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A TWO-PHASE TWO-FLUXES DEGENERATE CAHN-HILLIARD MODEL AS

CONSTRAINED WASSERSTEIN GRADIENT FLOW

CLÉMENT CANCÈS, DANIEL MATTHES, AND FLORE NABET

Abstract. We study a so-called non-local Cahn-Hilliard model obtained as a constrained Wasser-
stein gradient flow of some Ginzburg-Landau energy. When compared to the more classical local

degenerate Cahn-Hilliard model studied in [C. M. Elliott and H. Garcke, SIAM J. Math. Anal.,

27(2):404–423, 1996], the non-local model appears to take advantage of a larger flexibility on the
phase fluxes to dissipate faster the energy, as confirmed by numerical simulations. We prove the

existence of a solution to non-local problem by proving the convergence of the JKO minimizing

movement scheme.

Keywords. Multiphase flow, Cahn-Hilliard type system, constrained Wasserstein gradient flow
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1. Motivation and presentation of the model

1.1. Motivation. The celebrated Cahn-Hilliard model was introduced by Cahn and Hilliard [12]
in order to model the evolution of metallic alloys in which each phase aims at being pure and
to have a minimal perimeter. A similar approach was proposed by de Gennes [19] to model the
segregation of polymer blends. In the two-phase case, only one of the two phases is described with
its concentration c1 ∈ [0, 1] and its flux J1. The local conservation of mass

∂tc1 + ∇ · J1 = 0

holds, and the other phase whose concentration c2 is equal to 1− c1 is assumed to have a flux equal
to J2 = −J1 (the total flux is therefore equal to 0). The flux J1 is equal to the opposite of some
degenerate mobility times the gradient of the generalized chemical potential:

J1 = −η(c1)∇µ,

with η(0) = η(1) = 0 (typically, η(c1) = mc1(1 − c1)). In the above relation, µ is the functional
derivative of some Ginzburg-Landau energy

E(c) =

∫ (α
2
|∇c|2 + F (c)

)
dx,

where, in absence of thermal agitation, F : [0, 1] → R is assumed to be concave with minima in
0 and 1, typically F (c) = χc(1 − c) (see for instance [7]). This modeling has been justified by
Gurtin [27] by assuming the presence of micro-forces in the material.

The Cahn-Hilliard model has been used later on in the context of multiphase fluid flows because
of its capacity to separate different phases (see for instance [9, 10]). In this setting, rather than
the micro-force balance, it is natural to assume that the total flux J tot = J1 + J2 is divergence
free but not equal to 0 in general. In this work, we propose a model of Cahn-Hilliard type where
the total flux J tot is not equal to 0. This nonlocal model is closely related to the model derived
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by E and Palffy-Muhoray in [22]. This model is obtained as a Wasserstein gradient flow of the
Ginzburg-Landau energy but in the situation where both phases are allowed to move independently
under the constraint that c1 +c2 = 1. This property was depicted by Otto and E in [40] but without
thorough justification.

The nonlocal model is derived formally in Section 1.2, then compared to the classical (or local)
degenerate Cahn-Hilliard model in Section 1.3. Numerical illustrations of its behavior are given
in Section 1.4. In Section 2, we introduce the necessary material to prove our main result, that
is the existence of a weak solution to our model. This existence result is obtained by showing the
convergence of a minimizing movement scheme à la Jordan, Kinderlehrer, and Otto [29]. Finally,
Section 3 is devoted to the proof of the convergence of the minimizing movement scheme.

1.2. Derivation of the model. We consider an incompressible mixture composed of two phases
flowing within an open convex subset Ω of Rd with d ≤ 3. The fluid is incompressible, so its
composition at time t ≥ 0 is fully described by the saturations ci(x, t) ∈ [0, 1], i ∈ {1, 2}, i.e., the
volume ratio of the phase i in the fluid. This leads to the constraint

(1) c1 + c2 = 1 in Ω× (0,∞).

The motions of each phase is governed by a linear transport equation

(2) ∂tci + ∇ · (civi) = 0 in Ω× (0,∞),

where vi : Ω × R+ → Rd denotes the speed of the phase i, and V = (v1,v2). At the initial time
t = 0, the composition of the mixture is given by c0 = (c01, c

0
2) : Ω→ [0, 1]2, and we assume that

(3) c01 + c02 = 1 in Ω.

We assume that

0 <

∫
Ω

c01dx < |Ω|,

excluding the trivial situation where c1 ≡ 1 or c1 ≡ 0. The boundary ∂Ω of Ω is impervious, hence
the speed vi belongs to

Z(c) =
{
V : Ω→

(
Rd
)2 ∣∣∣ civi · n = 0

}
,

where n denotes the outward normal to ∂Ω. As a consequence, the volume of the phase i is
conserved along time:

(4)

∫
Ω

ci(x, t)dx =

∫
Ω

c0i (x)dx, t ≥ 0, i ∈ {1, 2}.

At each time t ≥ 0, the saturations c(t) belongs to the set

A = A1 ×A2,

of the admissible saturation states, where

Ai =

{
ci ∈ L1(Ω;R+)

∣∣∣∣ ∫
Ω

ci(x)dx =

∫
Ω

c0i (x)dx

}
, i ∈ {1, 2}.

To any configuration c ∈ A, we can associate an energy

E(c) = EDir(c) + Echem(c) + Etherm(c) + Econs(c) + Eext(c).
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The Dirichlet energy

EDir(c) =


∑

i∈{1,2}

αi
2

∫
Ω

|∇ci|2dx if c ∈ H1(Ω)2,

+∞ otherwise;

αi ≥ 0,

penalizes the variations of the saturation profiles. The chemical energy is assumed to be proportional
to the saturation of both phases:

Echem(c) = χ

∫
Ω

c1c2dx, with χ > 0.

The term Etherm originates from the thermal agitation and is given by

Etherm(c) =
∑

i∈{1,2}

θi

∫
Ω

H(ci)dx, θi ≥ 0

where H is the Boltzmann entropy

H(c) = c log(c)− c+ 1 ≥ 0, ∀c ≥ 0.

The case θ1 = θ2 = 0 is called the deep quench limit [11]. The constraint (1) is incorporated directly
in the energy by setting

Econs(c) =

∫
Ω

Econs(c)dx, where Econs(c) =

{
0 if c1 + c2 = 1,

+∞ otherwise.

The component Eext comes from an exterior potential that acts on the volume of the fluid, like for
instance gravity or electrostatic forces. We assume that there exist external potentials Ψi ∈W 1,1(Ω)
with Ψ1 −Ψ2 ∈ L2(Ω) such that

Eext(c) =
∑

i∈{1,2}

∫
Ω

ci(x)Ψi(x)dx.

The chemical part Echem of the energy functional is not convex but is smooth, whereas the other
components EDir, Econs, and Etherm are all convex (in the usual linear sense: EDir and Econs are not
displacement convex in McCann’s sense [37]). As a consequence, the energy functional E admits a
(local) subdifferential ∂E(c) at each admissible c ∈ A defined by

∂E(c) =

{
w = (w1, w2) : Ω→ R2

∣∣∣∣E(ĉ)− E(c)−
∫

Ω

w · (ĉ− c)dx ≥ o
(
‖ĉ− c‖L1(Ω)

)}
.

Denote by H∗(Ω) the dual set of {u ∈ H1(Ω)|
∫

Ω
udx = 0}, and by

X =
{
c ∈ H1(Ω;R+)2

∣∣ c1 + c2 = 1 a.e. in Ω
}

the domain of E , i.e.,

(5) E(c) <∞ ⇔ c ∈ X .

It follows from elementary calculations (similar to those of [14] in the context of porous media flows)

that the subdifferential ∂E(c) of E at c ∈ A∩X is made of the elements w = (w1, w2) of (H∗(Ω))
2

such that

(6) w1 − w2 = −α∆c1 + χ(1− 2c1) + f(c1) + (Ψ1 −Ψ2),
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where we have set α = α1 + α2 and

(7) f(c1) = log

(
cθ11

(1− c1)θ2

)
= θ1 log(c1)− θ2 log(c2).

