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A TWO-PHASE TWO-FLUXES DEGENERATE CAHN-HILLIARD MODEL AS

CONSTRAINED WASSERSTEIN GRADIENT FLOW

CLÉMENT CANCÈS, DANIEL MATTHES, AND FLORE NABET

Abstract. We study a non-local version of the Cahn-Hilliard dynamics for phase separation in

a two-component incompressible and immiscible mixture with linear mobilities. In difference to

the celebrated local model with nonlinear mobility, it is only assumed that the divergences of the
two fluxes — but not necessarily the fluxes themselves — annihilate each other. Our main result

is a rigorous proof of existence of weak solutions. The starting point is the formal representation
of the dynamics as a constrained gradient flow in the Wasserstein metric. We then show that

time-discrete approximations by means of the incremental minimizing movement scheme converge

to a weak solution in the limit. Further, we compare the non-local model to the classical Cahn-
Hilliard model in numerical experiments. Our results illustrate the significant speed-up in the

decay of the free energy due to the higher degree of freedom for the velocity fields.

1. Motivation and presentation of the model

1.1. Introduction. We are interested in a non-local Cahn-Hilliard system

∂tci −∇ · (mici∇ (µi + Ψi)) = miθi∆ci for i ∈ {1, 2},(1a)

c1 + c2 = 1,(1b)

µ1 − µ2 = −α∆c1 + χ(1− 2c1),(1c)

modelling the flow of an incompressible and immiscible mixture in a bounded convex domain Ω.
Above, m1 and m2 are positive mobility constants, χ > 0 is a parameter for the chemical activity,
and the non-negative numbers θ1 and θ2 control the degree of thermal agitation. The system is
complemented with initial conditions

(2) (ci)|t=0
= c0i ∈ H1(Ω) with c0i ≥ 0 and c01 + c02 = 1 in Ω,

and boundary conditions

(3) ci∇(µi + Ψi) · n = ∇ci · n = 0 on ∂Ω× (0,∞).

Equation (1a) can be rewritten as a conservation law

(4) ∂tci + ∇ · J i = 0,

where

J i = −mici∇ (µi + Ψi + θi log(ci)) .

Summing (4) over i ∈ {1, 2} and using (1b) yields

∇ · J tot = 0 where J tot = J1 + J2
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denotes the total flux. In particular, we do not require that J tot = 0 as for the classical (or local)
degenerate Cahn-Hilliard model [16, 24, 20]. The relaxation of the constraint from vanishing total
flux to divergence free total flux was initially proposed by E and Palffy-Muhoray in [19] and studied
formally by Otto and E in [35]. It was in particular noticed in [35] that the system (1) can be
interpreted as the constrained Wasserstein gradient flow of some Ginzburg-Landau energy where
the velocity field V = (v1,v2) transporting the concentrations c = (c1, c2) has to preserve the
constraint (1b).

The nonlocal model is derived formally in Section 1.2, then compared to the classical (or local)
degenerate Cahn-Hilliard model in Section 1.3. Numerical illustrations of its behavior are given in
Section 1.4. In Section 2, we introduce the necessary material to prove our main result, that is
the global existence of a weak solution to the model (1)–(3). This existence result is obtained by
showing the convergence of a minimizing movement scheme à la Jordan, Kinderlehrer, and Otto [26].
Section 3 is devoted to the proof of the convergence of the minimizing movement scheme.

1.2. Derivation of the model. We consider an incompressible mixture composed of two phases
flowing within a bounded open convex subset Ω of Rd with d ≤ 3. The fluid is incompressible, so
its composition at time t ≥ 0 is fully described by the saturations ci(x, t) ∈ [0, 1], i ∈ {1, 2}, i.e.,
the volume ratio of the phase i in the fluid. This leads to the constraint

(5) c1 + c2 = 1 in Ω× (0,∞).

We assume that this constraint is already satisfied at the initial time t = 0, where the composition
of the mixture is given by c0 = (c01, c

0
2) : Ω→ [0, 1]2, i.e.

(6) c01 + c02 = 1 in Ω.

We further assume that both phases have positive mass.
The motions of each phase is governed by a linear transport equation

(7) ∂tci + ∇ · (civi) = 0 in Ω× (0,∞),

where vi : Ω × R+ → Rd denotes the speed of the phase i, and V = (v1,v2). To enforce mass
conservation, the boundary ∂Ω of Ω is assumed to be impervious, hence

c1v1 · n = c2v2 · n = 0 on ∂Ω,(8)

where n denotes the outward normal to ∂Ω, so that Gauss’ theorem implies

(9)

∫
Ω

ci(x, t)dx =

∫
Ω

c0i (x)dx = |Ω|ci, t ≥ 0, i ∈ {1, 2}.

Consequently, at each time t ≥ 0, the saturations c(t) belong to the set A = A1 ×A2, where

Ai =

{
ci : Ω→ [0, 1] measurable

∣∣∣∣ ∫
Ω

ci(x)dx = |Ω|ci
}
, i ∈ {1, 2}.

To each configuration c ∈ A, we associate the energy

E(c) = EDir(c) + Echem(c) + Etherm(c) + Econs(c) + Eext(c),

whose components are as follows.

• Dirichlet energy: for given α1, α2 > 0,

EDir(c) :=


∑

i∈{1,2}

αi
2

∫
Ω

|∇ci|2dx if c ∈ H1(Ω)2,

+∞ otherwise,
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penalizes the spatial variations of the saturation profiles.
• Chemical energy: for a given χ > 0,

Echem(c) = χ

∫
Ω

c1c2dx

measures the impurity of the mixture.
• Thermal energy: for given θ1, θ2 ≥ 0,

Etherm(c) =
∑

i∈{1,2}
θi

∫
Ω

H(ci)dx, with H(c) = c log(c)− c+ 1 ≥ 0,

is the free thermal energy. The case θ1 = θ2 = 0 is called the deep quench limit [9].
• Constraint:

Econs(c) =

∫
Ω

Econs(c)dx, where Econs(c) =

{
0 if c1 + c2 = 1,

+∞ otherwise,

realizes the constraint (5).
• Exterior potential: for given external potentials Ψ1,Ψ2 ∈ H1(Ω),

Eext(c) =
∑

i∈{1,2}

∫
Ω

ci(x)Ψi(x)dx

is the potential energy related to exterior forces like gravity or electrostatic forces.

All of these components are convex in c except for the chemical energy Echem, which, however, is
smooth. Denote by

X =
{
c ∈ H1(Ω; [0, 1])2

∣∣ c1 + c2 = 1 a.e. in Ω
}

the domain of E , i.e.,

(10) E(c) <∞ ⇔ c ∈ X .

Before entering into the rigorous derivation of the PDEs that govern the gradient flow of the
energy E(c) with respect to a tensorized Wasserstein distance, we provide formal calculations based
on the framework of generalized gradient flows of [33, 36, 11] in order to identify the underlying
PDEs.

The motion of the phases induces the viscous dissipation

(11) D(c,V ) =
∑

i∈{1,2}

1

2mi

∫
Ω

ci|vi|2dx, ∀c ∈ A, ∀V ∈ Z(c),

where mi is the mobility coefficient of the ith phase, and where

Z(c) =
{
V = (v1,v2) : Ω→

(
Rd
)2 ∣∣∣ civi · n = 0 on ∂Ω

}
denotes the space of the admissible (but unconstrained) vector fields. This quantity is closely
related to the tensorized Wasserstein distance through Benamou-Brenier formula [5], see (27) later
on. We suppose as in [11] that at each time t ≥ 0, the phase speeds V = (v1,v2) is selected by the
following steepest descent condition:

(12) V ∈ argmin
Ṽ =(ṽ1,ṽ2)∈Z(c)

D(c, Ṽ ) + sup
w∈∂E(c)

∑
i∈{1,2}

∫
Ω

ciṽi ·∇widx

 ,



4 CLÉMENT CANCÈS, DANIEL MATTHES, AND FLORE NABET

where E ’s subdifferential

∂E(c) =

{
w ∈ L2(Ω;Rd)2

∣∣∣∣E(ĉ)− E(c)−
∫

Ω

w · (ĉ− c)dx ≥ o
(
‖ĉ− c‖L2(Ω)

)}
is non-empty at each c ∈ X with c1 ∈ H2(Ω) and f(c1) ∈ L2(Ω), and there, its elements w =
(w1, w2) are characterized by (c.f. [11])

(13) w1 − w2 = −α∆c1 + χ(1− 2c1) + f(c1) + (Ψ1 −Ψ2).

