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A norm for signed measures. Application to non local transport

equation with source term

Benedetto Piccoli ∗ Francesco Rossi † Magali Tournus ‡

Abstract

We provide a norm on the space of signed Radon measures with finite mass, based on the
generalized Wasserstein distance for measures of different mass. We explain precisely what is
a converging sequence for this norm, in particular, it may be not uniformly bounded and not
uniformly tight. This norm enables us to obtain existence and uniqueness of non local and non
linear transport equations with source term when initial condition is a signed measure, as the
unique limit of a convergent scheme.

Key-words. Wasserstein distance, Transport equation, Signed measures.

AMS subject classifications. 28A33, 35A01.

1 Introduction

The goal of the paper is to provide a framework to guarantee the well-posedness of the non local
transport equation with source term,

∂tµt(x) + div .(v[µt](x)µt(x)) = h[µt](x), µ|t=0(x) = µ0(x), (1)

for x ∈ Rd and µ0 ∈ Ms(Rd), where Ms(Rd) is the space of signed Radon measures with finite
mass on Rd. Equation (1) has already been studied in the framework of positive measures where it
has natural interpretations such that the evolution of a crowd density. The motivation for studying
equation (1) in the framework of signed measure is the interpretation of µt as the spatial derivative
of the entropy solution ρ(x, t) to a scalar conservation law. A link between scalar conservation
laws and non local transport equation has been initiated [2], but until now, studies are restricted
to convex fluxes and a monotonous initial conditions, so that the spatial derivative µt is a positive
measure for all t > 0 with a preserved mass.

1.1 A family of generalized Wasserstein norms

The first main content of this paper is the definition of the norm ‖.‖a,b on Ms(Rd) where a and
b are any positive real numbers, (Definition 5) and the statement of the topological properties
of
(
Ms(Rd), ‖.‖a,b

)
(Theorems 1 and 2). The usual Wasserstein distance Wp(µ, ν)[10] was defined
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between two measures µ and ν of same mass |µ| = |ν|. A transference plan between two measures
of same mass µ and ν is a probability measure π ∈ P(Rd,Rd) which satisfies for all A,B ∈ B(Rd)

π(A× Rd) =
µ(A)

|µ|
, π(Rd ×B) =

ν(B)

|ν|
.

We denote by Π(µ, ν) the set of transference plans between µ and ν. The p-Wasserstein distance
for positive Radon measures of same mass is defined as

Wp(µ, ν) = |µ|
1
p

(
min

π∈Π(µ,ν)

∫
Rd×Rd

|x− y|pdπ(x, y)

) 1
p

.

It was extended to positive measures having possibly different mass in [9], where the authors

introduce the distance W a,b
p .

Definition 1 (Generalized Wasserstein distance [8]). Let µ, ν be two positive measures of finte mass
in M(Rd). The generalized Wasserstein distance between M(Rd) and ν is given by

W a,b
p =

 min
µ̃,ν̃∈M(Rd)
|µ̃|=|ν̃|

ap(|µ− µ̃|+ |ν − ν̃|)p + bpW p
p (µ̃, ν̃)


1/p

.

A part of the mass µ̄ ≤ µ is transported onto a mass ν̄ ≤ ν with a weight b, the rest being

canceled with a weight a. Notice that for a/b = a′/b′ the distance W a,b
1 = b/b′W a′,b′

p . Alternative
distances on the space of positive measures were introduced at the same period (see [5], [6]).

The authors of [1] suggested to extend the usual Wasserstein distance W1 to the couples of
signed measures µ = µ+ − µ− and ν = ν+ − ν− such that |µ+|+ |ν−| = |µ−|+ |ν+| by the formula
W1(µ, ν) = W1(µ+ + ν−, µ− + ν+). This procedure fails for p 6= 1, since triangular inequality is lost
(see counter-example in [1]). We use the same trick to turn the generalized Wasserstein distance

into a distance for signed measure and define Wa,b
1 (µ, ν) as W a,b

1 (µ+ + ν−, µ− + ν+). The space of
signed measures being a vectorial space, we also define a norm ‖µ‖a,b = Wa,b(µ, 0). Notice that to
define the norm ‖.‖a,b, we need to restrict ourselves to Radon measures with finite mass, since the
generalized Wasserstein distance [7] is not defined for Radon measure with infinite mass.