We define then the chemical potential µi of the phase i by

(8) µi = wi − θi log(ci)−Ψi, i ∈ {1, 2},

so that (6) turns to

(9) µ1 − µ2 = −α∆c1 + χ(1− 2c1).

Until now, µ is only defined up to an additive constant. This degree of freedom is eliminated by
imposing for almost all t > 0 that

(10)

∫
Ω

µ(x, t)dx = 0, where µ = c1µ1 + c2µ2.

The relation (9) is complemented by homogeneous Neumann boundary conditions

(11) −∇c1 · n = 0 on ∂Ω× R+.

We are interested in the rigorous derivation of the PDEs that govern the gradient flow of the
energy E(c) in A endowed with a tensorized Wasserstein distance to be introduced in Section 2.1.
To this end, we prove the convergence of the minimizing movement (or JKO) scheme [29]. But let us
first provide formal calculations based on the framework of generalized gradient flows of [38, 41, 14]
in order to identify the underlying PDEs.

The motion of the phases induces a viscous dissipation given by

(12) D(c,V ) =
∑

i∈{1,2}

1

2mi

∫
Ω

ci|vi|2dx, ∀c ∈ A, ∀v ∈ Z2,

where mi is the mobility coefficient of the phase i. We suppose as in [14] that at each time t ≥ 0,
the phase speeds V = (v1,v2) is selected by the following steepest descent condition:

V ∈ argmin
V ∈Z(c)

D(c,V ) + max
w∈∂E(c)

∑
i∈{1,2}

∫
Ω

civi ·∇widx

 .

Assume that the min and the max can be swapped in the above formula, then optimizing over V
first yields

(13) vi = −mi∇wi on {ci > 0} for i ∈ {1, 2}.

Maximizing the result over the elements w ∈ ∂E(c) leads to the elliptic equation

−∇ ·

 ∑
i∈{1,2}

mici∇wi

 = 0.

The above equation combined with (2) and (13) implies that ∂t(c1 + c2) ≡ 0, hence that the
algebraic constraint (1) on the saturation remains satisfied along time. To sum up, the system of
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partial differential equations corresponding to the variational modeling presented above is obtained
by combining the equations (1), (2), (6), (11), and (13). It leads to the system

(14)


∂tci −∇ · (mici∇wi) = 0 for i ∈ {1, 2},
c1 + c2 = 1,

w1 − w2 = −α∆c1 + χ(1− 2c1) + f(c1) + (Ψ1 −Ψ2),

to be satisfied in some appropriate sense in Ω × (0,∞). Introducing the chemical potential µi as
in (8), the problem rewrites

∂tci −∇ · (mici∇ (µi + Ψi)) = miθi∆ci for i ∈ {1, 2},
c1 + c2 = 1,

µ1 − µ2 = −α∆c1 + χ(1− 2c1).

The system is complemented with initial conditions

(15) (ci)|t=0
= c0i ∈ H1(Ω) with c0i ≥ 0 and c01 + c02 = 1 in Ω,

and boundary conditions

(16) ci∇(µi + Ψi) · n = ∇ci · n = 0 on ∂Ω× (0,∞).

In the next section, we highlight some differences between the non-local model (14) and the local
degenerate Cahn-Hilliard model that has been studied for instance in [23].

1.3. Comparison with the classical degenerate Cahn-Hilliard model. Even in the simple
situation where the external potentials Ψi are equal to 0 and where θ1 = θ2 = 0, the system (14)
differs as soon as d ≥ 2 from the local degenerate Cahn-Hilliard model that can be written as

(17) ∂tc−∇ · (η(c)∇µ) = 0, µ = −α∆c+ χ(1− 2c), η(c) =
m1m2c(1− c)
m1c+m2(1− c)

.

We refer to [23] for the existence of weak solutions to (17) (complemented with suitable boundary
conditions) and to [4] for the extension of the model to the case of N phases (N ≥ 3). Here, µ is
the generalized chemical potential that is defined as the difference of the phase chemical potentials.

The energy Ẽ associated to (17) is similar to the one of our problem, i.e.,

Ẽ(c) =
α

2

∫
Ω

|∇c|2dx+ χ

∫
Ω

c(1− c)dx.

But both the equation governing the motion (2) and the dissipation (12) have to be modified. More
precisely, the continuity equation (2) must be replaced by its nonlinear counterpart

∂tc+ ∇ · (η(c)v) = 0,

while the dissipation is now given by

D̃(c,v) =

∫
Ω

η(c)|v|2dx.

Therefore, the PDEs (17) can still be interpreted as the gradient flow of the energy Ẽ , but the
geometry is different: rather than considering some classical quadratic Wasserstein distance for
each phase and to constrain the sum of the concentrations to be equal to 1 (as it will be the case
for our approach), the set

A =

{
c ∈ L1(Ω;R+)

∣∣∣∣ ∫
Ω

c(x, t)dx =

∫
Ω

c01(x)dx

}
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has to be equipped with the weighted Wasserstein metric corresponding to the concave mobility η.
We refer to [21] for the description of the corresponding metric and to [33] for the rigorous recovery
of (17) by a gradient flow approach.

The difference between the non-local model (14) and the local one (17) can also be seen as
follows. Summing the first equation of (14) for i ∈ {1, 2} yields

(18) ∇ · J tot = 0, where J tot =
∑

i∈{1,2}

civi = −
∑

i∈{1,2}

mici∇µi.

The equation for c1 can then be rewritten

(19) ∂tc1 + ∇ · (ρ(c1)J tot − η(c1)∇(µ1 − µ2)) = 0, with ρ(c) =
m1c

m1c+m2(1− c)
.

Thus our model (14) boils down to the local Cahn-Hilliard equation as soon as J tot ≡ 0. This is
the case when d = 1 because of (18), but no longer if d ≥ 2. Since our non-local model does not
impose that J1 = −J2, it allows for additional motions. These motions —corresponding to the
transport term ∇ · (ρ(c1)J tot) in (19)— contribute to the dissipation as shows the formula

D(c,−∇µ) =

∫
Ω

|J tot|2

m1c1 +m2c2
dx+ D̃(c,−∇(µ1 − µ2)).

Therefore, and as already noticed by Otto and E in [40], the instantaneous dissipation corresponding
to a phase configuration c is greater for the non-local model (14) than for the local model (17) and
the energy decreases faster.

1.4. Numerical illustration. The goal of this section is to illustrate the behavior of the model (14)
and to compare it with the classical degenerate Cahn-Hilliard problem (17). In order to solve
numerically (14) we use an implicit in time finite volume scheme with upstream mobility described
in [17] and inspired from the oil engineering context [25]. The mesh is triangular and assumed
to fulfill the so-called orthogonality condition [28, 24] (this amounts to requiring the mesh to be
Delaunay) so that the diffusive fluxes can be approximated thanks to a two-point flux approximation
in a consistent way. As it is exposed in [17], the scheme is positivity preserving (i.e., 0 ≤ ci,h ≤ 1),
it is energy diminishing (the discrete counterpart of the energy is decreasing) and entropy stable. It
leads to a nonlinear system of algebraic equations to be solved at each time step. It is shown in [17]
that this system admits (at least) one solution that is computed thanks to the Newton-Raphson
method.

Concerning the problem (17), we use a similar approach, but since the mobility function η is no
longer monotone, we have to use an implicit Godunov scheme to discretize it as a generalization of
the upstream mobility (see for instance [16]). Here again, the discrete solution remains bounded
between 0 and 1, the energy is decreasing and the entropy remains bounded. Here again, the
resulting nonlinear system is solved at each time step by the mean of the Newton-Raphson method.