In formula (13), we have set α = α1 + α2 and

(14) f(c1) = log

(
cθ11

(1− c1)θ2

)
= θ1 log(c1)− θ2 log(c2).

The integral in (12) has to be understood as the evaluation of the element w = (w1, w2) in E ’s
subdifferential at c on the infinitesimal changes ∂tci = −∇ · (civi) induced by V . Since condition
(13) only determines the difference w1 − w2, but not the wi individually, is easily seen that the
maximum above is +∞ unless ∇ · (c1v1 + c2v2) = 0 holds. That implies that any minimizer V is
such that the constraint (5) is preserved.

In order to identify V , we swap minimization and maximization in the variational problem (12).
The inner minimization is a quadratic problem in V , with solution

(15) vi = −mi∇wi on {ci > 0} for i ∈ {1, 2}.
The outer maximization in then a quadratic problem for w ∈ ∂E(c), which amounts to

−∇ ·

 ∑
i∈{1,2}

mici∇wi

 = 0.(16)

Together with the condition (13), this elliptic equation determines w uniquely.
To sum up, the system of partial differential equations implied on the solution to the variational

problem (12) is

∂tci −∇ · (mici∇wi) = 0 for i ∈ {1, 2},(17a)

c1 + c2 = 1,(17b)

w1 − w2 = −α∆c1 + χ(1− 2c1) + f(c1) + (Ψ1 −Ψ2),(17c)

to be satisfied in Ω× (0,∞). The system relation (17) is complemented by homogeneous Neumann
boundary conditions

(18) −∇c1 · n = 0 on ∂Ω× R+

and the no-flux conditions (8). Notice that with these boundary conditions, the set (17) of equations
is (formally) closed in the sense that if c is known at some instance of time, then the wi are uniquely
determined (up to irrelevant global additive constants) by (17c) and by the elliptic equation (16)
that follows from adding (17a) for i = 1, 2 in combination with the conservation ∂t(c1 + c2) = 0
implied by (17b). Hence c’s time derivatives ∂tci are determined as well.

At this point, it is natural to define the chemical potential µi of the phase i by

(19) µi = wi − θi log(ci)−Ψi, i ∈ {1, 2},
so that (17c) turns to

(20) µ1 − µ2 = −α∆c1 + χ(1− 2c1).
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So far, µ= (µ1, µ2) is only defined up to an additive constant. This degree of freedom is eliminated
by imposing for almost all t > 0 that

(21)

∫
Ω

µ(x, t)dx = 0, where µ = c1µ1 + c2µ2.

Whilst the phase chemical potential µi have a clear physical sense only on {ci > 0}, the global
chemical potential µ remains meaningful in the whole Ω. In particular, its spatial variations can be
controlled, and thus µ itself too thanks to a Poincaré-Wirtinger inequality.

With the help of the chemical potentials, the system (17) turns into (1), to be complemented
with boundary conditions (3) and initial conditions (2).

In the next section, we highlight some differences between the non-local model (1) and the local
degenerate Cahn-Hilliard model that has been studied for instance in [20].

1.3. Comparison with the classical degenerate Cahn-Hilliard model. Even in the simple
situation where the external potentials Ψi are equal to 0 and where θ1 = θ2 = 0, the system (17)
differs as soon as d ≥ 2 from the local degenerate Cahn-Hilliard model that can be written as

(22) ∂tc−∇ · (η(c)∇µ) = 0, µ = −α∆c+ χ(1− 2c), η(c) =
m1m2c(1− c)
m1c+m2(1− c) .

We refer to [20] for the existence of weak solutions to (22) (complemented with suitable boundary
conditions) and to [4] for the extension of the model to the case of N phases (N ≥ 3). Here, µ is
the generalized chemical potential that is defined as the difference of the phase chemical potentials.

The energy Ẽ associated to (22) is similar to the one of our problem, i.e.,

Ẽ(c) =
α

2

∫
Ω

|∇c|2dx+ χ

∫
Ω

c(1− c)dx.

But both the equation governing the motion (7) and the dissipation (11) have to be modified. More
precisely, the continuity equation (7) must be replaced by its nonlinear counterpart

∂tc+ ∇ · (η(c)v) = 0,

while the dissipation is now given by

D̃(c,v) =

∫
Ω

η(c)|v|2dx.

Therefore, the PDEs (22) can still be interpreted as the gradient flow of the energy Ẽ , but the
geometry is different: rather than considering some classical quadratic Wasserstein distance for
each phase and to constrain the sum of the concentrations to be equal to 1 (as it will be the case
for our approach), the set

A =

{
c ∈ L1(Ω;R+)

∣∣∣∣ ∫
Ω

c(x, t)dx =

∫
Ω

c01(x)dx

}
has to be equipped with the weighted Wasserstein metric corresponding to the concave mobility η.
We refer to [18] for the description of the corresponding metric and to [29] for the rigorous recovery
of (22) by a gradient flow approach.

The difference between the non-local model (17) and the local one (22) can also be seen as
follows. Summing the first equation of (17) for i ∈ {1, 2} yields

(23) ∇ · J tot = 0, where J tot =
∑

i∈{1,2}
civi = −

∑
i∈{1,2}

mici∇µi.



6 CLÉMENT CANCÈS, DANIEL MATTHES, AND FLORE NABET

The equation for c1 can then be rewritten

(24) ∂tc1 + ∇ · (ρ(c1)J tot − η(c1)∇(µ1 − µ2)) = 0, with ρ(c) =
m1c

m1c+m2(1− c) .

Thus our model (17) boils down to the local Cahn-Hilliard equation as soon as J tot ≡ 0. This is
the case when d = 1 because of (23), but no longer if d ≥ 2. Since our non-local model does not
impose that J1 = −J2, it allows for additional motions. These motions —corresponding to the
transport term ∇ · (ρ(c1)J tot) in (24)— contribute to the dissipation as shows the formula

D(c,−∇µ) =

∫
Ω

|J tot|2
m1c1 +m2c2

dx+ D̃(c1,−∇(µ1 − µ2)).

Therefore, and as already noticed by Otto and E in [35], the instantaneous dissipation corresponding
to a phase configuration c is greater for the non-local model (17) than for the local model (22) and
the energy decreases faster.

1.4. Numerical illustration. The goal of this section is to illustrate the behavior of the model (17)
and to compare it with the classical degenerate Cahn-Hilliard problem (22). In order to solve
numerically (17) we use an implicit in time finite volume scheme with upstream mobility described
in [14] and inspired from the oil engineering context [22]. The mesh is triangular and assumed
to fulfill the so-called orthogonality condition [25, 21] (this amounts to requiring the mesh to be
Delaunay) so that the diffusive fluxes can be approximated thanks to a two-point flux approximation
in a consistent way. As it is exposed in [14], the scheme is positivity preserving (i.e., 0 ≤ ci,h ≤ 1),
it is energy diminishing (the discrete counterpart of the energy is decreasing) and entropy stable. It
leads to a nonlinear system of algebraic equations to be solved at each time step. It is shown in [14]
that this system admits (at least) one solution that is computed thanks to the Newton-Raphson
method.

