c in L 2 ((0, T ); W 1,d (Ω)) 2 .
Let us switch to the phase potentials µ. Thanks to Lemma 3.5, we have (uniform w.r.t. τ ) L 2 ((0, T ); L q d (Ω)) estimates on µ i,τ . Hence there exists µ in L 2 ((0, T ); L q d (Ω)) 2 such that (78) µ i,τ -→ τ →0

µ i weakly in L 2 ((0, T ); L q d (Ω)).

In Lemma 3.5, we also established a (uniform w.r.t. τ ) L 2 (Q T ) d estimate on √ c i,τ ∇µ i,τ τ >0 .

Since 0 ≤ c i,τ ≤ 1, it implies a uniform L 2 (Q T ) d estimate on (c i,τ ∇µ i,τ ) τ >0 . Therefore, there exists ϑ i ∈ L 2 (Q T ) d such that c i,τ ∇µ i,τ converges weakly in L 2 (Q T ) d to ϑ i as τ tends to 0. It remains to show that ϑ i = c i ∇µ i . First, the distributions c i and ∇µ i can be multiplied since c i belongs to L 2 ((0, T ); W 1,d (Ω)) and ∇µ i belongs to L 2 ((0, T ); W -1,q d (Ω)) with q d ≤ d d-1 . Moreover, for all φ ∈ C ∞ c (Q T ) d , one has (79)

Q T c i,τ ∇µ i,τ • φdxdt = - Q T µ i,τ (∇c i,τ • φ + c i,τ ∇ • φ) dxdt.
Thanks to (77) and (78), we can pass in the limit in the right-hand side of the above expression. This leads to (80)

Q T c i,τ ∇µ i,τ • φdxdt -→ τ →0 - Q T µ i (∇c i • φ + c i ∇ • φ) dxdt = c i ∇µ i , φ D ,D .
As a consequence, ϑ i = c i ∇µ i in the distributional sense, thus also in L 2 (Q T ). Since c τ (t) converges in L 2 (Ω) 2 towards c(t) for all t ∈ [0, 1], there holds

Ω c i (t)dx = Ω c 0 i dx, c 1 (x, t) + c 2 (x, t) = 1 for all t ∈ [0, T ].
Moreover, since c(t) belongs to H 1 (Ω) for a.e. t ∈ (0, T ), c(t) belongs to A ∩ X for a.e. t ∈ (0, T ). This concludes the proof of Proposition 3.7.

We have all the necessary convergence properties to pass to the limit τ → 0 and to identify the limit (c, µ) exhibited in Proposition 3.7 as a weak solution in the sense of Definition 2.3. Proof. Since c i,τ and µ i,τ tend weakly in L 2 ((0, T ); H 2 (Ω)) and L 2 ((0, T ); L q d (Ω)) towards c i and µ i respectively, we can pass to the limit in [START_REF] Otto | Thermodynamically driven incompressible fluid mixtures[END_REF]. Moreover, one can also pass to the limit in the relation 0 = ∇c 1,τ • n established in Lemma 3.2, leading to ∇c 1 • n = 0 on ∂Ω.

It only remains to recover the weak formulation [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF] τ Ω (c i,τ ∇ (µ i,τ + Ψ i ) + θ i ∇c i,τ ) • ∇ξdxdt

≤ 1 2 D 2 ξ ∞ t 2 τ n= t 1 τ W 2 i (c n i , c n-1 i ) ≤ Cτ,
the last inequality being the consequence of the squared distance estimate (41). We can pass to the limit τ → 0 in the above relation thanks to Proposition 3.7.

We have finally proved Theorem 2.4 that is a combination of Propositions 3.7 and 3.8.
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 1142 Figure 1. Evolution of the energy E(c) along time for the non-local model (17) and the local one[START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF]. The decay of the energy is faster for the non-local model, as shown in Section 1.3.

Figure 2 .

 2 Figure 2. Evolution along time of the numerical solution to the non-local problem (17) (top) and to the local problem (22) (bottom). Snapshots at time t = 10 -2 (left), t = 2.10 -2 (middle), and t = 10 -1 (right).

Figure 3 .

 3 Figure 3. Snapshots at times t = 6.10 -3 (left), t = 5.10 -2 (middle), and t = 1 (right) illustrating the spinodal decomposition governed by model (17) (top) and model (22) (bottom).