Remark 1.1. Alternative numerical methods have been proposed in order to solve degenerate Cahn-
Hilliard problems. We won’t perform here an exhaustive list, but let us mention the contributions of
Barrett et al. based on conformal finite elements [3, 4]. Even though very efficient, these methods
have the drawback of requiring a small stabilization to be tuned following the mesh size. Unless one
considers non-smooth energies as in [8], the scheme does not preserve the bounds 0 ≤ ci,h ≤ 1.
These difficulties are overpassed in our approach by using some entropy stable hyperbolic fluxes to
discretize the mobilities.
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Since our model has a Wasserstein gradient flow structure, it would be natural to use a La-
grangian method as for instance in [6, 35, 30, 18]. The main problem with this approach is that both
phase move with their own speed, therefore such an approach would impose to move two meshes
simultaneously. It is then rather unclear how to manage the constraint (1) in this case. For this
reason, it seems more suitable to stick to an Eulerian description. An alternative approach to solve
numerically our problem would therefore be to adapt the ALG2-JKO algorithm of Benamou et al. [5]
to our setting.

We propose two different test cases that will allow to illustrate the difference between the local
model (17) and the non-local model (14). For both of them, we do not consider any exterior
potential, i.e., Ψi = 0, and we neglect the thermal diffusion, i.e., θi = 0. Both phase mobilities mi

are assumed to be equal to 1, and we choose α = 3.10−4 and χ = 0.96.

1.4.1. Test case 1: from a cross to a circle. We start from an initial data that is the characteristic
function of a cross. Since α� χ, it follows from the Modica and Mortola’ result [39] that the free
energy is close to the perimeter of a characteristic set (up to a multiplicative constant). This means
that (up to a small regularization) both the local and the non-local Cahn-Hilliard models aim at
minimizing the perimeter of the sets {c1 = 0} and {c1 = 1} corresponding to pure phases. Since
the non-local model allows for more movements (cf. Section 1.3), the energy (thus the perimeter)
should decay faster for the nonlocal model. This is indeed what we observe on Figures 1 and 2.

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2
·10−2

Time

E
n
er

gy

non-local
local

Figure 1. Evolution of the energy E(c) along time for the non-local model (14)
and the local one (17). The decay of the energy is faster for the non-local model,
as shown in Section 1.3.

1.4.2. Test case 2: Spinodal decomposition. Similarly to the local model, the non-local model is
able to reproduce the spinodal decomposition for mixtures. In order to illustrate this fact, we start
from an initial data which consists in a constant concentration plus a small random perturbation:

c01(x) = 0.5 + r(x), r � 1.

Since c1 = 0.5 is very unfavorable from an energetic point of view, both phase will separate very
rapidly, letting areas with pure phase appear. Then these area will cluster in order to minimize
their perimeter. We plot on Figure 3 some snapshots to illustrate the spinodal decomposition
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Figure 2. Evolution along time of the numerical solution to the non-local prob-
lem (14) (top) and to the local problem (17) (bottom). Snapshots at time t = 10−2

(left), t = 2.10−2 (middle), and t = 10−1 (right).

corresponding to models (14) and (17). On Figure 4, we compare the evolution of the energy along
time for spinodal decomposition corresponding to both models. As expected, the energy decay is
faster for the non-local model than for the local one. But contrarily to Test case 1, the solutions
seem to converge towards different steady states.

2. Wasserstein gradient flow, JKO scheme and main result

2.1. Wasserstein distance. As a preliminary to the introduction of the minimizing movement
scheme, we introduce some necessary material related to Wasserstein (or Monge-Kantorovich) dis-
tances between nonnegative measures of prescribed mass that are absolutely continuous w.r.t. to
the Lebesgue measure. We refer to Santambrogio’s monograph [42] for an introduction to optimal
transportation and to the Wasserstein distances, and to Villani’s big book [43] for a more complete
presentation.

Given two elements ci and či of Ai (i ∈ {1, 2}), a map t : Ω → Ω is said to send ci on či (we
write či = t#ci) if∫

A

či(x)dx =

∫
t−1(A)

ci(x)dx, for all Borel subset A of Ω.

The Wasserstein distance Wi(ci, či) with quadratic cost function between ci and či is then defined
by

(20) Wi(ci, či) = inf
t s.t. či=t#ci

(
1

mi

∫
Ω

|x− t(x)|2ci(x)dx

)1/2

, i ∈ {1, 2}.

In (20), the infimum is in fact a minimum, and t is the gradient of a convex function. In our
context of fluid flows, the cost for moving the mass of the phase i from a configuration ci to another



A DEGENERATE CAHN-HILLIARD MODEL AS CONSTRAINED WASSERSTEIN GRADIENT FLOW 9

Figure 3. Snapshots at times t = 6.10−3 (left), t = 5.10−2 (middle), and t = 1
(right) illustrating the spinodal decomposition governed by model (14) (top) and
model (17) (bottom).
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Figure 4. Evolution of the energy E(c) along time for the non-local model (14)
and the local one (17) for the spinodal decomposition test case.

configuration či regardless to the other phase is equal to W 2
i (ci, či). The multiplying factor 1/mi is

natural since the more mobile is the phase, the less expensive are its displacements. We can then
define the tensorized Wasserstein distance W on A by

W 2(c, č) = W 2
1 (c1, č1) +W 2

2 (c2, č2), ∀c, č ∈ A.
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In the core of the proof, we will make an extensive use of the Kantorovich dual problem. More
precisely, we will use the fact that

(21)
1

2
W 2
i (ci, či) = sup

ϕi∈L1(ci),ψi∈L1(či)

ϕi(x)+ψi(y)≤ |x−y|2
2mi

∫
Ω

ci(x)ϕi(x)dx+

∫
Ω

či(y)ψi(y)dy.

Here, L1(ρ) denotes the sets of integrable functions for the measure with density ρ. Here again, the
supremum is in fact a maximum, and the Kantorovich potentials (ϕi, ψi) achieving the sup in (21)
are dci ⊗ dči unique up to an additive constant. The optimal transportation ti sending ci on či
achieving the inf in (20) is related to the Kantorovich potential by

ti(x) = x−mi∇ϕi(x), ∀x ∈ Ω

with ϕi achieving the sup in (21). As a consequence, the formula (20) provides

(22) W 2
i (ci, či) = mi

∫
Ω

ci |∇ϕi|2 dx, i ∈ {1, 2}

to be used in the sequel.

2.2. The JKO scheme and the approximate solution. We have now all the necessary material
at hand to define the minimizing movement scheme. Let τ > 0 and cn−1 ∈ A∩X , then define the
functional Fnτ : A→ R ∪ {+∞} by setting

Fnτ (c) = E(c) +
1

2τ
W 2(c, cn−1), ∀c ∈ A.

The functional Fnτ is bounded from below since all its components are (recall that Ψi ∈ L1(Ω)).
Then we define

(23) cn ∈ argmin
c∈A

Fnτ (c).

The existence of such a minimizer is the purpose of the following statement.

Proposition 2.1. For any cn−1 ∈ A ∩X , there exists (at least) one solution cn ∈ A ∩X to the
minimization scheme (23).

Proof. Let
(
cn,k

)
k≥0

be a minimizing sequence with cn,0 = cn−1, then

(24) E(cn,k) ≤ E(cn−1) <∞ ∀k ≥ 0.

We infer from (5) that cn,k ∈ X , hence 0 ≤ cn,ki ≤ 1 for all k ≥ 0 and i ∈ {1, 2}. Moreover, it

follows from the definition of the energy E that ‖∇cn,ki ‖L2(Ω) ≤ C for all k ≥ 0. Hence, using

the Poincaré-Wirtinger inequality, we get that ‖cn,ki ‖H1(Ω) ≤ C. In particular, we can assume

that the sequence
(
cn,k

)
k≥0

converges weakly in H1(Ω)2, in the L∞(Ω)2 weak-? sense and almost

everywhere (hence strongly in Lp(Ω)2 for all p ∈ (1,+∞)) towards cn ∈ X . It follows from the
lower-semi continuity of E w.r.t. the weak-? topology of L∞ ∩H1(Ω)2 (all the components of E are
continuous, excepted EDir that is merely l.s.c.) that

E(cn) ≤ liminf
k→∞

E(cn,k).
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Besides, since cn,k tends to cn in L1(Ω)2, and thanks to the lower semi-continuity of W w.r.t. the
topology induced on A by L1(Ω)2, then

W (cn, cn−1) ≤ liminf
k→∞

W (cn,k, cn−1).