Concerning the problem (22), we use a similar approach, but since the mobility function η is no
longer monotone, we have to use an implicit Godunov scheme to discretize it as a generalization of
the upstream mobility (see for instance [13]). Here again, the discrete solution remains bounded
between 0 and 1, the energy is decreasing and the entropy remains bounded. Here again, the
resulting nonlinear system is solved at each time step by the mean of the Newton-Raphson method.

Remark 1.1. Alternative numerical methods have been proposed in order to solve degenerate Cahn-
Hilliard problems. We won’t perform here an exhaustive list, but let us mention the contributions of
Barrett et al. based on conformal finite elements [3, 4]. Even though very efficient, these methods
have the drawback of requiring a small stabilization to be tuned following the mesh size. Unless one
considers non-smooth energies as in [8], the scheme does not preserve the bounds 0 ≤ ci,h ≤ 1.
These difficulties are overpassed in our approach by using some entropy stable hyperbolic fluxes to
discretize the mobilities.

Since our model has a Wasserstein gradient flow structure, it would be natural to use a La-
grangian method as for instance in [7, 31, 27, 15]. The main problem with this approach is that both
phase move with their own speed, therefore such an approach would impose to move two meshes
simultaneously. It is then rather unclear how to manage the constraint (5) in this case. For this
reason, it seems more suitable to stick to an Eulerian description. An alternative approach to solve
numerically our problem would therefore be to adapt the ALG2-JKO algorithm of Benamou et al. [6]
to our setting , see [10].

We propose two different test cases that will allow to illustrate the difference between the local
model (22) and the non-local model (17). For both of them, we do not consider any exterior
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potential, i.e., Ψi = 0, and we neglect the thermal diffusion, i.e., θi = 0. Both phase mobilities mi

are assumed to be equal to 1.

1.4.1. Test case 1: from a cross to a circle. We start from an initial data that is the characteristic
function of a cross and we choose α = (3.6).10−4 and χ = 0.8. Since α � χ, it follows from the
Modica and Mortola’ result [34] that the free energy is close to the perimeter of a characteristic
set (up to a multiplicative constant). This means that (up to a small regularization) both the local
and the non-local Cahn-Hilliard models aim at minimizing the perimeter of the sets {c1 = 0} and
{c1 = 1} corresponding to pure phases. Since the non-local model allows for more movements (cf.
Section 1.3), the energy (thus the perimeter) should decay faster for the nonlocal model. This is
indeed what we observe on Figures 1 and 2.

0 0.2 0.4 0.6 0.8 1

1

1.5

2
·10−2

Time

E
n
er
gy

non-local
local

Figure 1. Evolution of the energy E(c) along time for the non-local model (17)
and the local one (22). The decay of the energy is faster for the non-local model,
as shown in Section 1.3.

1.4.2. Test case 2: Spinodal decomposition. Similarly to the local model, the non-local model is
able to reproduce the spinodal decomposition for mixtures. In order to illustrate this fact, we start
from an initial data which consists in a constant concentration plus a small random perturbation:

c01(x) = 0.5 + r(x), r � 1.

Since c1 = 0.5 is very unfavorable from an energetic point of view, both phase will separate very
rapidly, letting areas with pure phase appear. Then these area will cluster in order to minimize
their perimeter. We choose α = 3.10−4 and χ = 0.96 and we plot on Figure 3 some snapshots
to illustrate the spinodal decomposition corresponding to models (17) and (22). On Figure 4, we
compare the evolution of the energy along time for spinodal decomposition corresponding to both
models. As expected, the energy decay is faster for the non-local model than for the local one. But
contrarily to Test case 1, the solutions seem to converge towards different steady states.
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Figure 2. Evolution along time of the numerical solution to the non-local prob-
lem (17) (top) and to the local problem (22) (bottom). Snapshots at time t = 10−2

(left), t = 2.10−2 (middle), and t = 10−1 (right).

Figure 3. Snapshots at times t = 6.10−3 (left), t = 5.10−2 (middle), and t = 1
(right) illustrating the spinodal decomposition governed by model (17) (top) and
model (22) (bottom).

2. Wasserstein gradient flow, JKO scheme and main result
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Figure 4. Evolution of the energy E(c) along time for the non-local model (17)
and the local one (22) for the spinodal decomposition test case.

2.1. Wasserstein distance. As a preliminary to the introduction of the minimizing movement
scheme, we introduce some necessary material related to Wasserstein (or Monge-Kantorovich) dis-
tances between nonnegative measures of prescribed mass that are absolutely continuous w.r.t. to
the Lebesgue measure. We refer to Santambrogio’s monograph [37] for an introduction to optimal
transportation and to the Wasserstein distances, and to Villani’s big book [38] for a more complete
presentation.

Given two elements ci and či of Ai (i ∈ {1, 2}), a map t : Ω → Ω is said to send ci on či (we
write či = t#ci) if∫

A

či(x)dx =

∫
t−1(A)

ci(x)dx, for all Borel subset A of Ω.

The Wasserstein distance Wi(ci, či) with quadratic cost function between ci and či is then defined
by

(25) Wi(ci, či) = inf
t s.t. či=t#ci

(
1

mi

∫
Ω

|x− t(x)|2ci(x)dx

)1/2

, i ∈ {1, 2}.

In (25), the infimum is in fact a minimum, and t is the gradient of a convex function. In our
context of fluid flows, the cost for moving the mass of the phase i from a configuration ci to another
configuration či regardless to the other phase is equal to W 2

i (ci, či). The multiplying factor 1/mi is
natural since the more mobile is the phase, the less expensive are its displacements. We can then
define the tensorized Wasserstein distance W on A by

W 2(c, č) = W 2
1 (c1, č1) +W 2

2 (c2, č2), ∀c, č ∈ A.

In the core of the proof, we will make an extensive use of the Kantorovich dual problem. More
precisely, we will use the fact that

(26)
1

2
W 2
i (ci, či) = sup

ϕi∈L1(ci),ψi∈L1(či)

ϕi(x)+ψi(y)≤ |x−y|2
2mi

∫
Ω

ci(x)ϕi(x)dx+

∫
Ω

či(y)ψi(y)dy.
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Here, L1(ρ) denotes the sets of integrable functions for the measure with density ρ. Here again, the
supremum is in fact a maximum, and the Kantorovich potentials (ϕi, ψi) achieving the sup in (26)
are dci ⊗ dči unique up to an additive constant. The optimal transportation ti sending ci on či
achieving the inf in (25) is related to the Kantorovich potential by

ti(x) = x−mi∇ϕi(x), ∀x ∈ Ω

with ϕi achieving the sup in (26). As a consequence, the formula (25) provides

(27) W 2
i (ci, či) = mi

∫
Ω

ci |∇ϕi|2 dx, i ∈ {1, 2}

to be used in the sequel.

2.2. The JKO scheme and the approximate solution. We have now all the necessary material
at hand to define the minimizing movement scheme. Let τ > 0 and cn−1 ∈ A∩X , then define the
functional Fnτ : A→ R ∪ {+∞} by setting

Fnτ (c) = E(c) +
1

2τ
W 2(c, cn−1), ∀c ∈ A.

The functional Fnτ is bounded from below since all its components are. Then we define

(28) cn ∈ argmin
c∈A

Fnτ (c).

In case that Fnτ possesses several mimimizers, a selection must be made: if cn−1
1 and cn−1

2 are both
positive a.e. in Ω, then any minimizer is fine. However, if one of the two densities vanishes on a set
of positive measure, then we need to select cn such that it is an accumulation point in the weak
H2(Ω)2-topology for δ → 0 of the set of minimizers of the functionals

Fn,δτ (c) = E(c) +
1

2τ
W 2(c, cn−1,δ), with cn−1,δ

i = (1− δ)cn−1
i + δci(29)

where ci is defined by (9). Under certain conditions, for instance in the thermally agitated situation
where θ1, θ2 > 0, it is known a priori that both cn1 and cn2 are strictly positive, and hence no selection
is necessary, see e.g. Lemma 3.1. The proof of the existence of cn solution to (28) is given below.
The proof that one can indeed select the minimizer in the way described above is postponed to
Corollary 3.3 in Section 3.4, where we show compactness properties of the set of minimizers.