2 .Figure 4 .

 24 Figure 4. Evolution of the energy E(c) along time for the non-local model (17) and the local one[START_REF] Eymard | Mathematical study of a petroleum-engineering scheme[END_REF] for the spinodal decomposition test case.

Definition 2 . 3 .

 23 A pair (c, µ) of phase concentrations c = (c 1 , c 2 ) : Ω → [0, 1] and phase potentials µ = (µ 1 , µ 2 ) : Ω → R is said to be a weak solution to the problem (17), (2), and (3) if

c

  i,τ (t)c i,τ (s) H 1 (Ω) ≤ C |t -s| + τ , ∀s, t ∈ [0, T ]. Let ∆t > 0 and let t ∈ [0, T -∆t], then c i,τ (t + ∆t)c i,τ (t) 2 L 2 (Ω) ≤ c i,τ (t + ∆t)c i,τ (t) H 1 c i,τ (t + ∆t)c i,τ (t) (H 1 ) ≤ C √ ∆t + τ .Bearing in mind the L ∞ ((0, T ); H 1 (Ω)) estimate on c i,τ , we can apply a refined version of the Arzelà-Ascoli theorem [2, Prop. 3.3.1] to obtain that c i ∈ C([0, T ]; L 2 (Ω)) and thatc i,τ (t) -→ τ →0 c i (t) in L 2 (Ω) for all t ∈ [0, T ].Together with the estimate 0 ≤ c i,τ ≤ 1, we deduce that c ∈ C([0, T ]; L p (Ω)) 2 and thatc τ -→ τ →0 c in L p (Q T ) 2 , ∀p ∈ [1, +∞).

Proposition 3 . 8 .

 38 Let (c, µ) be as in Proposition 3.7, then (c, µ) is a weak solution to the problem (17), (2)-(3) in the sense of Definition 2.3.

  ). Hence c's time derivatives ∂ t c i are determined as well. At this point, it is natural to define the chemical potential µ i of the phase i by

	(19)

  . Let t 1 , t 2 ∈ [0, T ] with t 2 ≥ t 1 , then summing (75) over n ∈ t1 τ + 1, . . . , t2

	t 2 τ	τ
	t 1	
	τ	

τ yields Ω (c i,τ (t 2 )c i,τ (t 1 )) ξdx + m i

Acknowledgements. The authors warmly thank the referees for their valuable remarks and suggestions. This research was supported by the DFG Collaborative Research Center TRR 109, "Discretization in Geometry and Dynamics" and by the French National Research Agency (ANR) through grants ANR-13-JS01-0007-01 (project GEOPOR) and ANR-11-LABX-0007-01 (Labex CEMPI).

Proof of Lemma 2.2. Since 0 ≤ c n 1 ≤ 1, the minimization problem (65) can be solved thanks to the bathtub principle [START_REF] Lieb | Analysis[END_REF]Theorem 1.14]. It amounts to saturate the sublevel sets of F n with c n 1 = 1 until all the mass Ω c 0 i has been allocated. This implies the existence of some ∈ R such that (70)

Given F n , the solution c n 1 to the minimization problem (65) is in general not unique since a prescribed amount of mass can be distributed on the level set {F n = } in different ways without changing the value of the functional. But this lack of uniqueness does not affect the relations (70).

Recall that we still have the freedom to change the Kantorovich potential ϕ n 1 in the definition (31) of F n by addition of a global constant. We choose that constant to enforce = 0 in (70) above. With that normalization, (70) implies [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF].

Lemma 3.5. The chemical potentials µ satisfy the following τ -uniform estimates:

Proof. Recall the definition of µ in [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF]. It follows from ( 53) that (72)

The definition of µ n implies that

Using the triangle inequality, Cauchy-Schwarz inequality, and 0 ≤ c n i ≤ 1, we get

Since c n ∈ A, one has Ω c n i dx = Ω c 0 i dx. Thus it follows from ( 27), (41), ( 45) and ( 72) that

Bearing [START_REF] Modica | Un esempio di γ-convergenza[END_REF] in mind, we can use the Poincaré-Sobolev inequality and get that (74) µ τ L 2 ((0,T );L d/(d-1) (Ω)) ≤ C.