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Generation of a Nernst current from the conformal anomaly in Dirac and Weyl 
semimetals
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2Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok, 690950, Russia
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We show that a conformal anomaly in Weyl/Dirac semimetals generates a bulk electric current
perpendicular to a temperature gradient and the direction of a background magnetic field. The
associated conductivity of this novel contribution to the Nernst effect is fixed by a beta function
associated with the electric charge renormalization in the material.

Dirac and Weyl semimetals are three dimensional crys-
tals whose low energy excitations are solutions of the
massless Dirac equation. The recent experimental re-
alization in a large family of materials [1–5] has provided
unexpected access to physical phenomena restricted so
far to quite unreachable energy regions as the quark–
gluon plasma [6]. Quantum anomalies [7] and anomaly–
related transport [8] are at the center of interest of the
actual research (an updated account is given in the re-
views [9, 10]).

After an intense activity around the experimental con-
sequences of the axial anomaly [11–14] including evi-
dences for the chiral magnetic effect [15], thermal trans-
port is now probing gravitational anomalies [16, 17].
The main link that opened the door to study gravita-
tional effects in condensed matter systems is provided
by the Luttinger theory of thermal transport coefficients
[18, 19]. He proposes a gravitational potential as the lo-
cal source of energy flows and temperature fluctuations.
The basic idea is that the effect of a temperature gradi-
ent that drives a system out of equilibrium can be com-
pensated by a gravitational potential [20]. This advance
completed the condensed matter description of thermo-
electric-magnetic transport phenomena.

A novel anomaly–induced transport phenomenon, the
scale magnetic effect (SME) was described in a recent
publication [21]. Using massless QED as an example, it
was shown that, in the background of an external mag-
netic field, the conformal anomaly [22] induces an elec-
tric current perpendicular to the magnetic field and to
the gradient of the conformal factor. The coefficient was
fixed by the beta function of the charge. In this work we
show that a similar phenomenon will occur in Dirac and
Weyl semimetals driven by a temperature gradient. The
anomalous current:

J =
e2vF

18π2T~
B ×∇T , (1)

provides a novel contribution similar to the Nernst ef-
fect occurring at zero chemical potential. comes from
the original SME with two important additions: First,
the original result worked out in a conformally flat met-
ric, has been extended to include smooth deformations
from flat space what will allow to include material lat-
tice deformations. The technical details of the derivation
are done in the supplementary material. Second, we use
the Luttinger construction to trade the conformal factor

to a temperature gradient. Finally the Fermi velocity of
the material vF will substitute the speed of light c in the
conductivity coefficient. In what follows we will detail
these steps.

The effective description of an interacting Dirac or
Weyl semimetal around a single cone is given by the La-
grangian of massless QED in a flat Minkowski space-time.

L = −1

4
FµνFµν + ψ̄i /Dψ , (2)

where ψ is the Dirac four spinor, ψ̄ = ψ†γ0, /D = γµDµ

with the covariant derivative Dµ = ∂µ − ieAµ and the
Dirac matrices γµ, and Fµν = ∂µAν − ∂νAµ is the field
strength tensor of the gauge field Aµ. We notice that
the electronic current: Jµ = ψ̄(γ0, vF γ

i)ψ is anisotropic.
We will obviate this fact which does not play a role in
this part. The action S =

∫
d4xL of Eq. (2) is invari-

ant at a classical level under a simultaneous rescaling of
all coordinates and fields according to their canonical di-
mensions,

x→ λ−1x, Aµ → λAµ, → λ3/2ψ. (3)

As a consequence of the scale invariance, the stress
tensor of the model (2),

Tµν = −FµαF να +
1

4
ηµνFαβF

αβ (4)

+
i

2
ψ̄ (γµDν + γνDµ)ψ − ηµνψ̄i /Dψ ,

is traceless, (Tµµ )cl ≡ 0. The scale invariance (3) is
broken by quantum corrections which make the electric
charge e = e(µ) dependent on the renormalization energy
scale µ. As a result, in the background of a classical elec-
tromagnetic field Aµ the expectation value of the trace
of the stress-energy tensor (4) becomes: [7]