Proposition 2.1. For any cn−1 ∈ A ∩X , there exists (at least) one solution cn ∈ A ∩X to the
minimization scheme (28).

Proof. Let
(
cn,k

)
k≥0

be a minimizing sequence with cn,0 = cn−1 and such that

(30) E(cn,k) ≤ E(cn−1) <∞ for all k ≥ 0.

We infer from (10) that cn,k ∈ X , hence 0 ≤ cn,ki ≤ 1 for all k ≥ 0 and i ∈ {1, 2}. Moreover, in view
of the presence of the Dirichlet energy in E , it follows by means of the Poincaré-Wirtinger inequality

that the cn,ki are k-uniformly bounded in H1(Ω). Passing to a subsequence if necessary, the cn,ki
converge to limits cni , weakly in H1(Ω) thanks to Alaoglu’s theorem, and also strongly in L1(Ω) by
Rellich’s compactness lemma. All the components of E are sequentielly lower semi-continuous with
respect to this convergence, and so

E(cn) ≤ lim inf
k→∞

E(cn,k).
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Finally, also the Wasserstein distance is lower semi-continuous with respect to strong convergence
in L1(Ω),

W (cn, cn−1) ≤ lim inf
k→∞

W (cn,k, cn−1).

As a consequence, cn is a minimizer of Fnτ . �

Each sequence (cn)n≥1 of iterated solutions to the scheme (28) is accompanied by approximate

phase potentials (µn)n≥1: these are introduced in such a way that in the time-continuous limit,

the continuity equations ∂tci = ∇ · [mici∇(µi + Ψi)] hold. The suitable quantities µni are identified
(somewhat a posteriori) by comparing the optimality conditions for (28) with the persued limit
PDE system (1).

In order to justify the formal definition of µn that we give below in (33), we anticipate an auxiliary
result from Section 3.4, that can be understood as a formulation of the time-discrete Euler-Lagrange
equations. It involves the (backward) Kantorovich potentials ϕn = (ϕn1 , ϕ

n
2 ) sending cn on cn−1. A

subtle point is to overcome the inherent non-uniqueness of ϕn1 and ϕn2 — particularly if one of the
cni ’s vanishes on a set of positive measure — by making a suitable selection, as will be explained
in Section 3.4. We note that the intricate selection procedure for the minimizer cn in (28) enters
precisely at this point.

Lemma 2.2. At each step n ≥ 1, there exist Kantorovich potentials ϕn = (ϕn1 , ϕ
n
2 ) for sending cn

to cn−1 such that Fn : Ω→ R, given by

(31) Fn =
ϕn1
τ
− ϕn2

τ
− α∆cn1 + f(cn1 ) + χ(1− 2cn1 ) + Ψ1 −Ψ2,

satisfies

Fn ≤ 0 a.e. in {cn1 > 0}, Fn ≥ 0 a.e. in {cn2 > 0}.(32)

With the particular choice of ϕn from the lemma, we define µn = (µn1 , µ
n
2 ) : Ω→ R2 by

µn1 := −ϕ
n
1

τ
−Ψ1 − θ1 log(cn1 ) + (Fn)+ , and µn2 := −ϕ

n
2

τ
−Ψ2 − θ2 log(cn2 ) + (Fn)− .(33)

Actually, since Fn is invariant under simultaneous addition of a global constant to both ϕn1 and
ϕn2 , we can assume that their normalization is chosen such that∫

Ω

µndx = 0, where µn = cn1µ
n
1 + cn2µ

n
2 .(34)

Note that it follows directly from the definition of µn that

µn1 − µn2 = −α∆cn1 + χ(1− 2cn1 ) a.e. in Ω.(35)

Moreover, thanks to (32), we have that

µni = −ϕ
n
i

τ
−Ψi − θi log(cni ) a.e. in {cni > 0}.(36)

With these quantities at hand, we define further the piecewise constant interpolants cτ : R+ →
A ∩X and µτ : R+ → R2 by

(37) cτ (t) = (cn1 , c
n
2 ), µτ (t) = (µn1 , µ

n
2 ) for t ∈ ((n− 1)τ, nτ ].

Any pair (cτ ,µτ ) that has been obtained in this way from an iterated minimizer (cn)n≥1 will be
referred to as τ -approximate solution below.
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2.3. Weak solutions. The goal of this section is to state our main result, that is the convergence
of the JKO scheme. It requires the introduction of the notion of weak solution that will be obtained
at the limit when the approximation parameter τ tends to 0.

Definition 2.3. A pair (c,µ) of phase concentrations c = (c1, c2) : Ω→ [0, 1] and phase potentials
µ = (µ1, µ2) : Ω→ R is said to be a weak solution to the problem (17), (2), and (3) if

• Regularity of concentrations: ci ∈ L∞(R+;H1(Ω))∩L2
loc(R+;H2(Ω))∩C(R+;L2(Ω));

• Regularity of potentials: µi ∈ L2
loc(R+;Lqd(Ω)) with qd = 2 if d ∈ {1, 2}, and qd = 3

2 if

d = 3, as well as ci∇µi ∈ L2(R+, L
2(Ω))d, and (normalization)∫

Ω

(c1(x, t)µ1(x, t) + c2(x, t)µ2(x, t)) dx = 0, for a.e. t ≥ 0;

• Initial and boundary conditions: ci(·, 0) = c0i on Ω, and ∇ci · n = 0 on ∂Ω× R+;
• Volume constraint: c1 + c2 = 1 a.e. in Ω× R+;
• Continuity equations: for all ξ ∈ C2(Ω) and all t1, t2 ∈ R+ with t2 ≥ t1,

(38)

∫
Ω

(ci(x, t2)− ci(x, t1))ξ(x)dx+mi

∫ t2

t1

∫
Ω

(ci∇(µi + Ψi) + θi∇ci) ·∇ξdxdt = 0;

• Steepest descent: (20) holds almost everywhere in Ω× R+, i.e.

(39) µ1 − µ2 = −α∆c1 + χ(1− 2c1).

Here is the convergence theorem for the minimization scheme. The global existence of a weak
solution is a by-product. All along the paper, T denotes an arbitrary finite time horizon, and we
make use of the shorten notation QT for the space-time cylinder Ω× (0, T ).

Theorem 2.4 (Convergence of the minimizing movement scheme). Assume that parameters α1, α2, χ >
0 and θ1, θ2 ≥ 0 as well as external potentials Ψ1,Ψ2 ∈ H1(Ω) are prescribed. Let c0 = (c01, c

0
2) be

an initial condition satisfying (6).
Then, for any sequence (τn)n≥1 ⊂ (0, 1) with τn → 0 and a corresponding sequence of τn-

approximate solutions
(
cτn ,µτn

)
n≥1

, one can select a sub-sequence (not relabeled) such that,

ci,τn −→
n→∞

ci in the L∞((0, T );H1(Ω))-weak-? sense,

‖ci,τn(·, t)− ci(·, t)‖L2(Ω) −→
n→∞

0 for all t ∈ [0, T ],

ci,τn −→
n→∞

ci in L2((0, T );W 1,d(Ω)),

ci,τn −→
n→∞

ci weakly in L2((0, T );H2(Ω)),

µi,τn −→
n→∞

µi for the weak topology of L2((0, T );Lqd(Ω)),

ci,τn∇µi,τn −→
n→∞

ci∇µi weakly in L2(QT )d,

and the limit (c,µ) is a weak solution in the sense of Definition 2.3.

