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ABSTRACT

We examine to what extent a knowledge-based model
can recognise segmental structure without feedback
from semantic information and without stochastic
modelling. The system proposed is inspired by some
features of human cognitive processing in that the
speech signal activates parallel distributed processes of
decoding. The modules, conceptually different, are :

- an automatic segmentation module.

- a first analytic recognition based on oriented graphs
with state transitions.

- a second analytic recognition module based on pho-
netic rules.

- a global recognition based on metric methods.

Finally, scrutiny of all the parallel results and access to
a dictionary allow the inference rules to propose ranked
word candidates.

1. GENERAL PRESENTATION OF THE SYSTEM

The object of this study is automatic speech recognition
and concerns more precisely speaker-independent
acoustic-phonetic decoding. We examine to what extent
a knowledge-based model can recognise segmental
structure without feedback from semantic information
and without stochastic modelling [1, 2]. The system
proposed is inspired, in a functional way, by some fea-
tures of human cognitive processing [3]. The sequence
of operations can be characterised as data driven. The
speech signal first arrives at the low level analysis
demons [4] which then activate parallel distributed
processes of decoding (Fig.1). The modules of this
multi-analysis and multi-expert system are conceptually
different. They consequently do not give the same
output. Their results, then, are sent to the cognitive
demons, who act upon them using high-level informa-
tion e.g. phonological rules, access to a dictionary, etc.
Finally, after a top-down verification, a decision process
selects the alternative that has the strongest evidence in
its favour.

First of all, we present the three different modules of
the bottom-up decoding: automatic segmentation,
analytic recognition and global recognition. Secondly,
we develop the main ideas used in the high-level
processes, especially in the access to a dictionary and
the supervisor. Preliminary results are presented in a
third part.

2. THE DIFFERENT MODULES OF THE
BOTTOM-UP DECODING

The bottom-up decoding is achieved by different paraliel
distributed processes.

2.1, Automatic segmentation

The automatic segmentation module (Fig.1) called
SAPHO (Segmentation by Acoustic-Phonetic Knowl-
edge) has already been presented in its first version [5].
It is not an unguided method in which boundaries are
generally placed a priori on the regions of spectral
instability. In the SAPHO algorithm, the idea is to iden-
tify the phonetic forms beginning progressively with the
most evident ones and finishing with the most subtle.
The emergence of segments is not immediate and
requires several steps. The new version of SAPHO is
based on the extraction of robust acoustic parameters,
the identification of cues and the application of a set of
rules.

Overall energy, number of zero crossing and some
spectral features are extracted for each temporal frame
(10 ms). Four basic cues are deduced from these
parameters : silence/signal, voiced/unvoiced, strong/
weak energy, strong/weak friction. These cues permit a
first labelling of frames in three rough classes: [silence],
[transition+consonantism] and [vocalism]. Then, a
temporal tracking permit the construction of phonetic
forms by grouping different sets of frames. In a third
step, the algorithm analyses each phonetic form more
precisely and tries to specify its nature. If it is clear,
segments are categorised by one of the six macro-classes
which are; vowels, vocalic consonants, voiced or
unvoiced fricatives, voiced or unvoiced stops. If the
algorithm does not have enough information at its
disposal, it makes no decision: the segment label stays
fuzzy. The information about the nature of the segment
and its context permits a posteriori the precise location
of boundaries, which are placed progressively between

“ the different units. Continuums of vocalic phonemes,

e.g. in the word "analyse", are segmented if the
algorithm can find evident discontinuities.

Finally, the automatic segmentation provides very
important information on the temporal distribution of
phonetic units (syntagmatic axis) and their possible
nature (paradigmatic axis).
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Figure 1 : Functional diagram of the system

2.2. Analytic recognition

The first analytic recognition module (Fig.1) uses net-
wotrks which are oriented graphs with state transitions.
Unlike Markov chains, this model does not use probabil-
ity and works on the paradigmatic axis rather than the
syntagmatic one. It models the allophones of vowels and
not the abstract units. Each network is specialised for
the recognition of one vowel. All are activated at each
temporal frame. If a path is found along a network, an
output appears at the end. The result is a table contain-
ing the allophone candidates. The analysis of the tempo-
ral distribution of phonemes leads fo strong hypotheses
on the vowel identification and its context.

The second analytic module (Fig.1) is based on
phonetic rules. Acoustic parameters, different from the
previous ones, are extracted for every temporal frame
(10 ms) by modelling some psycho-acoustic phenomena
e.g. weighted sound level, critical bands, etc. For the
decoding of vowels, the distribution of energies
calculated in the critical bands permit the deduction of
two phonetic features : open/close and grave/acute. This
analysis allows the system to classify the vowels in four
classes : open/acute (/ce/, /¢/, /a/l, f&/), open/grave (/ce/,
i, fa, 181, BB, closed/acute (/y/, /i/, lel, l8/) and
closed/grave (/w/, /o). In a second step, the algorithm
locates the relevant peaks in the spectral distribution of
the critical bands. Finally, for each frame, one or two
vowel candidates are proposed by the module taking
into account the phonetic class and the place of the
peaks. Results are filtered to ecliminate the isolated

Lin velar context

non velar context

appearance of a candidate. The decoding of consonants
has been abandoned in this module because such a task
needs precise contextual information which is not
available at this step of the decoding.