〈Tαα(x)〉 =
β(e)

2e
Fµν(x)Fµν(x), (5)

where β(e) is the beta-function associated with the run-
ning coupling e: β(e) = de

d lnµ . Hereafter we study

quantum effects only in a classical electromagnetic back-
ground of the gauge fields Aµ ≡ Acl

µ .
The conformal anomaly (5) leads to anomalous trans-

port effects which most straightforwardly reveal them-
selves in a conformally flat space-time metric:

gµν(x) = e2τ(x)ηµν , (6)
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where where τ(x) is a scalar conformal factor and ηµν is
the Minkowski metric tensor.

In a weakly curved (|τ | � 1) gravitational back-
ground (6) and in the presence of background magnetic
field B, the conformal (scale) anomaly (5) generates an
anomalous electric current via the scale magnetic effect
(SME): [21]

J = −2β(e)

e
∇τ(x)×B(x) . (7)

In the presence of the electric field background E the
conformal anomaly leads to the scale electric effect (SEE)

J = σ(x)E(x) , (8)

which has the form of the Ohm law with the metric-
dependent anomalous electric conductivity: [21]

σ(t,x) = −2β(e)

e

∂τ(t,x)

∂t
. (9)

Both anomalous currents, (7) and (8) can be described
by the same relativistically covariant expression:

Jµ =
2β(e)

e
Fµν∂ντ . (10)

The anomalous currents are generated in a quantum vac-
uum so that they emerge at zero chemical potential and
in the absence of a classical current

Jµcl = −∂νFµν , (11)

in the space where the anomalous current is produced,
Jµcl(x) ≡ 0.

Contrary to the axial anomaly, the scale anomaly is
not exact in one loop. In particular, the beta function
gets corrections at all orders in perturbation theory. The
leading contribution to the current is defined by the one-
loop QED beta function:

β1loop
QED =

e3

12π2
. (12)

A generalization of Eq. (10) to an arbitrary background
metric is done in Appendix A. In our paper we consider
the anomalous transport effects for gapless fermionic
quasiparticles, realized in Weyl and Dirac semimetals,
for which the conformal invariance is unbroken in the in-
frared region. For massive Dirac fermions the SME is
strongly suppressed.[23]

Having in mind condensed matter applications of our
study, in the rest of the paper we will pay close attention
only to the scale magnetic effect (7). However, we would
like to notice that its electric counterpart has certain in-
teresting properties as well. For example, contrary to
the usual Ohm conductivity, the anomalous conductiv-
ity (9) of the scale electric effect (8) may take negative
values. The negative vacuum conductivity, which may
play a role in the Early Universe, has also been indepen-
dent obtained in calculations for fermionic [24, 25] and
bosonic [26] electrically charged particles in expanding

de Sitter space via the Schwinger pair-production mech-
anism.

Now let us consider possible thermal effects which may
play a role here. The basic idea is that the effect of a
temperature gradient that drives a system out of equi-
librium can be compensated by a gravitational potential
Φ: [18, 19]

1

T
∇T = − 1

c2
∇Φ , (13)

where c is the speed of light. For weak gravitational fields
the gravitational potential Φ, to leading order, is related
to the metric as follows:

g00 = 1 +
2Φ

c2
, (14)

while other components of the metric tensor are unmod-
ified.

The electric current induced by the conformal effects
is determined by Eq. (A17) where the effective conformal
factor is given by Eqs. (A18) and (14):

ϕ(x) = −Φ(x)

3c2
. (15)

In particular, for a time-independent gravitational po-
tential Φ the scale electric effect is absent while the scale
magnetic effect is given by Eq. (7) with the identifica-
tion τ(x) ≡ ϕ(x). Thus, the current density given by the
conformal anomaly is

J = Cconf B ×∇T . (16)

The conformal anomaly leads to a Nernst effect (16) with
the coefficient described by the QED beta function (12):

Cconf =
2β(e)

3e
≡ e2c

18π2T~
, (17)

where we have restored the powers of ~ and c. A sim-
ilar strategy has been used in Ref. [27] to derive a new
correction to the Chiral Vortical Effect that arises in the
presence of a temperature gradient.