We recall that the definition of τ -approximate solutions involves the selection of particular min-
imizers in (28) unless all densities have full support.
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3. Proof of Theorem 2.4

We first establish some estimates on the approximate solution cτ . The very classical energy
estimate and some straightforward consequences are exposed in Section 3.1. In Section 3.2, we
show that the approximate solution remains bounded away from 0 and 1 if the thermal diffusion
coefficients θi are positive. Then in Section 3.3, we make use of the flow interchange technique
initially introduced in [30] to get enhanced regularity estimates on the approximate solutions. The
Euler-Lagrange equation are then obtained in Section 3.4 thanks to a linearization technique inspired
from the work of Maury et al. [32]. The convergence of the approximate solution towards a weak
solution is finally established in Section 3.5.

3.1. Energy and distance estimate. By definition of cn in (28), one has Fnτ (cn) ≤ Fnτ (cn−1),
i.e.,

(40) E(cn) +
1

2τ
W 2(cn, cn−1) ≤ E(cn−1), ∀n ≥ 1.

Summing (40) over n, and using that E(c) ≥ E? > −∞ for all c ∈ A, we obtain the square distance
estimate

(41)
1

τ

∑
n≥1

W 2(cn, cn−1) ≤ 2
(
E(c0)− E?

)
< +∞.

This readily gives the approximate 1/2-Hölder estimate

(42) W (cn2 , cn1) ≤ C
√
|n2 − n1|τ , ∀n1, n2 ≥ 0.

Bearing in mind the definition (37) of the approximate solution cτ , we get that

(43) W (cτ (t), cτ (s)) ≤ C
√
|t− s|+ τ , ∀s, t ≥ 0.

We also deduce from the energy estimate (40) that

(44) E(cn) ≤ E(c0) <∞.
We deduce that

(45)

∫
Ω

|∇cn1 |2dx ≤ 2

α

E(c0) +
∑

i∈{1,2}
‖Ψi‖L1

 <∞, ∀n ≥ 0.

3.2. Positivity of the discrete solution in presence of thermal agitation. The formula (36)
suggests to give a proper sense to the quantity θi log(cni ). This is the purpose of the following lemma,
which is an adaptation to our framework of [37, Lemma 8.6].

Lemma 3.1. Let cn be a minimizer of Fnτ as in (28). Assume that θi > 0, then cni > 0 a.e. in Ω.
Moreover, θi log(cni ) ∈ L1(Ω).

Proof. With a slight abuse of notation, we denote by c = (c1, c2) the constant element of X ∩A
given by (9). Fix n. Given ε ∈ (0, 1), we introduce cε ∈ X ∩A by

(46) cεi = εci + (1− ε)cni = cni + ε(ci − cni ).

Note that cεi > 0 everywhere in Ω, and that

cεi − ci = (1− ε)(cni − ci)(47)
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By optimality of cn, the inequality

Etherm(cn)− Etherm(cε) ≤ EDir(c
ε)− EDir(c

n) + Echem(cε)− Echem(cn)

+ Eext(c
ε)− Eext(c

n) +
1

2τ

(
W 2(cε, cn−1)−W 2(cn, cn−1)

)
holds for all ε ∈ (0, 1). Then — with generic constants C that may change from line to line, but
are independent of ε — it follows directly from the definition of cε in (46) that

EDir(c
ε) ≤ EDir(c

n),

that

Echem(cε) ≤ Echem(cn) + ε

∫
Ω

(c1 − cn1 )(1− 2cn1 )dx ≤ Echem(cn) + Cε,

and that

Eext(c
ε) = Eext(c

n) + ε
∑

i∈{1,2}
〈cni − ci , Ψi〉L∞(Ω),L1(Ω) ≤ Eext(c

n) + Cε.

Moreover, the convexity of W 2 yields

W 2(cε, cn−1) ≤W 2(cn, cn−1) + ε
(
W 2(c, cn−1)−W 2(cn, cn−1)

)
≤W 2(cn, cn−1) + Cε.

Combining the above inequalities, we obtain that

(48) Etherm(cn)− Etherm(cε) =
∑

i∈{1,2}
θi

∫
Ω

(H(cni )−H(cεi))dx ≤
Cε

τ
.

Let i ∈ {1, 2} be such that θi > 0, and denote by A = {x ∈ Ω | cni (x) > 0}. Then convexity of H
implies that

(49) H(cni )−H(cεi) ≥ (cni − cεi) log(cεi) = ε(cni − ci) log(cεi) a.e. in A.

On the other hand, since cεi = εci a.e. in Ac,

(50) H(cni )−H(cεi) = 1−H(εci) = −εci log(εci) + εci a.e. in Ac.

Integrating (49) over A and (50) over Ac and using (48), we obtain after division by ε > 0 that

(51) − ci log(εci)|Ac|+
∫
A

(cni − ci) log(cεi) ≤
C

τ
.

In view of (47), we have

(cni − ci) log(cεi) ≥ (cni − ci) log(ci),(52)

and therefore

−ci log(εci)|Ac|+
∫
A

(cni − ci) log(ci) ≤
C

τ
.

Letting ε tend to 0 produces a contradiction unless |Ac| = 0. Thus we have proved that A = Ω (up
to a negligible set). Moreover, in view of (52), and since (cni − ci) log(ci) ∈ L1(Ω), Fatou’s Lemma
applies and leads to∫

Ω

(cni − ci) log(cni )dx ≤ lim inf
ε→0

∫
Ω

(cni − ci) log(cεi)dx ≤
C

τ
.

This latter inequality imposes that log(cni ) belongs to L1(Ω) for fixed τ > 0. �
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3.3. Flow interchange and entropy estimate. In the next lemma, our goal is to get an improved
regularity estimate on c by the mean of the flow interchange technique.

Lemma 3.2. There exists C depending only on α, χ,Ψi, c
0, mi, T , such that

(53)
∑

i∈{1,2}
θi

∫ T

0

∫
Ω

|∇√ci,τ |2dxdt +

∫ T

0

∫
Ω

|∆cτ |2dxdt ≤ C, ∀T > 0.

Since Ω is convex, it implies

(54) ‖cτ‖L2((0,T );H2(Ω)) ≤ C.
Moreover, there holds

(55) ∇cni · n = 0 on ∂Ω.

Proof. Below, s ≥ 0 denotes an auxiliary time variable. Let či (i ∈ {1, 2}) be the unique solution
to

(56)


∂sči = ∆či in Ω× (0,∞),

∇či · n = 0 on ∂Ω× (0,∞),

(či)|s=0
= cni in Ω.

It is easy to check that
∫

Ω
či(x, s)dx =

∫
Ω
c0i (x)dx, hence each č(s) = (č1(s), č2(s)) is an admissible

competitor in (28), i.e., Fnτ (cn) ≤ Fnτ (č(s)). After rearraging terms in Fnτ and dividing by s > 0,
the passage to the limit s→ 0 in this inequality produces

− lim sup
s→0

d

ds
E(č(s)) ≤ d

ds

∣∣∣∣
s=0

(
1

2τ
W 2(č(s), cn−1)

)
.(57)

To estimate the derivative on the right hand side above, we use that the heat equation (56) is
the gradient flow of the Boltzmann entropy functional H(c) =

∫
Ω
H(c)dx, which is displacement

convex. Therefore, solutions č to (56) satisfy the Evolution Variational Inequality [1, Definition 4.5]
centered at cn−1

i , that is

1

2

d

ds
W 2
i (či(s), c

n−1
i ) ≤ H(cn−1

i )−H(či(s))

mi
.

Division by τ and summation over i leads to

(58)
d

ds

(
1

2τ
W 2(č(s), cn−1)

)
≤

∑
i∈{1,2}

H(cn−1
i )−H(či(s))

miτ
, ∀s > 0.

