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ABSTRACT1
This article presents a two dimensional macroscopic model for traffic flow on a network. We con-2
sider a two dimensional conservation law where we suggest a new method to estimate the direction3
of the velocity using only information and properties of the network. We present an algorithm for4
the computation of the two dimensional velocity on the network and present numerical simula-5
tions. Moreover, the numerical approximation of the two dimensional equation is carried out using6
an operator and splitting method and we present the results of some simulations on some realistic7
network. Lastly, we propose a comparison with the well-known CTM method.8

Keywords: Two dimensional macroscopic model, traffic flow, partial differential equations9
(PDEs), dimensional splitting, dense urban network.10
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INTRODUCTION1
This paper deals with the problem of designing two-dimensional macroscopic traffic flow models2
for large-scale traffic networks. Traffic modeling literature is rather vast (see van Wageningen-3
Kessels et al. (1) for a complete description of traffic models evolution). A key observation in4
traffic flow modeling is that the speed of vehicles can be expressed as a function of vehicle den-5
sity, see Greenshields et al. (2). The flux-density relation is well known as Fundamental Diagram6
(FD), and used as a key element in macroscopic traffic model design. Macroscopic models were7
introduced by Lighthill, Whitham and Richards (LWR) Lighthill and Whitham (3)Richards (4).8
The LWR is described by a partial differential equation and it is able to reproduce several features9
that are observed in traffic data on highway like shock and rarefaction waves. The discretized ver-10
sion of the LWR is known as the Cell Transmission Model (CTM), see Daganzo (5). Models of11
junction Coclite et al. (6) together with some split ratio assumptions allow to extend the CTM and12
other similar models to urban networks. Those junction models ensure a correct propagation of13
flux locally through an intersection, and together with the CTM can be used to describe 1-D flow14
propagation along the network. Modeling each specific road in a large and complex network may15
be tedious, difficult to tune, and in some cases computationally expensive. These difficulties have16
motivated the research for aggregated traffic models describing the traffic evolution by geograph-17
ical zones rather than modeling each individual road and intersection in the city network. A first18
natural approach has been to extend the 1-D FD to an urban area. This is called the Macroscopic19
Fundamental Diagram (MFD), which captures the aggregated number of vehicles in a given area20
(density/occupancy), and maps it into their respective averaged velocity (flows). The existence of21
the MFD have been studied first analytically by Daganzo and Geroliminis (7), then numerically22
by Geroliminis and Sun (8), and lastly using real field data by Geroliminis and Daganzo (9). The23
MFD computed in that way, is then used in the cumulative mass conservation equation24

dn
dt

(t) = Φin(t)−Φout(n(t)), ∀t ∈ R+ (1)

where n represent the cumulative number of car in the considered area, Φin and Φout are the area25
inflow and outflow, respectively. In this set-up, the inflow Φin is assumed to be known (or mea-26
sured), whereas the outflow Φout is computed using the MFD and the assumed known user trip27
length. These types of model focus on the modeling of the number of vehicles in an area with a28
single variable. Then, they preserve less information about the spatial distribution of vehicle than29
models which consider the density. However, Hajiahmadi et al. (10) Leclercq et al. (11) investi-30
gate the extension to multi-zone model to consider different MFD for each zone for which the road31
pattern may differs. It is worth to notice that these models are set once the modeling zone has been32
defined, but they are not able to "expand/contract" themselves so that the modeling zone can not33
be adapted to the changes of traffic conditions.34
Another approach to model traffic in large networks is the two dimensional models (2D model)35
where the density depends on 2D spatial and temporal coordinate systems: a point in the plane36
(x,y), and time t. The first researchs on 2D traffic modeling have been done in the static case i.e.37
without time dependency Beckmann (12). Contrary to dynamical model which target to predict38
the evolution of the system, these static model are interested in some traffic feature as for example,39
optimal assignment of traffic. An overview of existing static 2D models are given in Ho and Wong40
(13). In this paper, we will focus on 2D dynamical models. The motivation of such models is to41
simplify the number of individual variables, avoid specific models for junctions, and simplify the42



Mollier, Delle Monache and Canudas-de-Wit 3

tuning of the model parameters. There is also some motivation for simplifying both the control1
design and the use of the model for predicting the density evolution. Such models can take the2
following general form:3