To take into account the Fermi velocity we will now
restore all ~ and c in the fermionic Lagrangian in the SI
system of units. The result (16) and (17) corresponds to
the Lagrangian

L = ψ̄

[
γ0
(
i~
∂

∂t
+ eφ

)
+ cγ (i~∇− eA)

]
ψ, (18)

where we identified (in the SI units At = φ/c):

Aµ = (φ/c,A) , Aµ = (φ/c,−A) . (19)

The magnetic and electric fields are, respectively, as fol-
lows:

B = ∇×A , (20)

E = −∇φ− ∂A

∂t
. (21)
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According to Eqs. (16) and (17) the anomalous current
corresponding to the Lagrangian (18) is:

J =
e2c

18π2T~
B ×∇T . (22)

Therefore we conclude that c in the numerator of the cur-
rent (22) is the c which appears in the spatial derivative
term of the Lagrangian (18). As mentioned before, the
Lagrangian of Dirac and Weyl semimetals is

L = ψ̄

[
iγ0~

∂

∂t
+ vFγ (i~∇− eA)

]
ψ, (23)

where we set φ = 0 as it does not affect our effect. Then
the electromagnetic potential is

Aµ = (0,A) , (24)

and the magnetic and electric fields are, respectively, as
follows:

B = ∇×A , (25)

E = −∂A
∂t

. (26)

According to our considerations above the anomalous
current corresponding to the Lagrangian (18) is:

J =
e2vF

18π2T~
B ×∇T . (27)

FIG. 1. (Color online) The setup of the Nernst-Ettingshausen
effect in open circuit conditions. Voltage drops are induced
by simultaneously applying an external magnetic field and a
temperature gradient. Depending on if the measured voltage
is perpendicular (VT ) or parallel to the gradient of T (VL),
we speak about Nernst or Nernst-Ettingshausen effects (see
details in the main text).

To estimate the order of magnitude of the proposed
effect, we have to remember that the Nernst effect is de-
fined in open-circuit conditions, J = 0, thus appearing a
voltage drop across the sample:

Ji = σijEj + L12
ir (−∇rT ) = 0, (28)

(the notation Labir for transport coefficients is standard,
and we have for instance, L11

ir = σir. See, e.g. [28] for a
modern reference). The induced electric field is, thus,

Ej = ρjiL12
ir (−∇rT ), (29)

where ρji = (σ−1)ji is the resistivity tensor. For
definitveness, let us choose the gradient of temperature
to point, say, along the x direction, ∇1T , and the mag-
netic field B to point along z as it is shown in Fig. 1.
Then from Eq. (48) the only component of the tensor
L12
ir is

L12
21 =

e2vFB

18π2~T
. (30)

Under these conditions, two coefficients are usually de-
fined. The Ettingshausen-Nernst coefficient is defined as

S11 ≡
E1

B3∇1T
=
ρ12L12

21

B
, (31)

and the Nernst coefficient,

S12 ≡
E2

B3∇1T
=
ρ22L12

21

B
. (32)

In general, for three dimensional (isotropic) metals we
have

ρ22 =
σ0

σ2
0 + σ2

H

, (33a)

ρ12 =
σH

σ2
0 + σ2

H

, (33b)

where σ0 is the longitudinal conductivity and σH is the
transverse (Hall) conductivity. The longitudinal trans-
port in undoped Weyl semimetals is strongly suppressed
due to the absence of free carriers (transport coefficients
are proportional to the chemical potential [28]), and the
current is carried by counterpropagating electrons and
holes[29]. However, at zero chemical potential Weyl
semimetals have a finite topological anomalous Hall cur-
rent:

J =
e2

2π2~
b×E, (34)

where b is the separation between Weyl nodes. Choosing
b to point along the z direction, we have

σ0 � σH =
e2

2π2~
|b|, (35)

so ρ22 ∼ σ0

σ2
H

, and ρ12 ∼ 1
σH

.