The estimate for the left-hand side of (57) is more combersome. We estimate the s-derivate of the
various parts of E individually. To begin with, notice that there is no contribution from Econs, since
the constraint č1(s) + č2(s) = 1 is preserved by (56). For working on the other parts of E , we use
that the solution či of (56) belongs to C∞((0,∞);H2(Ω)), is positive on Ω for s > 0, and satisfies
homogeneous Neumann boundary conditions. That makes či regular enough to justify the following
calculations, and in particular the integration by parts. For the Dirichlet energy, we obtain

(59)
d

ds
EDir(č(s)) =

d

ds

α

2

∫
Ω

|∇č1(s)|2dx = −α
∫

Ω

∆č1(s)∂sč1(s)dx = −α
∫

Ω

|∆č1(s)|2 dx.
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The derivative of the chemical energy amounts to

d

ds
Echem(č(s)) =

d

ds
χ

∫
Ω

č1(s)(1− č1(s))dx

= χ

∫
Ω

(1− 2č1(s))∂sč1(s)dx = 2χ

∫
Ω

|∇č1(s)|2dx,

and since s 7→ EDir(č(s)) is non-increasing by the previous calculation, we can further conclude that

(60)
d

ds
Echem(č(s)) ≤ 2χ

∫
Ω

|∇cn1 |2dx ≤ C,

where the second inequality follows from (45). Next, for the thermal energy,

d

ds
Etherm(č(s)) =

∑
i∈{1,2}

θi
d

ds

∫
Ω

H(či(s))dx =
∑

i∈{1,2}
θi

∫
Ω

log(či(s))∂sči(s)dx

=
∑

i∈{1,2}
θi

∫
Ω

log(či(s))∆či(s)dx = −
∑

i∈{1,2}
θi

∫
Ω

∇ log(či(s)) ·∇či(s)dx,

and since či(t) is smooth on Ω and bounded away from 0, we conclude that

(61)
d

ds
Etherm(č(s)) = −4

∑
i∈{1,2}

θi

∫
Ω

|∇
√
či(s)|2dx.

Finally, we obtain for the derivative of the potential

d

ds
Eext(č(s)) =

d

ds

∑
i∈{1,2}

∫
Ω

Ψiči(s)dx =

∫
Ω

(Ψ1 −Ψ2)∂sč1(s)dx

=

∫
Ω

(Ψ1 −Ψ2)∆č1(s)dx ≤ α

2
‖∆č1(s)‖2L2 +

1

2α
‖Ψ1 −Ψ2‖2L2 .

In combination with (59), this implies

(62)
d

ds

(
EDir(č(s)) + Eext(č(s))

)
≤ −α

2
‖∆č1(s)‖2L2 + C, ∀s > 0.

Since the initial condition cni in (56) belongs to H1(Ω), we have that či(s)→ cni in H1(Ω) as s→ 0.
In particular, H(či(s)) → H(cni ) as s → 0. Now we substitute (58) and (60), (61), (62) into (57),
obtaining

lim sup
s→0


∫

Ω

|∆č1(s)|2dx +
∑

i∈{1,2}
θi

∫
Ω

∣∣∣∇√či(t)∣∣∣2 dx

 ≤ C
1 +

∑
i∈{1,2}

H(cn−1
i )−H(cni )

miτ

 .

(63)

Since the initial condition cni in (56) belongs to H1(Ω), we have that či(s)→ cni in H1(Ω) as s→ 0.
Convexity of the the functionals c 7→

∫
|∆c|2dx and c 7→

∫
|∇√c|2dx implies lower semi-continuity

with respect to convergence in H1(Ω), and therefore∫
Ω

|∆cn1 |2dx+
∑

i∈{1,2}
θi

∫
Ω

∣∣∣∇√cni ∣∣∣2 dx ≤ C

1 +
∑

i∈{1,2}

H(cn−1
i )−H(cni )

miτ

 , ∀n ≥ 1.
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Multiplying by τ and summing over n ∈
{

1, . . . ,
⌈
T
τ

⌉}
leads to (53); here we use that 0 ≤∑

i∈{1,2}H(ci) ≤ 2|Ω| for all measurable c1, c2 : Ω→ [0, 1], and that |∆cn2 | = |∆cn1 |.
Concerning the boundary condition (55): observe that the solution či to (56) satisfies in particular

∇či(s) · n = 0 at each s > 0. Since Ω is convex, one can show (see [23, Chapter 3]) that∫
Ω

‖∇2či(s)‖2dx ≤
∫

Ω

|∆či(s)|2dx.

In combination with the fact that či(s) has values in [0, 1] only, it follows that the L2-norm of
∆či(s) controls the full H2-norm of či(s), i.e.,

‖či(s)‖2H2(Ω) ≤ C
(

1 +

∫
Ω

|∆či(s)|2dx

)
.(64)

On the other hand, (63) implies in particular that ∆či(s) remains bounded in L2 as s → 0. By
Alaoglu, and since we already know that či(s) tends to cni in H1(Ω), it follows that či(s) converges to
cni weakly in H2(Ω) as s→ 0. Now, since the trace operator mapping c ∈ H2(Ω) to ∇c ·n ∈ L2(∂Ω)
is weakly continuous, we conclude that ∇cni · n = 0 as well.

Finally, we obtain (54): since we have just shown that cni satisfies homogeneous Neumann bound-
ary conditions, the same argument as above shows that (64) holds also with cni in place of či(s).
Summation of (53) over n directly produces (54). �

Corollary 3.3. At each step n ≥ 1, there exists among the minimizers in (28) at least one which
is a weak H2(Ω)2-limit point for δ → 0 of the set of minimizers of the functionals Fn,δτ defined in
(29).

Proof. Since cn−1,δ → cn−1 in L1(Ω)2 as δ → 0, the Fn,δτ Γ-converge to Fnτ , for instance in the
topology induced by W on A. In complete analogy to the previous proof, we obtain for each
minimizer cn,δ of Fn,δτ that

‖cn,δ‖2H2 ≤ C

1 +
∑

i∈{1,2}

H(cn−1,δ
i )−H(cn,δi )

miτ

 ≤ C

τ
.

Therefore, there is a sequence cn,δk that converges weakly in H2(Ω)2 to a limit cn that minimizes
Fnτ . �

3.4. Euler Lagrange equations. The goal of this section is to characterize the minimizer cn

of (28). We have anticipated the main result already in Lemma 2.2. It is a consequence of the
following linearized optimality condition for cn.

Lemma 3.4. In each step n ≥ 1, there exist Kantorovich potentials ϕn = (ϕn1 , ϕ
n
2 ) such that the

quantity Fn given in (31) satisfies the following linearized optimality condition:

(65)

∫
Ω

Fncn1 dx ≤
∫

Ω

Fnc1dx, ∀c = (c1, c2) ∈ A.

Proof. The proof is inspired from [32, Lemma 3.1], see also [12, Lemma 3.2]. Assume first that
cn−1
i > 0 almost everywhere in Ω, so that the Kantorovich potentials ϕn1 , ψ

n
1 from cn1 to cn−1

1 are
unique up to addition of a global constant, that we fix at an arbitrary value for this proof. For any
given c ∈ A ∩X , we perturb cn into

(66) cε = (1− ε)cn + εc, ∀ε ∈ (0, 1).



18 CLÉMENT CANCÈS, DANIEL MATTHES, AND FLORE NABET

Clearly, cε belongs to A∩X . Defining (ϕεi , ψ
ε
i ) the Kantorovich potential from cεi to cn−1

i , we infer
from (26) that 

1

2
W 2
i (cεi , c

n−1
i ) =

∫
Ω

ϕεi(x)cεi(x)dx+

∫
Ω

ψεi (y)cn−1
i (y)dy,

1

2
W 2
i (cni , c

n−1
i ) ≥

∫
Ω

ϕεi(x)cni (x)dx+

∫
Ω

ψεi (y)cn−1
i (y)dy.