4  ∂ρ(t,x,y)
∂ t

+∇ ·~Φ(ρ(t,x,y),θ(x,y)) = 0

ρ(0,x,y) = ρ0(x,y)
, ∀t ∈ R+,∀(x,y) ∈Ω (2)

where ρ is the aggregated density , Φ the flow defined as the product of the density ρ and velocity5
v and θ the velocity direction. This type of model based on a two-dimensional conservation laws6
are also used in pedestrian modeling which started with the work of Helbing (14), Hughes (15).7
Several extensions for these pedestrian models have been considered including second order model8
Jiang et al. (16) and non-local flux Colombo et al. (17). A numerical comparison of pedestrian9
models can be seen in Twarogowska et al. (18) and a review of some of these models are given in10
Kormanová et al. (19).11
The literature concerning two-dimensional traffic models is not broad, only few works focused on12
2-D traffic flow models, see Della Rossa et al. (20), Jiang et al. (21), Du et al. (22), Jiang et al. (23),13
Romero Perez and Benitez (24), Saumtally (25), Sossoe and Lebacque (26), Chetverushkin et al.14
(27), Sukhinova et al. (28). We assume for 2D model that vehicles run on a dense network instead15
of a single road. The key point of the 2-D models is to understand how the FD can be translated16
for 2-D traffic. First of all, the FD in 1D holds on the assumption that the velocity is a function17
of only the density allowing then the construction of a unique curve that relates traffic flux and18
traffic density. In 2D the problem is more complex and in the literature several approaches have19
been proposed. In Romero Perez and Benitez (24),an advection diffusion equation is introduced20
and the authors assume that the traffic velocity does not depend on the density but it is instead a21
function of the space, i.e. the network. In this way the velocity is predetermined and the advection-22
diffusion equation becomes linear. Other authors, like Della Rossa et al. (20) consider the velocity23
as a scalar function of the density and its direction is predetermined by estimating the shape of the24
network. In turn, they solve then a diffusion equation where the direction of traffic flow is indicated25
by the direction of the speed but also by the diffusion operator. In Jiang et al. (21), Du et al. (22),26
the authors consider a model inspired from pedestrian models in which the flux takes the direction27
of the lowest cost that they determine with the help of an Eikonal equation. Lastly in Jiang et al.28
(23), this model has been extended to a second order dynamics in order to have a more accurate29
acceleration model for pollutant estimation. In Saumtally (25) and Sossoe and Lebacque (26),30
they investigate the possibility of constructing a two dimensional model which take into account31
conflicts that occur on intersection. In this spirit, they take inspiration from models of junctions in32
one dimension as Lebacque and Khoshyaran (29). However, the problem is formulated in a discrete33
setting using the concepts of demand and supply. In Chetverushkin et al. (27) and in Sukhinova34
et al. (28), authors consider two dimensional models for traffic but in order to be applied to the35
case of multilane road instead of the case of road network.36
The contribution of this article is to present a new traffic flow model which extends the LWR model37
in two dimensions. We suggest a way to estimate the direction of the velocity using information38
and properties from the network. We also describe entirely the numerical process based on operator39
and dimensional splitting and show some simulations.40
The paper is organized as follows. In the first section, we introduce the model and the assumptions41
taken to construct this model. Then, we suggest a methodology to estimate the velocity fields for42
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the model. Finally, we describe the numerical process, show the results of the simulations and1
present a comparison between our two dimensional model and the CTM.2

FROM TRAFFIC FLOW MODEL IN 1D TO 2D3
Recall of 1D LWR model4
In the fifties Lighthill, Whitham and independently Richards Lighthill and Whitham, Richards5
(3, 4) introduced a hydrodynamic model (LWR model) for traffic flow. This model is inspired from6
fluid dynamics. The main assumption of this model is the hypothesis that the velocity v ∈ [0,vmax]7
depends only on the main traffic density ρ ∈ [0,ρmax]. The presence of this relation ensures the8
existence of the Fundamental Diagram (FD) (2). The FD gives the link between the main traffic9
density and the traffic flow, see Figure 1. In the LWR model the flux function is given by Φ(ρ) :10
(0,ρmax)→ R= v(ρ(t,x))ρ(t,x).11
The evolution in time of the main traffic density is given by the following scalar conservation law:12