2.3. Global recognition

The global recognition module (Fig.1) is based on
metric methods. Decoding units are CV groups. We
have selected these units because their number is limited
compared to the great number of words in a large
vocabulary. For French, we have used 10 vowels /a,i,u,

o+d,ete,y,0e+0,5,0,8+%@/ and 16 consonants /ptkbdgfsfv
zzmnlr/ which give 160 different CV combinations.

Secondly, most coarticulation phenomena take place
within such CV groups.

The first step of the global recognition module is feature
extraction done by a Perceptually based Linear Predic-
tion analysis [6]. Then, a Data Time Warping algorithm
is used in order to compare stimuli to references. To
account for variability, 10 prototypes extracted from 10
different speakers (5 male and 5 female) are stored for
each CV combination, which gives 1600 prototypes.

The output of the comparison is a list of classified CV
candidates. The analysis of cues relative to the best
candidates allows the construction of the solution using
a vote procedure. For example, if among the 10 best
consonant candidates, 9 are voiced, 8 acute, 1 compact,
0 continuant, 1 nasal, 1 vocalic, the module proposes [d]
as solution for the consonant, because [d] is voiced,
acute, non compact, non continuant, non nasal and non
vocalic.




3. THE HIGH-LEVEL MODULES
3.1. Access to a dictionary

Some methods of automatic spelling-correction compute
a distance between a reference-word and a test-word;
they rely on a series of operations that model errors of
insertion, deletion and substitution. It is possible to
realise these operations using dynamic programming
[7]. The module for lexical access (Fig.1) is inspired by
this method.

In our case, distance is not computed between graph-
emes but between a decoded phonetic string and the
phonetic representations of words stored in a dictionary
(Fig.2). Dynamic programming efficiently integrates in
a single algorithm all the phenomena of insertion, dele-
tion and substitution that can appear in bottom-up
decoding. The comparison between test and reference
words requires the computation of a local distance
between the sub-units of the strings (Fig.2). Whereas in
the case of orthographic strings, the local distance is
basic (0 if graphemes are the same, 1 if they are differ-
ent), a more sophisticated measure is required in the
case of phonetic strings. Actually, the difference
between /i/ and /e/ is less important than the confusion
of /i/ with /p/. This is the reason why we have intro-
duced a matrix of cost-confusion, which indicates the
difference between each phoneme. It also permits a non-
precise definition of a phoneme in the stimulus string.
For example, on Figure 2, the Sth unit of the stimulus
has been decoded as 'liquid' which is the macro-class of
/V/ and /1/.
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Figure 2 : Calculation of distance between
2 phonetic strings.

This method could be useful in evaluating, in a precise
lexicon, the degree of difficulty of decoding; if, globally,
a great distance was calculated between each word of
the lexicon and the rest of the dictionary, it could indi-
cate an easy task of decoding.

This method also requires phonological rules that
forecast all the variations of a word's pronunciation. For
example, the word "petite" (French word for "small"),
whose phonological transcription is /patits/, can be
pronounced as [ptit], [petit], [ptite] or [patite] and
should have 4 phonetic entries in the dictionary.

3.2. Supervisor

The supervisor process (Fig.1) is in its preliminary
version. In a first step, it collects the different results of
the bottom-up decoding (Table 1).

Table 1: Bottom-up decoding with the word "dictée"
(French word for "dictation”) pronounced /dicte/

columns : t=frame number, Segm.=automatic segmentation,
Ana.=analytic decoding, Global=global decoding

abbr : SIL=silence, OCV=voiced stop, VOY=vowel, CSN=unvoiced
consonant, OCN=unvoiced stop, &=/¢/, £=/&/ or /e/, E=/E/

t Segm. | Ana. | Global t Segm. | Ana. | Global
1 SIL | . - 33 JOCN | . -

2 SIL | . - 34 | OCN { . -

3 siL | . - 35 | OCN | . -
4 2. i - 36 | OCN | . -

5 ocv . bdvz 37 | OCN . ptkfs
6 |ocv| . bdvz || 38 | OCN | . ptkfi
7 |ocv]| . bdvz || 39 | OCN | . ptkfs
8 ocv . bdvz 40 OCN . ptkfs
9 |ocvy . bdvz | 41 | VOY BE
10 jocv| . bdvz || 42 | VOY | ¢y BE
1 ocv| . bdvz || 43 | vOY | &y EE