Subtracting the two above relations and using the definition (66) of cε, one gets

1

2τ

(
W 2
i (cεi , c

n−1
i )−W 2

i (cni , c
n−1
i )

)
≤ ε

∫
Ω

ϕεi
τ

(ci − cni ) dx.

Hence, using cn, c ∈ X , one gets that

(67)
1

2τ

(
W 2(cε, cn−1)−W 2(cn, cn−1)

)
≤ ε

∫
Ω

(
ϕε1
τ
− ϕε2

τ

)
(c1 − cn1 ) dx.

On the other hand, the convexity of EDir and Etherm, the linearity of Eext, and the concavity of Echem

yield

(68) E(cε)− E(cn) ≤ ε
∫

Ω

α∇cε1 ·∇(c1 − cn1 )dx+ ε

∫
Ω

χ(1− 2cn1 )(c1 − cn1 )dx

+ ε

∫
Ω

f(cε1)(c1 − cn1 )dx+ ε

∫
Ω

(Ψ1 −Ψ2) (c1 − cn1 )dx.

Bearing in mind that cn1 is a minimizer, the combination of (67) with (68) leads to

0 ≤ F
n
τ (cε)−Fnτ (cn)

ε
≤
∫

Ω

(
ϕε1
τ
− ϕε2

τ

)
(c1 − cn1 ) dx+

∫
Ω

α∇cε1 ·∇(c1 − cn1 )dx

+

∫
Ω

χ(1− 2cn1 )(c1 − cn1 )dx+

∫
Ω

f(cε1)(c1 − cn1 )dx+

∫
Ω

(Ψ1 −Ψ2) (c1 − cn1 )dx, ∀ε > 0.

We can consider the limit ε → 0 in the right-hand side of the above expression. From the defini-
tion (66) of cε, it is clear that cε1 converges in H1(Ω) towards cn1 and that f(cε1) converges in L1(Ω)
towards f(cn1 ), while ϕεi converges uniformly towards ϕni (see for instance [37, Theorem 1.52]), so
that (65) holds thanks to Lemma 3.2.

Assume now that cn−1
i = 0 on some part of Ω. By definition of cn in and after (28), there exists

a sequence of minimizers cn,δ of the respective functionals Fn,δτ given in (29) that converge weakly

in H2(Ω)2 to cn. Defining Fn,δ as Fn in (31) upon replacing cni by cn,δi and ϕni by the Kantorovich

potential ϕn,δi sending cn,δi to cn−1,δ
i , then we get from the reasoning above that

(69)

∫
Ω

Fn,δ(c1 − cn,δ1 ) ≥ 0, ∀c = (c1, c2) ∈ A ∩X .

The weak convergence of the cn,δi to cni in H2(Ω), and the induced uniform convergence of the

Kantorovich potentials ϕn,δi to Kantorovich potentials ϕni sending cni to cn−1
i (cf. [37, Theorem

1.52]) is sufficient to deduce (65) from (69) in the limit δ → 0. �

We are now in the position to prove Lemma 2.2 which has been essential for the definition of the
potentials µ.
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Proof of Lemma 2.2. Since 0 ≤ cn1 ≤ 1, the minimization problem (65) can be solved thanks to the
bathtub principle [28, Theorem 1.14]. It amounts to saturate the sublevel sets of Fn with cn1 = 1
until all the mass

∫
Ω
c0i has been allocated. This implies the existence of some ` ∈ R such that

(70) cn1 (x) =

{
0 if Fn(x) > `,

1 if Fn(x) < `,
cn2 (x) =

{
1 if Fn(x) > `,

0 if Fn(x) < `.

Given Fn, the solution cn1 to the minimization problem (65) is in general not unique since a pre-
scribed amount of mass can be distributed on the level set {Fn = `} in different ways without
changing the value of the functional. But this lack of uniqueness does not affect the relations (70).

Recall that we still have the freedom to change the Kantorovich potential ϕn1 in the definition
(31) of Fn by addition of a global constant. We choose that constant to enforce ` = 0 in (70) above.
With that normalization, (70) implies (32). �

Lemma 3.5. The chemical potentials µ satisfy the following τ -uniform estimates:

(71) ‖µi,τ‖L2((0,T );Lqd (Ω)) ≤ C, ‖µ1,τ − µ2,τ‖L2(QT ) ≤ C,
∥∥√ci,τ∇µi,τ

∥∥
L2(QT )

≤ C.

Proof. Recall the definition of µ in (33). It follows from (53) that

(72)

∫∫
QT

(µ1,τ − µ2,τ )
2

dxdt ≤ C.

The definition of µn implies that

∇µn =
∑

i∈{1,2}
cni ∇µni + ∇cn1 (µn1 − µn2 )

=−
∑

i∈{1,2}

(
cni

∇ϕni
τ
− cni ∇Ψi − θi∇cni

)
+ ∇cn1 (µn1 − µn2 ) .

Using the triangle inequality, Cauchy-Schwarz inequality, and 0 ≤ cni ≤ 1, we get

‖∇µn‖L1(Ω) ≤
1

τ

∑
i∈{1,2}

(∫
Ω

cni

)1/2(∫
Ω

cni |∇ϕni |2dx

)1/2

+
∑

i∈{1,2}
‖∇Ψi‖L1(Ω)d + ‖∇cn1‖L2(Ω)d

(
|Ω|1/2(θ1 + θ2) + ‖µn1 − µn2‖L2(Ω)

)
.

Since cn ∈ A, one has
∫

Ω
cni dx =

∫
Ω
c0idx. Thus it follows from (27), (41), (45) and (72) that

(73) ‖∇µτ‖2L2((0,T );L1(Ω)d) ≤
dTτ e∑
n=0

τ‖∇µn‖2L1(Ω)d ≤ C.

Bearing (34) in mind, we can use the Poincaré-Sobolev inequality and get that

(74) ‖µτ‖L2((0,T );Ld/(d−1)(Ω)) ≤ C.
Since

µn1 = µn + cn2 (µn1 − µn2 ), µn2 = µn + cn1 (µn2 − µn1 ),
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we deduce from (72) the desired L2((0, T );Lqd(Ω)) estimates on the phase potentials µni with qd
defined in Definition 2.3. Finally, the combination of the relations (36), (27), (53) and (41) yields∫∫

QT

ci,τ |∇µi,τ |2 dxdt ≤ C.

�

The following lemma is a first step towards the recovery of the weak formulation (38).

Lemma 3.6. For any ξ ∈ C2(Ω), there holds

(75)

∣∣∣∣∫
Ω

(
cni − cn−1

i

)
ξdx+ τmi

∫
Ω

(cni ∇ (µni + Ψi) + θi∇cni ) ·∇ξdx

∣∣∣∣ ≤ 1

2
W 2
i (cni , c

n−1
i )‖D2ξ‖∞.

Proof. The optimal transport map

tni (x) = x−mi∇ϕni (x), ∀x ∈ Ω

sending cni to cn−1
i maps Ω into itself because Ω is convex. Therefore, since cn−1

i = tni #cni and
thanks to (36), one gets that∫

Ω

(
cni − cn−1

i

)
ξdx+ τmi

∫
Ω

(cni ∇ (µni + Ψi) + θi∇cni ) ·∇ξdx

=

∫
Ω

(ξ(x)− ξ(tni (x))−mi∇ξ(x) ·∇ϕni (x)) cni (x)dx

for all ξ ∈ C2(Ω). The Taylor expansion of ξ at point x provides

|ξ(tni (x))− ξ(x) +mi∇ξ(x) ·∇ϕi(x)| ≤ 1

2
‖D2ξ‖∞|tni (x)− x|2, ∀x ∈ Ω,

so that∣∣∣∣∫
Ω

(cni − cn−1
i )ξdx+ τmi

∫
Ω

(cni ∇ (µni + Ψi) + θi∇cni ) ·∇ξdx

∣∣∣∣
≤ 1

2
‖D2ξ‖∞

∫
Ω

|tni (x)− x|2cni (x)dx,

which is exactly the desired result. �

3.5. Convergence towards a weak solution. The goal of this section is to consider the limit
τ → 0. This requires some compactness on the approximate phase field cτ and on the approximate
potential µτ . In what follows, A is equipped with the topology corresponding to the distance W .