As a consequence, cn is a minimizer of Fnτ . �

From a sequence (cn)n≥1 of iterated solutions to the scheme (23), we deduce a discrete solution
cτ : R+ → A ∩X defined by

(25) cτ (0) = c0, cτ (t) = cn if t ∈ ((n− 1)τ, nτ ].

We can also build approximate phase potentials (µn)n≥1. More precisely, for all n ≥ 1, let ϕn =

(ϕn1 , ϕ
n
2 ) and ψn = (ψn1 , ψ

n
2 ) be Kantorovich potentials sending cn on cn−1, i.e.,

(26)
1

2
W 2(cn, cn−1) =

∑
i∈{1,2}

(∫
Ω

cni ϕ
n
i dx+

∫
Ω

cn−1
i ψni dy

)
,

then ϕni and ψni can be shifted vertically by some arbitrary αni ∈ R without changing the value of
the right-hand side in the above expression. As it will be established in the proof of Lemma 3.5,
there are suitable vertical shifts and functions Fni such that Fni = 0 a.e. in {ci > 0} such that

(27) µni := −ϕ
n
i

τ
−Ψi − θi log(cni ) + Fni

satisfies

µn1 − µn2 = −α∆cn1 + χcn1 c
n
2 and

∫
Ω

(cn1µ
n
1 + cn2µ

n
2 ) dx = 0.

We can then define µτ (t) = (µ1,τ (t), µ2,τ (t)) for t > 0 by setting µi,τ (t) = µni for t ∈ ((n− 1)τ, nτ ].

2.3. Weak solutions. The goal of this section is to state our main result, that is the convergence
of the JKO scheme. It requires the introduction of the notion of weak solution that will be obtained
at the limit when the approximation parameter τ tends to 0.

Definition 2.2. (c,µ) is said to be a weak solution to the problem (14), (15), and (16) if

• the phase concentrations ci belong to L∞(R+;H1(Ω)) ∩ L2
loc((0, T );H2(Ω)) ∩ C(R+;L2(Ω)) with

ci(0, ·) = c0i , ∇ci · n = 0 on ∂Ω× R+ and c1 + c2 = 1 a.e. in Ω× R+;
• the phase potentials µi belong to L2

loc(R+;Ld/d−1(Ω)) and are such that
√
ci∇µi ∈ L2(R+, L

2(Ω))d

and ∫
Ω

(c1(x, t)µ1(x, t) + c2(x, t)µ2(x, t)) dx = 0, for a.e. t ≥ 0;

• the relation (9) on the difference of the phase potentials holds almost everywhere in Ω× R+;
• for all ξ ∈ C2(Ω) and all t1, t2 ∈ R+ with t2 ≥ t1, there holds

(28)

∫
Ω

(ci(x, t2)− ci(x, t1))ξ(x)dx+mi

∫ t2

t1

∫
Ω

(ci∇(µi + Ψi) + θi∇ci) ·∇ξdxdt = 0.

Here is the convergence theorem for the minimization scheme. The existence of a weak solution
is a by-product.
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Theorem 2.3 (Convergence of the minimizing movement scheme). Let (τn)n≥1 ⊂ (0, 1) be a

sequence tending to 0 as n tends to ∞, and let
(
cτn ,µτn

)
n≥1

be a corresponding sequence of ap-

proximate solution, then, up to the extraction of a subsequence,

ci,τn −→
n→∞

ci in the L∞((0, T );H1(Ω))-weak-? sense,

‖ci,τn(·, t)− ci(·, t)‖L2(Ω) −→
n→∞

0 for all t ∈ [0, T ],

ci,τn −→
n→∞

ci in L2((0, T );W 1,d(Ω)),

ci,τn −→
n→∞

ci weakly in L2((0, T );H2(Ω)),

µi,τn −→
n→∞

µi for the weak topology of L2((0, T );Ld/d−1(Ω)),

ci,τn∇µi,τn −→
n→∞

ci∇µi weakly in L2(QT )d,

where (c,µ) is a weak solution in the sense of Definition 2.2.

The approximation of the weak solution thanks to a minimizing movement scheme provides a
rigorous foundation to the fact that our model can be reinterpreted as a gradient flow in the metric
space A endowed with the Wasserstein metric W . The remaining of the paper is devoted to proof
of the Theorem 2.3. It is based on compactness arguments applied to the sequence (cτ ,µτ )τ>0.

3. Proof of Theorem 2.3

We first establish some estimates on the approximate solution cτ . The very classical energy
estimate and some straightforward consequences are stated in Sections 3.1. In Section 3.2, we show
that the approximate solution remains bounded away from 0 and 1 if the thermal diffusion coeffi-
cients θi are positive. Section 3.3 where the flow interchange technique initially introduced in [34]
is applied. The Euler-Lagrange equation are then obtained in Section 3.4 thanks to a linearization
technic inspired from the work of Maury et al. [36]. The convergence of the approximate solution
is finally established in Section 3.5.

3.1. Energy and distance estimate. Testing by cn−1 in (23) yields

(29) E(cn) +
1

2τ
W 2(cn, cn−1) ≤ E(cn−1), ∀n ≥ 1.

Summing (29) over n, and using that E(c) ≥ E? > −∞ for all c ∈ A, we obtain the square distance
estimate

(30)
1

τ

∑
n≥1

W 2(cn, cn−1) ≤ 2
(
E(c0)− E?

)
< +∞.

This readily gives the approximate 1/2-Hölder estimate

(31) W (cn2 , cn1) ≤ C
√
|n2 − n1|τ , ∀n1, n2 ≥ 0.

Bearing in mind the definition (25) of the approximate solution cτ , we get that

(32) W (cτ (t), cτ (s)) ≤ C
√
|t− s|+ τ , ∀s, t ≥ 0.

We also deduce from the energy estimate (29) that

(33) E(cn) ≤ E(c0) <∞.
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We deduce that

(34)

∫
Ω

|∇cn1 |2dx ≤ 2

α

E(c0) +
∑

i∈{1,2}

‖Ψi‖L1

 <∞, ∀n ≥ 0.

3.2. Positivity of the discrete solution in presence of thermal agitation. The formula (27)
suggests to give a proper sense to the quantity θi log(cni ). This is the purpose of the following lemma,
which is an adaptation to our framework of [42, Lemma 8.6].

Lemma 3.1. Let cn be a minimizer of Fnτ as in (23). Assume that θi > 0, then cni > 0 a.e. in Ω.
Moreover, θi log(cni ) ∈ L1(Ω).

Proof. We define c = (c1, c2) the constant element of X ∩A given by

ci =
1

|Ω|

∫
Ω

c0idx > 0.

Then given ε ∈ (0, 1), we introduce cε ∈ X ∩A which is defined by

(35) cεi = εci + (1− ε)cni = cni + ε(ci − cni ).

Note that cεi > 0 everywhere in Ω. By optimality of cn, the inequality

Etherm(cn)− Etherm(cε) ≤ EDir(c
ε)− EDir(c

n) + Echem(cε)− Echem(cn)

+ Eext(c
ε)− Eext(c

n) +
1

2τ

(
W 2(cε, cn−1)−W 2(cn, cn−1)

)
holds for all ε ∈ (0, 1). It follows from (35) that

EDir(c
ε) ≤ EDir(c

n),

that

Echem(cε) ≤ Echem(cn) + ε

∫
Ω

(c1 − cn1 )(1− 2cn1 )dx ≤ Echem(cn) + Cε,

and that

Eext(c
ε) = Eext(c

n) + ε
∑

i∈{1,2}

〈cni − ci , Ψi〉H1,(H1)′ ≤ Eext(c
n) + Cε.

Moreover, the convexity of W 2 yields

W 2(cε, cn−1) ≤W 2(cn, cn−1) + ε
(
W 2(c, cn−1)−W 2(cn, cn−1)

)
≤W 2(cn, cn−1) + Cε.