13  ∂ρ(t,x)
∂ t

+
∂Φ(ρ(t,x))

∂x
= 0 (t,x) ∈ R+×R

ρ(0,x) = ρ0(x). x ∈ R
(3)

Where the velocity and the flux are given by14

v(ρ) =
(

1− ρ

ρmax

)
vmax (4)

15
Φ(ρ) = ρ

(
1− ρ

ρmax

)
vmax (5)

The flux Φ is concave and attains one maximum which we denote Φmax at ρcrit. Moreover, Φ(0) =16
Φ(ρmax) = 0, see Figure 1(b).17

Extension to conservation laws in two dimensions18
In this section, we investigate how the LWR model can be extended to a two dimensional continu-19
ous model and what are the main differences.20
It is possible to derive a two dimensional balance equation in a domain Ω ⊂ R2 using the conser-21
vation of the mass. Let A ⊂ Ω be an arbitrary subdomain, nA(t) the number the vehicle within A22
at time t and n∆t

in , n∆t
out the number of vehicles which respectively enter and exit A between t and23

t +∆t. Then:24
nA(t +∆t)−nA(t) = n∆t

in −n∆t
out, ∀t ∈ R+ (6)

dividing by ∆t and passing at the limit when ∆t→ 0, we obtain:25

∂

(
nA(t)

)
∂ t

= Φin(t)−Φout(t), ∀t ∈ R+ (7)

where Φin the inflow and Φout the outflow of the subdomain A.26
We define the density of vehicle ρ(t,x,y) : R+×Ω→ [0,ρmax] and the flux of vehicle27
~Φ(t,x,y,ρ) : R+×Ω× [0,ρmax]→ R2. By definition of the density and the flux, we have:28

∂

∂ t
(
∫∫
A

ρ(t,x,y) dx dy) =−
∮

∂A

~Φ(t,x,y,ρ) ·~n(x,y) dl, ∀t ∈ R+ (8)
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ρ

v

vmax

0 ρcrit ρmax

(a) Relation velocity density

ρ

Φ

Φmax

0 ρcrit ρmax

(b) Relation flux density:fundamental diagram (FD)

FIGURE 1 Speed and flow vs. density

where~n is the vector normal to the boundary and l the variable which follows the boundary of the1
subdomain.2
Thanks to the divergence theorem, we have:3 ∫∫

A

∂ρ(t,x,y)
∂ t

dx dy =−
∫∫
A

∇ ·~Φ(t,x,y,ρ) dx dy, ∀t ∈ R+. (9)

The equality (9) hold for all A⊂Ω, therefore we get:4

∂ρ

∂ t
(t,x,y)+∇ ·~Φ(t,x,y,ρ) = 0, ∀t ∈ R+,∀(x,y) ∈Ω (10)

This equation is completed with the following initial condition:5

ρ(0,x,y) = ρ0(x,y). ∀(x,y) ∈Ω (11)

For readers interested on the existence and uniqueness of solution for equation (10), we refer to6
the work of Kruzhkov (30).7
Units and model structure between 1D and 2D are compared in the table 1:8

The model described by the equation (10) is a direct extension in two dimensions of the9
LWR model. However, several differences remain in the expression of the flux which make the10
modeling problem more complex. To be valid, a first assumption is that 2D models have to describe11
a road network dense enough such that the flux, the velocity and the density can be defined at12
any point of the plane as an extension of the road nearby. The flux in 2D models is a vector13
and without loss of generality, we can split it into a flux magnitude m and a normalized vector14
of direction ~dθ such that ~Φ(t,x,y,ρ) = m(t,x,y,ρ)~dθ (t,x,y,ρ). We can notice that the notion of15
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1D model 2D model
density [ρ] = veh/m (scalar) [ρ] = veh/m2 (scalar)
velocity [v] = m/s (scalar) [~v] = m/s (vector)
flux [Φ = vρ] = veh/s (scalar) [~Φ =~vρ] = veh/s/m (vector)
equation ∂tρ +∂xΦ(ρ) = 0 ∂tρ +∇ ·~Φ(t,x,y,ρ) = 0