The Ettingshausen-Nernst coefficient is then, approxi-
mately,

S11 ≡
E1

B3∇1T
=
ρ12L12

21

B
∼ vF

9|b|T
. (36)

The Nernst coefficient S12 appears to be strongly sup-
pressed due to σ0 � σH . For this reason, we propose to
measure S11. A small comment is in order here: it might
be surprising that a transverse current as (27) leads to a
longitudinal measurable quantity as it is S11. The rea-
son is that, due to the way the thermoelectric transports
presented here are measured, the current in (27) is entan-
gled to the resistivity tensor, which is dominated by the
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transverse Hall component, leading to a large coefficient
S11 compared with S12.

For typical Fermi velocities in Weyl semimetals, vF ∼
105m/s, T ∼ 10K, and separation of Weyl nodes |2b| ∼
0.3Å−1, the Nernst coefficient divided by T is of the order
of S11/T ∼ 0.6µV/TK−2, which is of the same order of
current Nernst measurements[30].

The importance of the Nernst and other thermo-
magnetic effects for thermoelectric power generation, jus-
tifies the interest of the analysis of new sources even if
small in magnitude. The Nernst effect was explored in
the early stages of novel Dirac materials [28, 31, 32] and
some experimental results are already available in the
literature [30, 33]. In most of the theoretical works the
main ingredient are the magnetization of the materials or
the Berry curvature acting as an effective magnetization

in a semiclassical analysis. Our proposal is entirely new
as a contribution to the Nernst current at zero chemical
potential coming from the conformal anomaly.
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Appendix A: Arbitrary gravitational fields

a. General gravitational background

In the case of arbitrary – i.e., not necessarily confor-
mal and small – metric gµν the effective anomalous action
generated by one-loop quantum corrections has the fol-
lowing well known generally covariant form: [34–37]

Sanom[g,A] =
1

8

∫
d4x
√
−g(x)

∫
d4y
√
−g(y) (A1)

·H(x)∆−14 (x, y)
[
2bC2(y) + b′H(y) + 2cFµν(y)Fµν(y)

]
,

where the Weyl tensor squared

C2 = CµναβC
µναβ

≡ RµναβRµναβ − 2RµνR
µν +

R2

3
, (A2)

is expressed via the Riemann tensor Rµναβ , the Ricci
tensor Rµν = Rαµαν and the scalar curvature R = Rµµ.
The linear combination

H = E − 2

3
�R , (A3)

involves the Euler (topological) density

E = ∗Rµναβ
∗Rµναβ

≡ RµναβRµναβ − 4RµνR
µν +R2, (A4)

and the d’Alembertian differential operator � ≡ ∇µ∇µ
of the scalar curvature R expressed via the covariant
derivative ∇µ. Finally,

∗Rµναβ =
1

2
εµνµ′ν′Rµ

′ν′

αβ
, (A5)

is the (left) dual of the Riemann tensor Rµναβ and g =
det gµν .

Due to the presence of the Green function ∆−14 (x, y)
of the fourth-order differential operator,

∆4 = ∇µ
(
∇µ∇ν + 2Rµν − 2

3
Rgµν

)
∇ν , (A6)

the anomalous one-loop action (A1) is a nonlocal func-
tion of the gauge field Aµ and metric gµν . The nonlocal-
ity indicates that the scale anomaly is associated to an
anomalous massless pole.

In massless QED (2) the coefficients b, b′ and c in the
action (A1) are, respectively, as follows:

b =
1

320π2
, b′ = − 11

5670π2
, c = − e2

24π2
. (A7)

The parameter c is proportional to the one-loop QED

beta function (12): c = −β1loop
QED /(2e).

A variation of the action (A1) with respect to met-
ric gives us the correct expression for the one-loop trace
anomaly:〈
Tµµ
〉
≡ − 2√

−g
gµν

δSanom

δgµν

= −1

4

[
bC2 + b′

(
E − 2

3
�R

)
+ cFµνF

µν

]
, (A8)

while the classical (non-anomalous) part of the action
does not contribute to the trace of the stress-energy ten-
sor. Given the one-loop QED beta function (12), it is
straightforward to show that the covariant trace (A8) re-
duces to Eq. (5) in a flat Minkowski space-time.