12 Jocv ] i bdvz 44 | VOY | &y EE

13 | VOY | i i 45 | VOY | & EE
14 | VOY | i i 46 | VOY | &y EE
15 | vOY | ie i 47 | voy | ¢ -
16 | VOY | ie i 48 | voy | & -
17 | VOY | ie i 49 | VoY | @ -
18 | VOY | ie - 50 | vOY | @ -
19 | voy | ie - 51 lvoy | . -
20 | VoY | e - 52 | voy | . -
21 | voy | . - 53 | voy | . -
22 | voy | . - 54 | vOoY | . -
23 2 . - 55 | voy | . -
24 [ CSN | . - 56 | voy | . -
25 | esn | o - 57 | voy | . -
26 | CSN | . - 58 | voy | . -
27 | CSN - 59 | voy | . -
28 | CSN | . - 60 | VOY | . -
29 | csN | . - 61 SIL . -
30 | OCN | . - 62 | SIL . -
31 | OCN | . - 63 SIL . -
32 | ocN | . - 64 | SIL . -

The syntagmatic information, i.e. the distribution of
phonemes, is provided by the automatic segmentation
(Table 1, column Segm.). This module also provides the
macro-classes for the consonants. The precise identifica-
tion of vowels is given by the analytic and global recog-
nition modules (Table 1, columns 4na. and Global). For
the time being, combining all these knowledge sources,
the supervisor builds different phonetic string candi-
dates using a very simple strategy (Table 2). We plan to
improve these methods of decision, especially in case
where an inconsistency is detected.

Table 2: Phonetic string candidates

[OCV][i][CSNJ[OCN]{.e]
[OCV][i][CSN][OCN][E]
[OCV][i][CSN][OCN][y]
[OCV][e][CSN][OCN]]e.e]
[OCV][e][CSN][OCN][E]
[OCVI[e][CSNJ[OCN][y]




In the case of isolated words, access to a dictionary
allows the supervisor to provide a ranked list of word
candidates (Table 3). This operation is done by compar-
ing each phonetic string decoded with all the entries of a
dictionary as described in § 3.1.

Table 3: Lexical access

columns: 1 = position, 2 = decoded phonetic string, 3 = orthographic form
of the word in the dictionary, 4 = phonetic form of the word in the
dictionary, 5 = distance between the phonetic string of the decoded word
and the phonetic string of the stored word

abbr : E=/¢/ or /e/

pos| decod.phonetic string | orthogr. |phonetic| dist
1 | [OCVJ[CSN][OCN]E dictée dkiE | 0
2 | [OCVJ[CSN][OCN]y | discute diskyt | 2
3 | [OCV]e[CSN][OCN]E goliter gutk 5
4 | [OCVE[CSN][OCN]E quitter Kttt | 5
5 | [OCVJ[CSN][OCN]E bonté bBtE 5
6 | [OCV]e[CSN][OCN]y dessus dosy 5
7 | [OCV]E[CSN][OCN]E veston vEstd 7
8 | [OCVJ[CSN][OCN]& discret | diskrk | 8
9 | [OCV]E[CSN][OCN]E latins laté 8
10 | [OCV]e[CSN][OCN]& poster postE | 10

In the example presented, the appropriate word "dictée"
has been placed in first position (Table 3). A top-down
verification process, which is to be developed, would
eliminate candidates such as "gofiter" pronounced /gute/
or "bonté" pronounced /bdte/ (Table 3) because in these
words, the first vowel is grave, which is in contradiction
with the stimulus where the first vowel is definitely
acute.

4. RESULTS

In a first test, each module has been evaluated independ-
ently using 10 French speakers (5 male, 5 female)
recorded in the corpus SYL of the French database BD-
SONS. Stimuli were CVCV non-words such as "titi",
"rara", "sussu",... that represents the combination of
2 * 10 vowels * 16 consonants * 10 speakers = 3200
tokens. Results have been published [8].

In a second test, we have evaluated the system with all
the modules working together. A corpus? of 500 French
isolated words recorded by 6 speakers (5 males, 1
female) has been used. For this operation, we have
constructed a dictionary containing 500 orthographic
entries corresponding to the 500 utterances. 'Standard'
pronunciations of these words have been found in the
BDLEX* lexicon. The recognition is completely
speaker-independent, The supervisor has a very simple
strategy and no top-down verification is done.
6 speakers * 500 words = 3000 utterances have been
tested. For each test, the result consists in locating, in
the ranked list of words-candidates (ex: Table 3), the
place of the tested-word. In 47% of the case (Fig.3), the

3we are grateful to the Laboratoire d'informatique de I'Université
d'Avignon, France for generously offering us this corpus.

BDLEX is a French lexical and phonological database. This project is
headed by G. Pérennou, IRIT, Toulouse, France

tested-word was in first position. In 70 % of the case, it
was in the first ten places. In 86% of the case, it was in
the first fifty positions.
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Figure 3 : Preliminary results of recognition
using a corpus of 500 words with six speakers.

These results are encouraging and can be easily
improved. Bad results come from the partial inadequacy
between the phonetic strings proposed by the supervisor
and the dictionary, especially in the case of semi-vowels
such as /jwy/.

CONCLUSION

We have presented the different parts of a system based
on parallel distributed processes for speaker-independ-
ent acoustic-phonetic decoding. All these knowledge-
sources collaborate in a single system. The bottom-up
decoding is working efficiently. Our aim now is to
improve the inference rules of the supervisor and to
integrate a top-down verification step to eliminate the
candidates which are clearly incorrect.
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