TABLE 1 Comparison of model structure (unit are veh for vehicle, m for space and s for
time.)

direction does not exist in one dimension, and a specific attention should be paid to introduce1
the direction in the 2D model. The flux is defined as the product of the density and the velocity2
~Φ(t,x,y,ρ) = ~v(t,x,y,ρ)ρ(t,x,y). Thus in two dimensions, the velocity and the flux direction3
coincide. In the following we will refer to the velocity or flux direction to discuss either of them.4
The case where the flux (or velocity) function depends on time, space and density corresponds to5
the most general case. In the following, we investigate if each dependency is justified by traffic6
observations or if some of them could be relaxed.7

Derivation of the 2D flux magnitude8
In this section, we discuss the relevance of the dependency of the flux magnitude w.r.t. time, space9
and density.10
First, we investigate the dependency of the flux magnitude w.r.t. the density. In one dimensional11
models, the velocity is defined as a decreasing function of the density, higher the density on the12
road, lower is the velocity. This idea seems consistent with the representation of a 2D model. Thus,13
we consider the Greenshields fundamental diagram as starting point to the definition of the flux14
magnitude in 2D. The expression of the velocity equation (4) depends on the density and also of15
two parameters: the maximum speed vmax and the maximum density ρmax.16
The maximal speed vmax could vary with respect to time, hence enforcing a time dependence of17
the flux. However, for simplicity we will not consider time dependence in this paper.18
Finally, it is possible to have a space dependency if the parameters vmax or ρmax change along19
the road considered. For example, these modifications occur at the point of the road where the20
speed limit or the number of lane of the road change. However, variations of parameters require21
specific models and involve a more complex computation of the flux. In 2D model, vehicles run on22
an abstraction of the physical network in two dimensions. Thus the notion of capacity and speed23
limit are different and depend of an interpolation of the underlying road network. Furthermore, the24
scale considered is in general more large. If the parameters vmax and ρmax have even more reason to25
change in 2D model, the spatial variation of these parameters could be ubiquitous. Thus, it seems26
essential to develop a precise and accurate method to take into account these variations. As this27
problem could be very complex to handle, we choose to leave this study for future work and we do28
not consider space dependencies for the magnitude in the following. This is equivalent to say that29
every roads of the network considered are homogeneous with the same capacity and speed limit.30

Variable dependencies of flux direction31
In this section, we discuss the relevance of the dependency of the flux direction with respect to32
time, space and density. Contrary to the magnitude dependency, only few comparison can be done33
with existing idea in one dimension as the notion of direction needs to be explicit only in 2D mod-34
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els. Thus, we suggest three ideas regarding what could impact the flux direction.1
First, the flux direction should depend on the road of the underlying network. Indeed, we aim to2
design a model which allows the flux to go only in physically possible directions. That is to say3
vehicles should not be able to move to a direction where there are no roads. Thus, we assumed that4
the velocity direction depends on the space variables.5
A second idea is that the flux direction depends on the individual wishes of drivers. In reality, the6
flux direction is directly linked to the trajectory of each individual vehicle. However in practice,7
macroscopic models are not able to keep track of individual drivers but we can still imagine that8
the direction of the flux could be linked to a global average trajectory. Thus, the flux direction may9
include dependency in the time and spatial coordinates. Indeed, the dependency of the flux direc-10
tion with respect to the space is necessary in order to describe the trajectory. The time dependency11
allows this trajectory to change during the simulation: for example, most of drivers may join the12
city center in the morning and return in the suburb in the evening. We choose to not introduce13
these dependency in the model as we would like to have a model that does not depend on external14
data feed in real time.15
Another idea is the fact that drivers may adapt their direction according to the local condition of16
traffic. For example, drivers could change their planned itinerary in order to bypass a congestion.17
This may lead to a dependency of the flux direction with the density. We choose to not keep this18
dependency in the model.19

The 2D model for traffic considered20
The model considered is based on a two dimensional conservation law as equation (10). We recall
that the flux function can be split in a magnitude part

m(ρ) : [0,ρmax]→ [0,Φmax] = ρ

(
1− ρ

ρmax

)
vmax︸ ︷︷ ︸

velocity norm

and a direction vector
~dθ (x,y) : Ω→ R2 =

(
cos(θ(x,y))
sin(θ(x,y))