Here and all along this proof, C may depend on n but not ε. Combining the above inequalities, we
obtain that

(36) Etherm(cn)− Etherm(cε) =
∑

i∈{1,2}

θi

∫
Ω

(H(cni )−H(cεi))dx ≤ Cε.

Let i ∈ {1, 2} be such that θi > 0, then denote by A = {x ∈ Ω | cni (x) > 0}. Then convexity of H
implies that

(37) H(cni )−H(cεi) ≥ (cni − cεi) log(cεi) = ε(cni − ci) log(cεi) a.e. in A.

On the other hand, we remark that

(38) H(cni (x))−H(cεi(x)) = 1−H(εci) = −εci log(εci) + εci, ∀x ∈ Ac.
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Integrating (37) over A and (38) over Ac and using (36), we obtain that

(39) − ci log(εci)|Ac|+
∫
A

(cni − ci) log(cεi) ≤ C.

Since (cni − ci) log(cεi) ≥ (cni − ci) log(ci), one gets that

−ci log(εci)|Ac|+
∫
A

(cni − ci) log(ci) ≤ C.

We let ε tend to 0 and get a contradiction unless |Ac| = 0. Thus we have proved that A = Ω (up
to a negligible set). The function (cni − ci) log(cεi) is bounded from below by (cni − ci) log(ci) that
belongs to L1(Ω), then we can apply Fatou’s Lemma when ε→ 0 and claim that∫

Ω

(cni − ci) log(cni )dx ≤ lim inf
ε→0

∫
Ω

(cni − ci) log(cεi)dx ≤ C.

This latter inequality imposes that log(cni ) belongs to L1(Ω). �

3.3. Flow interchange and entropy estimate. In the next lemma, our goal is to get an improved
regularity estimate on c by the mean of the flow interchange technique.

Lemma 3.2. There exists C depending only on α, χ,Ψi, c
0, mi, T , such that

(40)

∫ T

0

∫
Ω

|∆cτ |2dxdt ≤ C, ∀T > 0.

Since Ω is convex, it implies

(41) ‖cτ‖L2((0,T );H2(Ω)) ≤ C.

Proof. Let či (i ∈ {1, 2}) be the unique solution to

(42)


∂tči −∆či = 0 in Ω× (0,∞),

∇či · n = 0 on ∂Ω× (0,∞),

(či)|t=0
= cni in Ω.

Then it is easy to check that č1(·, t) + č2(·, t) = 1 and that
∫

Ω
či(x, t)dt =

∫
Ω
c0i (x)dx, whereas

ci(·, t) ≥ 0 owing to the maximum principle. Therefore, č = (č1, č2) belongs to A ∩ X and is an
admissible competitor in (23).

The heat equation (42) can be reinterpreted as the gradient flow of the Boltzmann entropy
H(c) =

∫
Ω
c log(c)dx, which is displacement convex. Therefore, applying the Evolution Variational

Inequality [1, Definition 4.5] centered at cn−1
i to the flow yields

1

2

d

dt
W 2(či(t), c

n−1
i ) ≤ H(cn−1

i )−H(či(t)).

Dividing the previous inequality by τmi and summing over i leads to

(43)
d

dt

(
1

2τ
W 2(č(t), cn−1)

)
≤

∑
i∈{1,2}

H(cn−1
i )−H(či(t))

miτ
, ∀t > 0.

The solution či of (42) belongs to C∞((0,∞);H2(Ω)) with či(x, t) > 0 if t > 0, so the solution is
regular enough to justify the chain rules in the calculations below that give

(44)
d

dt
E(č(t)) = ADir(t) +Achem(t) +Atherm(t) +Aext(t).
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In the above relation, the term ADir(t) comes from the Dirichlet energy and writes

(45) ADir(t) =
d

dt

α

2

∫
Ω

|∇č1(t)|2dx = −α
∫

Ω

∆č1(t)∂tč1(t)dx = −α
∫

Ω

|∆č1(t)|2 dx.

The term Achem comes from the chemical energy and writes

Achem(t) =
d

dt
χ

∫
Ω

č1(t)(1− č1(t))dx

= χ

∫
Ω

(1− 2č1(t))∂tč1(t)dx = 2χ

∫
Ω

|∇č1(t)|2dx.

Since the Dirichlet energy is decreasing along the trajectories of the heat equation (42), we get that

(46) Achem(t) ≤ 2χ

∫
Ω

|∇cn1 |2dx ≤ C

thanks to (34). The term Atherm coming from the thermal diffusion is non-positive. Indeed,

Atherm(t) =
∑

i∈{1,2}

θi
d

dt

∫
Ω

H(či(t))dx =
∑

i∈{1,2}

θi

∫
Ω

log(či(t))∂tči(t)dx

=
∑

i∈{1,2}

θi

∫
Ω

log(či(t))∆ci(t)dx = −
∑

i∈{1,2}

θi

∫
Ω

∇ log(či(t)) ·∇či(t)dx.

Since či(t) is smooth on ∂Ω and bounded away from 0, we can write that

(47) Atherm(t) = −4
∑

i∈{1,2}

θi

∫
Ω

|∇
√
či(t)|2dx ≤ 0.

The contributions Aext is related to the potential energy Eext and writes

Aext(t) =
d

dt

∑
i∈{1,2}

∫
Ω

Ψiči(t)dx =

∫
Ω

(Ψ1 −Ψ2)∂tč1(t)dx

=

∫
Ω

(Ψ1 −Ψ2)∆č1(t)dx ≤ α

2
‖∆č1(t)‖2L2 +

1

2α
‖Ψ1 −Ψ2‖2L2 .

It follows from (45) that

(48) ADir(t) +Aext(t) ≤ −
α

2
‖∆č1(t)‖2L2 + C, ∀t > 0.

Since č remains in X , there is no contribution coming from the constraint Econs in (44). The
combination of (43)–(48) ensures that

d

dt
Fnτ (č(t)) +

α

2

∫
Ω

|∆č1(t)|2dx ≤ C

1 +
∑

i∈{1,2}

H(cn−1
i )−H(či(t))

τ

 , ∀t > 0.

The solution či to (42) belongs to C([0,∞);Lp(Ω)) (see for instance [13]), hence H(či(t)) tends to
H(cni ) as t tends to 0. Since cn is a minimizer in (23), one has necessarily that

limsup
t→0+

d

dt
Fnτ (č(t)) ≥ 0,
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otherwise č(t) for some small t > 0 would be a better competitor than cn in (23). Therefore, we
obtain that

liminf
t→0+

∫
Ω

|∆č1(t)|2dx ≤ C

1 +
∑

i∈{1,2}

H(cn−1
i )−H(či(t))

τ

 .

Let (t`)`≥1 ⊂ R+ be a sequence tending to 0 achieving the liminf in the previous inequality, then

the sequence (∆č1(t`))`≥1 is bounded in L2(Ω). Since č1(t`) tends to cn1 in L2(Ω), we can identify
the limit as ∆cn1 . The lower semi-continuity of the norm for the weak convergence yields∫

Ω

|∆cn1 |2dx ≤ liminf
t→0+

∫
Ω

|∆č1(t)|2dx.

As a consequence, we obtain that∫
Ω

|∆cn1 |2dx ≤ C

1 +
∑

i∈{1,2}

H(cn−1
i )−H(cni )

τ

 , ∀n ≥ 1.

Multiplying by τ and summing over n ∈
{

1, . . . ,
⌈
T
τ

⌉}
for a finite time horizon T ≥ τ leads to

(49)

∫ T

0

∫
Ω

|∆cτ |2dxdt ≤ C,

where we have used 0 ≤ H(c) ≤ C for all c ∈ X ∩A, and that |∆cn2 | = |∆cn1 |. Thus cn solves a
Poisson equation with homogeneous Neumann boundary condition and L2 right-hand side, hence
(41) holds (see for instance [31] for the case of a smooth ∂Ω and to [26] in the non-smooth case). �

3.4. Euler Lagrange equations. The goal of this section is to characterize the minimizer cn

of (23). The first step consists in recovering the homogeneous Neumann boundary condition (11)
for the approximate solution cτ .