Proposition 3.7. There exist c ∈ C([0, T ];L2(Ω)) ∩ L2((0, T );H2(Ω)) ∩ L∞((0, T );H1(Ω)) with
c(t) ∈ A ∩ X for a.e. t ∈ [0, T ], and µ ∈ L2((0, T );Lqd(Ω)) such that, up to the extraction of a
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subsequence, the following convergence properties hold:

ci,τ −→
τ→0

ci in the L∞((0, T );H1(Ω))-weak-? sense,(76a)

‖ci,τ (·, t)− ci(·, t)‖L2(Ω) −→
τ→0

0 for all t ∈ [0, T ],(76b)

ci,τ −→
τ→0

ci in L2((0, T );W 1,d(Ω)),(76c)

ci,τ −→
τ→0

ci weakly in L2((0, T );H2(Ω)),(76d)

µi,τ −→
τ→0

µi for the weak topology of L2((0, T );Lqd(Ω)),(76e)

ci,τ∇µi,τ −→
τ→0

ci∇µi weakly in L2(QT )d.(76f)

Proof. All the convergence properties stated below occur up to the extraction of a subsequence when
τ tends to 0. We deduce from Estimate (45) that the family (cτ )τ>0 is bounded in L∞((0, T );H1(Ω)).

Hence we can assume that cτ tends to some c in the L∞((0, T );H1(Ω))-weak-? sense. Moreover,
since 0 ≤ ci,τ ≤ 1, we also have that 0 ≤ ci ≤ 1 a.e. in QT . We also infer from Estimate (54) that
cτ converges weakly in L2((0, T );H2(Ω)) towards c.

As a consequence of the L∞ bound on ci,τ and of the Benamou-Brenier formula, we get that

‖c(1)
i − c

(2)
i ‖H1(Ω)′ ≤

1

mi
Wi(c

(1)
i , c

(2)
i ), ∀c(1)

i , c
(2)
i ∈ Ai,

(see more precisely [37, Lemma 3.4]). Therefore, we infer from (43) that

‖ci,τ (t)− ci,τ (s)‖H1(Ω)′ ≤ C
√
|t− s|+ τ , ∀s, t ∈ [0, T ].

Let ∆t > 0 and let t ∈ [0, T −∆t], then

‖ci,τ (t+ ∆t)− ci,τ (t)‖2L2(Ω)≤‖ci,τ (t+ ∆t)− ci,τ (t)‖H1‖ci,τ (t+ ∆t)− ci,τ (t)‖(H1)′ ≤ C
√

∆t+ τ .

Bearing in mind the L∞((0, T );H1(Ω)) estimate on ci,τ , we can apply a refined version of the
Arzelà-Ascoli theorem [2, Prop. 3.3.1] to obtain that ci ∈ C([0, T ];L2(Ω)) and that

ci,τ (t) −→
τ→0

ci(t) in L2(Ω) for all t ∈ [0, T ].

Together with the estimate 0 ≤ ci,τ ≤ 1, we deduce that c ∈ C([0, T ];Lp(Ω))2 and that

cτ −→
τ→0

c in Lp(QT )2, ∀p ∈ [1,+∞).

This implies in particular some strong convergence in L2(QT ), which can be combined with the
weak convergence in L2((0, T );H2(Ω)) thanks to interpolation arguments to derive some strong
convergence in L2((0, T );Hs(Ω)) for any s < 2. The continuous embedding of Hs(Ω) into W 1,d(Ω)
when s ≥ 1 + max(0, d−2

2 ) (see for instance [17, Theorem 6.7]) ensures that

(77) cτ −→
τ→0

c in L2((0, T );W 1,d(Ω))2.

Let us switch to the phase potentials µ. Thanks to Lemma 3.5, we have (uniform w.r.t. τ)
L2((0, T );Lqd(Ω)) estimates on µi,τ . Hence there exists µ in L2((0, T );Lqd(Ω))2 such that

(78) µi,τ −→
τ→0

µi weakly in L2((0, T );Lqd(Ω)).

In Lemma 3.5, we also established a (uniform w.r.t. τ) L2(QT )d estimate on
(√
ci,τ∇µi,τ

)
τ>0

.

Since 0 ≤ ci,τ ≤ 1, it implies a uniform L2(QT )d estimate on (ci,τ∇µi,τ )τ>0. Therefore, there

exists ϑi ∈ L2(QT )d such that ci,τ∇µi,τ converges weakly in L2(QT )d to ϑi as τ tends to 0. It
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remains to show that ϑi = ci∇µi. First, the distributions ci and ∇µi can be multiplied since ci
belongs to L2((0, T );W 1,d(Ω)) and ∇µi belongs to L2((0, T );W−1,qd(Ω)) with qd ≤ d

d−1 . Moreover,

for all φ ∈ C∞c (QT )d, one has

(79)

∫∫
QT

ci,τ∇µi,τ · φdxdt = −
∫∫

QT

µi,τ (∇ci,τ · φ+ ci,τ∇ · φ) dxdt.

Thanks to (77) and (78), we can pass in the limit in the right-hand side of the above expression.
This leads to

(80)

∫∫
QT

ci,τ∇µi,τ · φdxdt −→
τ→0
−
∫∫

QT

µi (∇ci · φ+ ci∇ · φ) dxdt = 〈ci∇µi , φ〉D′,D.

As a consequence, ϑi = ci∇µi in the distributional sense, thus also in L2(QT ).
Since cτ (t) converges in L2(Ω)2 towards c(t) for all t ∈ [0, 1], there holds∫

Ω

ci(t)dx =

∫
Ω

c0idx, c1(x, t) + c2(x, t) = 1 for all t ∈ [0, T ].

Moreover, since c(t) belongs to H1(Ω) for a.e. t ∈ (0, T ), c(t) belongs to A ∩X for a.e. t ∈ (0, T ).
This concludes the proof of Proposition 3.7. �

We have all the necessary convergence properties to pass to the limit τ → 0 and to identify the
limit (c,µ) exhibited in Proposition 3.7 as a weak solution in the sense of Definition 2.3.

Proposition 3.8. Let (c,µ) be as in Proposition 3.7, then (c,µ) is a weak solution to the prob-
lem (17), (2)–(3) in the sense of Definition 2.3.

Proof. Since ci,τ and µi,τ tend weakly in L2((0, T );H2(Ω)) and L2((0, T );Lqd(Ω)) towards ci and
µi respectively, we can pass to the limit in (35). Moreover, one can also pass to the limit in the
relation 0 = ∇c1,τ · n established in Lemma 3.2, leading to ∇c1 · n = 0 on ∂Ω.

It only remains to recover the weak formulation (38). Let t1, t2 ∈ [0, T ] with t2 ≥ t1, then
summing (75) over n ∈

{⌈
t1
τ

⌉
+ 1, . . . ,

⌈
t2
τ

⌉}
yields∣∣∣∣∣

∫
Ω

(ci,τ (t2)− ci,τ (t1)) ξdx+mi

∫ d t2τ eτ
d t1τ eτ

∫
Ω

(ci,τ∇ (µi,τ + Ψi) + θi∇ci,τ ) ·∇ξdxdt

∣∣∣∣∣
≤ 1

2
‖D2ξ‖∞

d t2τ e∑
n=d t1τ e

W 2
i (cni , c

n−1
i ) ≤ Cτ,

the last inequality being the consequence of the squared distance estimate (41). We can pass to the
limit τ → 0 in the above relation thanks to Proposition 3.7. �

We have finally proved Theorem 2.4 that is a combination of Propositions 3.7 and 3.8.
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