)
.

with θ the angle between the x-axis and the vector direction of the flux. Then, the flux can be21
defined: ~Φ(ρ(t,x,y),θ(x,y)) = m(ρ(t,x,y)~dθ (x,y). The equation considered for the model is:22

∂ρ(t,x,y)
∂ t

+
∂ m(ρ(t,x,y)) cos(θ(x,y))

∂x
+

∂ m(ρ(t,x,y)) sin(θ(x,y))
∂y

= 0 (12)

The expression of m is given by the Greenshields fundamental diagram, Figure 1(b). An expres-23
sion is also needed for the direction of the flux in order to be able to make prediction of the density24
propagation. Thus, we suggest in the next section a way to estimate the function dθ using as much25
as possible the information we have on the physical network.26

27

VELOCITY DIRECTION FIELD DESIGN FROM THE PHYSICAL NETWORK28
Description of the method29

The aim of this section is to suggest one possible way to construct the function ~dθ using only the30
topology of the road network. We have seen that for any point (x,y) ∈ Ω, we need to define the31
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direction of the flux ~dθ(x,y). A network is a set of roads in which the link represents the roads and1
the nodes the junctions.2
Lets q ∈ {1, . . . ,Q} be the set of roads of the network with Q the number of roads. Each road q3
is described thanks to a parametric curve Ψq : s ∈ [0,1]→ (Ψ

q
1(s),Ψ

q
2(s)) that follows the road4

curvature from the initial point on the road, Ψq(0) = (xd,yd), to a final point, Ψq(1) = (x f ,y f ).5
For all points s of these parametric curves, we denote by ~τq(Ψ

q
1(s),Ψ

q
2(s)) the tangent vector of the6

curve which represents also the direction of the road. These notations are represented in Figure 2.7
8

FIGURE 2 Representation of the road q and his vector tangent ~τq

Let consider a discretisation of the space where I and J are respectively the number of9
discrete interval for the x-axis and the y-axis. For a given point (xi,y j)(i, j)∈{1,...,I}×{1,...,J}, let10
~dθ (xi,y j) be the directional vector for which the angle with the x axis and the vector is θ(xi,y j)11
such that:12

~dθ (xi,y j) =

(
cos(θ(xi,y j))
sin(θ(xi,y j))

)
. (13)

To estimate the vector ~dθ , we use a spatial interpolation method called Inverse Distance Weighting.13
The expression of the estimator is given in equation (14):14

~dθ (xi,y j) =

Q
∑

q=1

∫
s∈[0,1]

ρ
q
max w(||(xi,y j)− (Ψ

q
1(s),Ψ

q
2(s))||) ~τq(Ψ

q
1(s),Ψ

q
2(s)) ds

∣∣∣∣∣∣ Q
∑

q=1

∫
s∈[0,1]

ρ
q
max w(||(xi,y j)− (Ψ

q
1(s),Ψ

q
2(s))||) ~τq(Ψ

q
1(s),Ψ

q
2(s)) ds

∣∣∣∣∣∣ (14)

Thereby, the velocity direction ~dθ (xi,y j) is estimated as a linear combination of the direction ~τq of
every road q ∈ {1, . . . ,Q} of the network. The weight coefficient of each road direction depends
first on the distance between the road and the point (xi,y j). This dependency is evaluated with the



Mollier, Delle Monache and Canudas-de-Wit 9

weight function w : R+→R+ strictly decreasing. The weight function considered in the following
is:

w : X → e−βX with β > 0.

We choose the exponential weights in order to give greater weight to close roads, w.r.t. far away1
ones. Furthermore, the weight coefficient can also depend of the capacity of the road ρmax as roads2
with higher capacity can hold more drivers.3

Example4
In the section, we present the result of the estimation of a velocity field for an artificial network5
using the method described above.6

(a) β = 10 (b) β = 50

FIGURE 3 Estimation of the velocity direction for a 5×5 Manhattan grid

Figure 3(a) and 3(b) represent the result of the estimation of the velocity direction for7
respectively β = 10 and β = 50. When the parameter β = 10, the direction field ~dθ gives only the8
global direction of the road network whereas when β = 50, the direction field describes more the9
local direction of the road network.10
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FIGURE 4 Estimation of the velocity direction for a less regular Manhattan grid for β = 20
(left) and β = 100 (right)