Lemma 3.3. Let cn be a solution to (23), then

(50) ∇cni · n = 0 on ∂Ω.

Proof. Let us first remark that the above property is trivial if c0i ≡ 0 or c0i ≡ 1, since in these cases,
one has cn1 ≡ 0 or cn1 ≡ 1 respectively. In what follows, we will assume that

(51) 0 <
1

|Ω|

∫
Ω

c01dx < 1.

Since d < 4, H2(Ω) is embedded in C(Ω). Hence there exists xm ∈ Ω, η > 0, and ρ > 0 such that
η < cn1 (x) < 1− η for all x ∈ Ω such that |x−xm| ≤ ρ. We assume without loss of generality that
Bxm,ρ ⊂ Ω.

Let ε ∈ (0, ρ), then define the cut-off function

νε(x) =

(
1− dist(x, ∂Ω)

ε

)+

, ∀x ∈ Ω.

Let h ∈ H1(Ω) be such that 0 ≤ cn1 + h ≤ 1 a.e. in Ω, then, for ε smaller than some ε0 ∈ (0, 1), we
set

cε1 = cn1 + hνε + rε
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where rε ∈ C∞c (Bxm,ρ−ε) is such that∫
Ω

cε1dx =

∫
Ω

cn1 dx =

∫
Ω

c01dx, 0 ≤ cε ≤ 1, ∀ε ∈ (0, ε0).

Since rε is just there to fulfill the preservation of mass, we can assume that it has a constant sign,
so that
(52)
‖hνε‖L1 ≤ |∂Ω|ε, ‖rε‖L1 ≤ |∂Ω|ε, ‖rε‖L∞ ≤ Cε, ‖∇rε‖L2 ≤ Cε, ‖cn1 − cε1‖L1 ≤ 2|∂Ω|ε.
Denoting by cε = (cε1, 1− cε1) ∈ A ∩X , the optimality (23) of cn implies that

(53) E(cε) +
1

2τ
W 2(cε, cn−1) ≥ E(cn) +

1

2τ
W 2(cn, cn−1), ∀ε ∈ (0, ε0).

Let (ϕn,ψn) be some Kantorovich potentials corresponding to the optimal transport between cn

and cn−1 as in (26), then because of (21), one has

W 2(cε, cn−1) ≤ 2
∑

i∈{1,2}

(∫
Ω

cεiϕ
n
i dx+

∫
Ω

cn−1
i ψni dy

)
.

Hence, subtracting (26) to the previous relation, one gets that

W 2(cε, cn−1) ≤W 2(cn, cn−1) + 2
∑

i∈{1,2}

‖cεi − cni ‖L1(Ω)‖ϕni ‖L∞(Ω).

Since Ω is bounded, ϕni is Lipschitz continuous and we can assume that
∫

Ω
ϕni dx = 0, so that

‖ϕi‖∞ ≤ C. Therefore, using (52), we obtain that

(54) W 2(cε, cn−1) ≤W 2(cn, cn−1) + Cε, ∀ε ∈ (0, ε0).

Thanks to (52), one gets that

(55) Eext(c
ε) + Echem(cε) + Etherm(cε) ≤ Eext(c

n) + Echem(cn) + Etherm(cε) + ζε,

with ζε → 0 as ε→ 0. Concerning the Dirichlet energy, we infer from (52) that

(56) EDir(c
ε) ≤ EDir(c

n) + α

∫
Ω

∇cn1 ·∇hνεdx+ α

∫
Ω

∇cn1 ·∇νεhdx+ Cε.

Since cn1 belongs to H2(Ω) ⊂W 1,6(Ω) (recall that d ≤ 3), it follows from Hölder inequality that

(57)

∣∣∣∣∫
Ω

∇cn1 ·∇hνεdx

∣∣∣∣ ≤ ‖∇cn1‖L6(Ω)‖∇h‖L2(Ω)‖ν
ε‖L3(Ω) ≤ Cε

1/3.

Combining (54)–(57) in (53) and letting ε tend to 0 leads to

(58)

∫
∂Ω

∇cn1 · nhdx = lim
ε→0

∫
Ω

∇cn1 ·∇νεhdx ≥ 0, ∀h ∈ H1/2(∂Ω) s.t. 0 ≤ cn1 + h ≤ 1.

We have used above that ∇cn1 admits a strong trace in H1/2(Ω)d on ∂Ω since cn1 belongs to H2(Ω).
Its normal component is characterized by

∇cn1 (x) · n(x) = lim
ε→0

cn1 (x)− cn1 (x− εn(x))

ε
for a.e. x ∈ ∂Ω.

This last relation implies that

∇cn1 · n ≥ 0 on Γ(1) := {x ∈ ∂Ω | cn1 (x) = 1 } ,(59a)

∇cn1 · n ≤ 0 on Γ(2) := {x ∈ ∂Ω | cn1 (x) = 0 } .(59b)
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The combination of (58) with (59) yields (50). �

The next step consists in getting a linearized version of the optimality condition on cn. Recall

that f(c) = log
(

cθ1

(1−c)θ2

)
.

Lemma 3.4. There exists a solution cn ∈ A∩X to (23) such that, denoting by ϕn = (ϕn1 , ϕ
n
2 ) the

corresponding (backward) Kantorovich potentials, and by

(60) Fn =
ϕn1
τ
− ϕn2

τ
− α∆cn1 + f(cn1 ) + χ(1− 2cn1 ) + Ψ1 −Ψ2, ∀n ≥ 1,

then the following linearized optimality condition is fulfilled:

(61)

∫
Ω

Fncn1 dx ≤
∫

Ω

Fnc1dx, ∀c = (c1, c2) ∈ A.

Proof. The proof is directly inspired from [36, Lemma 3.1], see also [15, Lemma 3.2]. Assume
first that cn−1

i > 0 almost everywhere in Ω, so that the Kantorovich potentials ϕn1 , ψ
n
1 from cn1 to

cn−1
1 are uniquely defined after normalizing ϕi(xref) = 0 for some arbitrary xref ∈ Ω. Let c be an

arbitrary element of A ∩X , then we perturb cn into

(62) cε = (1− ε)cn + εc, ∀ε ∈ (0, 1).

Clearly, cε belongs to A∩X . Defining (ϕεi , ψ
ε
i ) the Kantorovich potential from cεi to cn−1

i , we infer
from (21) that 

1

2
W 2
i (cεi , c

n−1
i ) =

∫
Ω

ϕεi(x)cεi(x)dx+

∫
Ω

ψεi (y)cn−1
i (y)dy,

1

2
W 2
i (cni , c

n−1
i ) ≥

∫
Ω

ϕεi(x)cni (x)dx+

∫
Ω

ψεi (y)cn−1
i (y)dy.

Subtracting the two above relations and using the definition (62) of cε, one gets

1

2τ

(
W 2
i (cεi , c

n−1
i )−W 2

i (cni c
n−1
i )

)
≤ ε

∫
Ω

ϕεi
τ

(ci − cni ) dx.

Hence, using cn, c ∈ X , one gets that

(63)
1

2τ

(
W 2(cε, cn−1)−W 2(cn, cn−1)

)
≤ ε

∫
Ω

(
ϕε1
τ
− ϕε2

τ

)
(c1 − cn1 ) dx.

On the other hand, the convexity of EDir and Etherm, the linearity of Eext, and the concavity of Echem

yield

(64)

∫
Ω

(E(cε)− E(cn)) ≤ ε
∫

Ω

α∇cε1 ·∇(c1 − cn1 )dx+ ε

∫
Ω

χ(1− 2cn1 )(c1 − cn1 )dx

+ ε

∫
Ω

f(cε1)(c1 − cn1 )dx+ ε

∫
Ω

(Ψ1 −Ψ2) (c1 − cn1 )dx.