We are interested in the electromagnetic sector of the
trace anomaly since the anomalous electric currents (7)
and (8) are generated only in the presence of an external
electromagnetic field Aµ.

The anomalous electric current is given by a variation
of the anomalous action (A1) with respect to the electro-
magnetic field Aµ,

Jµ(x) = − 1√
−g(x)

δSanom

δAµ(x)

= − 1√
−g(x)

∂

∂xν

[√
−g(x)Fµν(x) (A9)

·
∫
d4y
√
−g(y)G(x, y)

(
E(y)− 2

3
�R(y)

)]
,

where the Euler topological density is given in Eq. (A4)
and the constant c for QED with one species of fermion
is given in Eq. (A7).

Equation (A9) is exact one-loop equation for anoma-
lous electric current induced by conformal anomaly for
arbitrary (not necessarily weak) gravitational field. Next
we will discuss this current for weak gravitational fields
and, in particular, for weak conformal fields.

b. Weak gravitational background

As we work with weak gravitational backgrounds, it
is convenient to rewrite the electromagnetic part of the
anomalous action (A1),

S(1)
anom = − c

6

∫
d4x
√
−g(x)

∫
d4y
√
−g(y)

·R(1)(x)�−1x,y Fαβ(y)Fαβ(y) , (A10)
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in terms a small perturbation (|hµν | � 1) of the flat
metric,

gµν = ηµν + hµν . (A11)

In Eq. (A10) the expression �−1x,y denotes a Green func-

tion of the flat-space d’Alembertian � ≡ ∂µ∂
µ and R(1)

is the leading (linear in metric) double-derivative term of
the Ricci scalar:

R(1) = ∂µ∂νh
µν − ηµν�hµν . (A12)

The indices are raised/lowered with the background met-
ric tensor, hµν = ηµαηνβhαβ . In the linearized gravity
the inverse metric tensor is

gµν = ηµν − hµν , (A13)

[cf. Eq. (A11)], so that gµαgαν = δµν +O(h2).
In the conformally flat metric (6) with |τ | � 1 one

has hµν = 2τηµν so that R(1) = 6�τ and the leading
contribution to the anomalous action (A10) reduces to

S(1),conf
anom = −c

∫
d4x

∫
d4y[�xτ(x)] (A14)

·�−1x,y Fαβ(y)Fαβ(y) ,

where subleading O(τ2) terms are not shown. Integrating
over the coordinate y by parts in Eq. (A14) and assuming
that the conformal perturbation of the metric τ vanishes
in a spatial infinity, we obtain the local expression for the
anomalous action in a weakly conformal background:

S(1),conf
anom =

e2

24π2

∫
d4x τ(x)Fαβ(x)Fαβ(x) . (A15)

Hereafter we use the value of the parameter c given in
Eq. (A7).

A variation of the weak-field anomalous action (A15)
with respect to the electromagnetic field Aµ

Jµ(x) = − 1√
−g(x)

δS
(1)
anom

δAµ(x)
, (A16)

provides us with Eq. (10) which leads us to the scale
magnetic (7) and scale electric (8) effects.

In a general case of a weak gravitational fields (A11)
the induced anomalous current density to leading order
is as follows:

Jµ(x) = +
e2

6π2
Fµν(x)∂νϕ(x) , (A17)

where

ϕ(x) =
1

6

∫
d4y�−1x,y

[
∂α∂βh

αβ(y)− ηαβ�hαβ(y)
]

≡ −1

6

∫
d4y Pαβ(x, y)hαβ(y) , (A18)

where

Pαβ(x, y) = ηαβδ(x− y)−�−1(x− y)
∂

∂yα
∂

∂yβ
,(A19)

is a transverse projector. In Eq. (A18) imposed the natu-
ral constraint that in the point x the classical current (11)
is absent, Jµcl(x) = 0. Again, for a weak conformally flat
metric (6) we may identify the field (A18) with the con-
formal factor (6) of the metric, ϕ(x) ≡ τ(x) and we again
come back to Eq. (10) derived in Ref. [21].
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