In order to test how adaptable is the method suggested, we considered as well, a Manhattan1
grid for which the position of each nodes have been slightly modified. An example for two different2
values of β is presented in Figure 4.3

NUMERICAL METHOD FOR SIMULATION4
Choice of the method5
This section focuses on the description of the simulation method for equation (12). The literature6
regarding numerical methods for the two dimensional conservation law is quite broad. However,7
only few of these studies include the case of flux function with space dependency. In Lie (31), the8
authors consider the case of quasilinear hyperbolic equation: ∂u

∂ t +U(x,y)∂ f (u)
∂x +V (x,y)∂g(u)

∂y = 0.9
It is possible to compute a stable approximation of solution of this equation using dimensional10
splitting under the assumption that the function U and V are Lipschitz continuous and bounded. We11
notice that it is possible to expand the derivative of equation (12) in order to reveal the quasilinear12
term and the source term: ∀t ∈ R+,∀(x,y) ∈Ω,13

∂ρ

∂ t
+ cos(θ(x,y))

∂ m(ρ)

∂x
+ sin(θ(x,y))

∂ m(ρ)

∂y︸ ︷︷ ︸
Quasilinear

=−m(ρ)∗ (∂ cos(θ(x,y))
∂x

+
∂ sin(θ(x,y))

∂y
)︸ ︷︷ ︸

Source
(15)

The principle of splitting method is to compute separately the different term of the equation. Thus,14
the formulation given by the equation (15) allows to modify the problem into the computation of15
an equation with a quasilinear term and an equation with a source term. The function cos(θ(., .))16
and sin(θ(., .)) are bounded and are also Lipschitz continuous on condition that the function θ17
is smooth. For the computation of the source term, we use the operator splitting method as it is18
presented in Toro (32) and Gosse (33).19
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Description of splitting methods1
Splitting methods have been considered first by Godunov (34) but have been formally introduced2
by Strang (35). The concept of splitting is to divide the computation of the different terms of the3
equation in several numerical steps. For the general case, this method is called operator splitting.4
When the equation is divided with the derivative along different coordinates, it is called dimen-5
sional splitting.6
Let i, j ∈ [1, . . . , I] ∗ [1, . . . ,J] be the discretization of the space and n the index for the time step.7
The iteration process for the computation of one time step is divided in three parts. First, we com-8
pute the propagation with respect to the first dimension. Then, we compute the propagation with9
respect to the second dimension using the updated density. Finally, we add the effect of the source10
term.11

ρ∗i,j = ρn
i,j− cos(θi,j)

∆t
∆x(F

n
i+ 1

2 ,j
−Fn

i− 1
2 ,j
)12

ρ∗∗i,j = ρ∗i,j− sin(θi,j)
∆t
∆y(F

n
i,j+ 1

2
−Fn

i,j− 1
2
)13

ρ
n+1
i,j = ρ∗∗i,j −m(ρ∗∗)

(
∆t
∆x(cos(θi+ 1

2 ,j
)− cos(θi− 1

2 ,j
))+ ∆t

∆y(sin(θi,j+ 1
2
)− sin(θi,j− 1

2
))
)

14

FIGURE 5 Spatial discretisation for the numerical method

For the notation, Fn
i+ 1

2 ,j
corresponds to the Godunov flux between the cell as we can see in15

Figure 5. To recall, the Godunov flux between a cell of density u to an adjacent cell of density v,16
for a the function Φ of the FD, can be written as follows:17

F(u,v) =


min(Φ(u),Φ(v)), u < v
Φ(u), v≤ u≤ ρcrit
Φ(v), ρcrit ≤ v≤ u
Φmax, v≤ ρcrit ≤ u

(16)

The boundary condition are treated by using ghost-cells.18



Mollier, Delle Monache and Canudas-de-Wit 12

Algorithm1
In this part, we describe the numerical implementation of the previous methods. The algorithm is2
shown in Algorithm 1.3

Algorithm 1 2D model simulation
1. 1: Define the parameters: vmax the maximum velocity, ρmax the maximum density, Tmax the time

horizon, the constant coefficient CFL, dx and dy the spatial discretisation and I and J the
number of discrete interval of the spatial discretisation.