Bearing in mind that cn1 is a minimizer, the combination of (63) with (64) leads to

0 ≤ F
n
τ (cε)−Fnτ (cn)

ε
≤
∫

Ω

(
ϕε1
τ
− ϕε2

τ

)
(c1 − cn1 ) dx+

∫
Ω

α∇cε1 ·∇(c1 − cn1 )dx

+

∫
Ω

χ(1− 2cn1 )(c1 − cn1 )dx+

∫
Ω

f(cε1)(c1 − cn1 )dx+

∫
Ω

(Ψ1 −Ψ2) (c1 − cn1 )dx, ∀ε > 0.
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We can consider the limit ε→ 0 in the right-hand side of the above expression. Bearing in mind the
definition (62) of cε, it is clear that cε1 converges in H1(Ω) towards cn1 and that f(cε1) converges in
L1(Ω) towards f(cn1 ), while ϕεi converges uniformly towards ϕni (see for instance [42, Theorem 1.52]),
so that (61) holds thanks to Lemma 3.3.

Assume now that cn−1
i = 0 on some part of Ω, then we first evolve cn−1 on a small time δ > 0

thanks to the flow (42), yields cn−1,δ = (cn−1,δ
1 , cn−1,δ

2 ) ∈ A∩X with cn−1,δ
i = či(δ) > 0 in Ω. This

allows to define

Fn,δτ (c) =
W 2(c, cn−1,δ)

2τ
+ E(c),

as well as

cn,δ ∈ argmin
c∈A∩X

Fn,δτ

one of its minimizers. Define Fn,δ by replacing in (60) cni by cn,δi and ϕni by the Kantorovich

potential ϕn,δi sending cn,δi to cn−1,δ
i , then we get from the reasoning above that

(65)

∫
Ω

Fn,δ(c1 − cn,δ1 ) ≥ 0, ∀c = (c1, c2) ∈ A ∩X .

It results from Lemma 3.2 that −∆cn,δ1 is uniformly bounded in L2(Ω) w.r.t. δ, hence
(
cn,δ1

)
δ>0

is sequentially relatively compact in H1(Ω). Up to the extraction of a subsequence, cn,δ con-

verges strongly in H1(Ω)2 towards cn, while f(cn,δ1 ) converges in L1(Ω) towards f(cn1 ) and −∆cn,δ1

converges weakly to −∆cn1 . The Kantorovich potentials ϕn,δi converge uniformly towards the Kan-

torovich potential ϕni sending cni to cn−1
i (cf. [42, Theorem 1.52]). Since the solutions to (42) belong

to C(R+;L1(Ω)2), cn−1,δ
i tends to cn−1

i in L1(Ω) as δ tends to 0. Therefore, the functional Fn,δτ

Γ-converges towards Fnτ as δ tends to 0, thus the limit cn of cn,δ is a minimizer of Fnτ . Passing to
the limit δ → 0 in (65) provides that (61) holds even though cni vanishes on some parts of Ω. �

Lemma 3.5. Let cn be a minimizer of (23) such that (61) holds, then there exists µn = (µn1 , µ
n
2 ) :

Ω→ R2 such that

(66) µn1 − µn2 = −α∆cn1 + χ(1− 2cn1 ),

(67) µni = −ϕ
n
i

τ
−Ψi − θi log(cni ) dcni -a.e. in Ω,

(68)

∫
Ω

µndx = 0, where µn = cn1µ
n
1 + cn2µ

n
2 .

Moreover, we have the following uniform estimates w.r.t. τ :

(69) ‖µi,τ‖L2((0,T );Ld/(d−1)(Ω)) ≤ C, ‖µ1,τ − µ2,τ‖L2(QT ) ≤ C,
∥∥√ci,τ∇µi,τ

∥∥
L2(QT )

≤ C.

Proof. Since (61) holds and since 0 ≤ cn1 ≤ 1, the bathtub principle [32, Theorem 1.14] implies the
existence of some ` ∈ R such that

(70) cn1 (x) =

{
0 if Fn(x) > `,

1 if Fn(x) < `,
cn2 (x) =

{
1 if Fn(x) > `,

0 if Fn(x) < `.
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Up to a vertical shift of the Kantorovich potential ϕn1 , we can assume without loss of generality
that ` = 0. Define

µn1 = −ϕ
n
1

τ
−Ψ1 − θ1 log(cn1 ) + (Fn)+ , and µn2 = −ϕ

n
2

τ
−Ψ2 − θ2 log(cn2 ) + (Fn)− ,

then (66) holds in view of (60). It follows from (49) that

(71)

∫∫
QT

(µ1,τ − µ2,τ )
2

dxdt ≤ C.

Moreover, it results from (70) that

(Fn)+ = 0 dcn1 -a.e. in Ω, (Fn)− = 0 dcn2 -a.e. in Ω,

so that (67) is fulfilled. Now, shifting vertically both Kantorovich potentials ϕni by the same
constant, we can assume without loss of generality that (68) holds. The definition of µn implies
that

∇µn =
∑

i∈{1,2}

cni ∇µni + ∇cn1 (µn1 − µn2 )

=−
∑

i∈{1,2}

(
cni

∇ϕni
τ
− cni ∇Ψi − θi∇cni

)
+ ∇cn1 (µn1 − µn2 ) .

Using the triangle inequality, Cauchy-Schwarz inequality, and 0 ≤ cni ≤ 1, we get

‖∇µn‖L1(Ω) ≤
1

τ

∑
i∈{1,2}

(∫
Ω

cni

)1/2(∫
Ω

cni |∇ϕni |2dx

)1/2

+
∑

i∈{1,2}

‖∇Ψi‖L1(Ω) + ‖∇cn1‖L2(Ω)d

(
|Ω|1/2(θ1 + θ2) + ‖µn1 − µn2‖L2(Ω)

)
.

Since cn ∈ A, one has
∫

Ω
cni dx =

∫
Ω
c0idx. Thus it follows from (22), (30), (34) and (71) that

(72)

dTτ e∑
n=0

τ‖∇µn‖2L1(Ω) ≤ C.

Bearing (68) in mind, we can use the Poincaré-Sobolev inequality and get that

(73) ‖µτ‖L2((0,T );Ld/(d−1)(Ω)) ≤ C.

Since

µn1 = µn + cn2 (µn1 − µn2 ), µn2 = µn + cn1 (µn2 − µn1 ),

we deduce from (71) the desired L2((0, T );Ld/(d−1)(Ω)) estimates on the phase potentials µni . Fi-
nally, the combination of the relations (67), (22) and (30) yield∫∫

QT

ci,τ |∇µi,τ |2 dxdt ≤ C.

�

The following lemma is a first step towards the recovery of the weak formulation (28).
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Lemma 3.6. For any ξ ∈ C2(Ω), there holds

(74)

∣∣∣∣∫
Ω

(
cni − cn−1

i

)
ξdx+ τmi

∫
Ω

(cni ∇ (µni + Ψi) + θi∇cni ) ·∇ξdx

∣∣∣∣ ≤ 1

2
W 2
i (cni , c

n−1
i )‖D2ξ‖∞.

Proof. The optimal transport map

tni (x) = x−mi∇ϕni (x), ∀x ∈ Ω

sending cni to cn−1
i maps Ω into itself because Ω is convex. Therefore, since cn−1

i = tni #cni and
thanks to (67), one gets that∫

Ω

(
cni − cn−1

i

)
ξdx+ τmi

∫
Ω

(cni ∇ (µni + Ψi) + θi∇cni ) ·∇ξdx

=

∫
Ω

(ξ(x)− ξ(tni (x))−mi∇ξ(x) ·∇ϕni (x)) cni (x)dx

for all ξ ∈ C2(Ω). The Taylor expansion of ξ at point x provides

|ξ(tni (x))− ξ(x) +mi∇ξ(x) ·∇ϕi(x)| ≤ 1

2
‖D2ξ‖∞|tni (x)− x|2, ∀x ∈ Ω,

so that∣∣∣∣∫
Ω

(cni − cn−1
i )ξdx+ τmi

∫
Ω

(cni ∇ (µni + Ψi) + θi∇cni ) ·∇ξdx

∣∣∣∣
≤ 1

2
‖D2ξ‖∞

∫
Ω

|tni (x)− x|2cni (x)dx,

which is exactly the desired result. �

3.5. Convergence towards a weak solution. The goal of this section is to consider the limit
τ → 0. This requires some compactness on the approximate phase field cτ and on the approximate
potential µτ . In what follows, A is equipped with the topology corresponding to the distance W .

Proposition 3.7. There exist c ∈ C([0, T ];L2(Ω)) ∩ L2((0, T );H2(Ω)) ∩ L∞((0, T );H1(Ω)) with
c(t) ∈ A ∩X for a.e. t ∈ [0, T ], and µ ∈ L2((0, T );Ld/(d−1)(Ω)) such that, up to the extraction of
a subsequence, the following convergence properties hold:

ci,τ −→
τ→0

ci in the L∞((0, T );H1(Ω))-weak-? sense,(75a)

‖ci,τ (·, t)− ci(·, t)‖L2(Ω) −→
τ→0

0 for all t ∈ [0, T ],(75b)

ci,τ −→
τ→0

ci in L2((0, T );W 1,d(Ω)),(75c)

ci,τ −→
τ→0

ci weakly in L2((0, T );H2(Ω)),(75d)

µi,τ −→
τ→0

µi for the weak topology of L2((0, T );Ld/d−1(Ω)),(75e)

ci,τ∇µi,τ −→
τ→0

ci∇µi weakly in L2(QT )d.(75f)

Proof. All the convergence properties stated below occur up to the extraction of a subsequence when
τ tends to 0. We deduce from Estimate (34) that the family (cτ )τ>0 is bounded in L∞((0, T );H1(Ω)).

Hence we can assume that cτ tends to some c in the L∞((0, T );H1(Ω))-weak-? sense. Moreover,
since 0 ≤ ci,τ ≤ 1, we also have that 0 ≤ ci ≤ 1 a.e. in QT . We also infer from Estimate (41) that
cτ converges weakly in L2((0, T );H2(Ω)) towards c.
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As a consequence of the L∞ bound on ci,τ and of the Benamou-Brenier formula, we get that

‖c(1)
i − c

(2)
i ‖H1(Ω)′ ≤

1

mi
Wi(c

(1)
i , c

(2)
i ), ∀c(1)

i , c
(2)
i ∈ Ai,

(see more precisely [42, Lemma 3.4]). Therefore, we infer from (32) that

‖ci,τ (t)− ci,τ (s)‖H1(Ω)′ ≤ C
√
|t− s|+ τ , ∀s, t ∈ [0, T ].

Let ∆t > 0 and let t ∈ [0, T −∆t], then

‖ci,τ (t+ ∆t)− ci,τ (t)‖2L2(Ω) = ‖ci,τ (t+ ∆t)− ci,τ (t)‖H1‖ci,τ (t+ ∆t)− ci,τ (t)‖(H1)′ ≤ C
√

∆t+ τ .

Bearing in mind the L∞((0, T );H1(Ω)) estimate on ci,τ , we can apply a refined version of the
Arzelà-Ascoli theorem [2, Prop. 3.3.1] to obtain that ci ∈ C([0, T ];L2(Ω)) and that

ci,τ (t) −→
τ→0

ci(t) in L2(Ω) for all t ∈ [0, T ].

Together with the estimate 0 ≤ ci,τ ≤ 1, we deduce that c ∈ C([0, T ];Lp(Ω))2 and that

cτ −→
τ→0

c in Lp(QT )2, ∀p ∈ [1,+∞).

This implies in particular some strong convergence in L2(QT ), which can be combined with the
weak convergence in L2((0, T );H2(Ω)) thanks to interpolation arguments to derive some strong
convergence in L2((0, T );Hs(Ω)) for any s < 2. The continuous embedding of Hs(Ω) into W 1,d(Ω)
when s ≥ 1 + max(0, d−2

2 ) (see for instance [20, Theorem 6.7]) ensures that

(76) cτ −→
τ→0

c in L2((0, T );W 1,d(Ω))2.

Let us switch to the phase potentials µ. Thanks to Lemma 3.5, we have (uniform w.r.t. τ)
L2((0, T );Ld/(d−1)(Ω)) estimates on µi,τ . Hence there exists µ in L2((0, T );Ld/(d−1)(Ω))2 such
that

(77) µi,τ −→
τ→0

µi weakly in L2((0, T );Ld/(d−1)(Ω)).

In Lemma 3.5, we also established a (uniform w.r.t. τ) L2(QT )d estimate on
(√
ci,τ∇µi,τ

)
τ>0

.

Since 0 ≤ ci,τ ≤ 1, it implies a uniform L2(QT )d estimate on (ci,τ∇µi,τ )τ>0. Therefore, there

exists ϑi ∈ L2(QT )d such that ci,τ∇µi,τ converges weakly in L2(QT )d to ϑi as τ tends to 0. It
remains to show that ϑi = ci∇µi. First, the distributions ci and ∇µi can be multiplied since ci
belongs to L2((0, T );W 1,d(Ω)) and ∇µi belongs to L2((0, T );W−1,d/(d−1)(Ω)). Moreover, for all
φ ∈ C∞c (QT )d, one has∫∫

QT

ci,τ∇µi,τ · φdxdt = −
∫∫

QT

µi,τ (∇ci,τ · φ+ ci,τ∇ · φ) dxdt.

Thanks to (76) and (77), we can pass in the limit in the right-hand side of the above expression.
This leads to∫∫

QT

ci,τ∇µi,τ · φdxdt −→
τ→0
−
∫∫

QT

µi (∇ci · φ+ ci∇ · φ) dxdt = 〈ci∇µi , φ〉D′,D.

As a consequence, ϑi = ci∇µi in the distributional sense, thus also in L2(QT ).
Since cτ (t) converges in L2(Ω)2 towards c(t) for all t ∈ [0, 1], there holds∫

Ω

ci(t)dx =

∫
Ω

c0idx, c1(x, t) + c2(x, t) = 1 for all t ∈ [0, T ].
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Moreover, since c(t) belongs to H1(Ω) for a.e. t ∈ (0, T ), c(t) belongs to A ∩X for a.e. t ∈ (0, T ).
This concludes the proof of Proposition 3.7. �

We have all the necessary convergence properties to pass to the limit τ → 0 and to identify the
limit (c,µ) exhibited in Proposition 3.7 as a weak solution in the sense of Definition 2.2.

Proposition 3.8. Let (c,µ) be as in Proposition 3.7, then (c,µ) is a weak solution to the prob-
lem (14), (15)–(16) in the sense of Definition 2.2.

Proof. Since ci,τ and µi,τ tend weakly in L2((0, T );H2(Ω)) and L2((0, T );Ld/(d−1)(Ω)) towards ci
and µi respectively, we can pass to the limit in (66). Moreover, one can also pass to the limit in
the relation 0 = ∇c1,τ · n established in Lemma 3.3, leading to ∇c1 · n = 0 on ∂Ω.

It only remains to recover the weak formulation (28). Let t1, t2 ∈ [0, T ] with t2 ≥ t1, then
summing (74) over n ∈

{⌈
t1
τ

⌉
+ 1, . . . ,

⌈
t2
τ

⌉}
yields∣∣∣∣∣

∫
Ω

(ci,τ (t2)− ci,τ (t1)) ξdx+mi

∫ d t2τ eτ
d t1τ eτ

∫
Ω

(ci,τ∇ (µi,τ + Ψi) + θi∇ci,τ ) ·∇ξdxdt

∣∣∣∣∣
≤ 1

2
‖D2ξ‖∞

d t2τ e∑
n=d t1τ e

W 2
i (cni , c

n−1
i ) ≤ Cτ,

the last inequality being the consequence of the squared distance estimate (30). We can pass to the
limit τ → 0 in the above relation thanks to Proposition 3.7.

�

We have finally proved Theorem 2.3 that is a combination of Propositions 3.7 and 3.8.
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[2] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures.
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