2: Define the time step dt = c f l ∗min(dx,dy)/Vmax
3: Import or create the road network of the study case
4: Compute the velocity field dθ . Using the estimation method
5: Initialize the density ρ to a given value, the current time t to zero.
6: while t < Tmax do
7: Evalue the density at the next time step using the function Propagation_2D
8: function PROPAGATION_2D(ρn,dt,dx,dy, I,J,vmax,ρmax,dθ )
9: Define the intermediate densities ρ∗ and ρ∗∗

10: for i = 1 to I and j = 1 to J do
11: Update of ρ∗ with flux along the x dimension computed with ρn

12: end for
13: for i = 1 to I and j = 1 to J do
14: Update of ρ∗∗ with flux along the y dimension computed with ρ∗

15: end for
16: for i = 1 to I and j = 1 to J do
17: Update of the density value ρn+1 due to the source term computed with ρ∗∗

18: end for
19: end function
20: t=t+dt
21: end while

SIMULATION RESULTS ON AN ARTIFICIAL MANHATTAN GRID4
In this section, we analyze the results of the simulations of the model presented for two scenarios.5
The scenarios represent the same network and thus have an identical estimation of the velocity6
direction ~dθ . The network considered is build as a Manhattan grid on a square domain where every7
road taken into account is oriented towards the North-East. The network and the velocity field can8
be seen in Figure 6.9
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FIGURE 6 Network considered for the scenario (in black) and velocity direction estimated (in
blue) for a parameter β = 20

Forward propagation on an artificial Manhattan grid1
In this section, we present the results of the simulations for an initial condition given by equation2
(17):3

ρ0(x,y) =

{ 1
2

ρmax if
1
8

Lx ≤ x≤ 4
8

Lx and
1
8

Ly ≤ y≤ 4
8

Ly

0 otherwise
(17)

where Lx and Ly are respectively the length of the domain along the x-axis and the y-axis. In Figure4
7, we show the results for different times.5



Mollier, Delle Monache and Canudas-de-Wit 14

FIGURE 7 Simulation results at different times of 2D model with initial traffic state given by
equation (17)

.

First, we can remark that at the initial time, the initial conditions generate two main dis-1
continuities. On the North-East, the discontinuity corresponds to a rarefaction wave whereas in the2
South-West it is a shock wave. The shape of the shock wave is globally preserved.3

Backward propagation and comparison with the CTM model4
In this section, we present the results of the simulations for an initial condition given by equation5
(18):6

ρ0(x,y) =


ρmax if

2
3

Lx ≤ x and
2
3

Ly ≤ y
9
16

ρmax otherwise
(18)

The results at different times are given in Figure 8:7
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FIGURE 8 Simulation results at different times of 2D model with initial traffic state given by
equation (18)

We can observe how the density over all the network raises and the network is quickly1
filled.2
We have also simulated in parallel a Cell Transmission Model Daganzo (5) Coclite et al. (6) on the3
same network and with the same initial condition, for comparison. The results of simulation are4
presented in Figure 9:5
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FIGURE 9 Comparison of simulation between 2D model (left) and CTM (right) for an initial
traffic state given by equation (18)

We represent both simulation at the graph level. For the two dimensional model, the rep-1
resentation is only visual. Indeed, we have just done the projection of the two dimensional grid2
coloring on the graph. Both in the 2D model and in the junction model, the wave propagate back-3
ward as expected with approximately the same speed of propagation.4

CONCLUSION AND FUTURE WORK5
This article is an attempt to extend the LWR model in a two dimensional setting. Contrary to the6
one dimensional case, we underline the fact that we need to complete the definition of the flux7
function by additional information. In particular, we focus on the flux direction and we suggest a8
way to estimate it from the physical network. Finally, we present results of simulations which allow9
to make comparison with the features observed on the LWR model in one dimension. Future work10
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will involve the extension of the model to heterogeneous networks, i.e., capacity and speed limit1
variations w.r.t. space and time and the possibility to describe simultaneously flow in different2
direction. A direct extension of this model is the use of split ratios in the computation of the3
velocity field.4
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