1.2 A framework for the transport equation for signed measures

The second main content of the present paper is the well-posedness of the transport equation (1).
The regularity assumptions made in this paper on the velocity field and on the source term are the
following

H-1 There exists K such that for all µ, ν ∈Ms(Rd) with finite mass

‖v[µ]− v[ν]‖C0(Rd) ≤ K‖µ− ν‖a,b. (2)

H-2 There exist L,M such that for all x, y ∈ Rd, for all µ ∈Ms(Rd),

|v[µ](x)− v[µ](y)| ≤ L|x− y|, |v[µ](x)| ≤M. (3)
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H-3 There exist Q,P,R such that for all µ ∈Ms(Rd) with finite mass,

‖h[µ], h[ν]‖a,b ≤ Q‖µ− ν‖a,b, |h[µ]| ≤ P, supp(h[µ]) ⊂ B0(R). (4)

We emphasize that the assumptions (H-2) and (H-3) are incompatible with a direct interpre-
tation of the solution of (1) as the spatial derivative of a conservation law and need to be relaxed
in a future work. Indeed, to draw a parallel between conservation laws and non-local equations,
discontinuous velocity fields need to be considered.

Throughout the paper, B(Rd) is the space of Borelian sets on Rd, M(Rd) is the space of Radon
measures (i.e. Borel regular, positive, and finite on every compact set),Ms(Rd) is the space of signed
Radon measures, i.e. measures µ that can be written as µ = µ+ − µ− with (µ+, µ−) ∈M(Rd). For
µ ∈Ms(Rd), we define |µ| = |µJ+|+ |µJ−| where (µJ+, µ

J
−) is the unique Jordan decomposition of µ.

In Section 2, we state and prove preliminary results which are needed for the rest of the paper.
In Section 3, we define the generalized Wasserstein distance for signed measures, show that it can
be used to define a norm, state and prove some topological properties. Section 4 is devoted to the
application of our norm to guarantee existence, uniqueness, and stability to initial condition for the
transport equation (1).

2 Preliminary results

In this section, we introduce the notations and state preliminary results.

2.1 Recall on measure theory

In this part, µ and ν are in M(Rd).

Definition 2. We say that

• µ << ν if ∀A ∈ B(Rd), (ν(A) = 0)⇒ (µ(A) = 0)

• µ ≤ ν if ∀A ∈ B(Rd), µ(A) ≤ ν(A)

• µ ⊥ ν if there exists E ∈ B(Rd) such that ∀A ∈ B(Rd), µ(A) = µ(A∩E) and ν(A) = ν(A∩Ec)

The concept of largest common mass between is introduced below

Lemma 1. We consider µ and ν two measures in M(Rd). Then, there exists a unique measure
µ ∧ ν which satisfies

µ ∧ ν ≤ µ, µ ∧ ν ≤ ν, (η ≤ µ and η ≤ ν)⇒ η ≤ µ ∧ ν. (5)

We refer to µ ∧ ν as the largest common mass to µ and ν. Moreover, denoting by f the Radon
Nikodym derivative of µ with respect to ν, i.e. the unique measurable function f such that µ =
fν + µ⊥, with µ⊥ ⊥ ν, we have

µ ∧ ν = min{f, 1}ν. (6)

Proof. The uniqueness is clear using (5). Existence is given by formula (6) as follows. First, it is
obvious that min{f, 1}ν ≤ ν and using µ = fν + ν⊥, it is also clear that min{f, 1}ν ≤ µ. Let us
now assume by contradiction the existence of a measure η and of A ∈ B(Rd) such that

η ≤ µ, η ≤ ν, η(A) >

∫
A

min{f(x), 1}dν(x). (7)
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Since ν⊥ ⊥ ν, there exists E ∈ B(Rd) such that ∀A ∈ B(Rd), ν(A) = ν(A ∩ E) and ν⊥(A) =
ν⊥(A ∩ Ec). Since η ≤ ν, we have

η(A ∩ E) = η(A) >

∫
A∩E

min{f(x), 1}dν(x).

We define
B = {x ∈ A ∩ E, f(x) > 1}.

Then

η(B) + η((A ∩ E) \B) = η(A ∩ E) >

∫
B

min{f(x), 1}dν(x) +

∫
(A∩E)\B

min{f(x), 1}dν(x)

= ν(B) + µ((A ∩ E) \B)− ν⊥((A ∩ E) \B)

= ν(B) + µ((A ∩ E) \B)

which contradicts the fact that η ≤ ν and η ≤ µ. This implies that η satisfying (7) does not exist,
and then (6) holds.

Lemma 2. We consider µ and ν two measures in M(Rd). The following properties hold.

1. µ ⊥ ν ⇔ µ ∧ ν = 0

2. (µ− µ ∧ ν) ⊥ (ν − µ ∧ ν)

3. η ≤ µ+ ν implies η − (µ ∧ η) ≤ ν

4. µ ≤ η and ν ≤ η implies µ+ ν − (µ ∧ ν) ≤ η.

Proof. 1. If µ ⊥ ν, then the unique Radon Nikodym decomposition gives f = 0, ν a.e. and µ = ν⊥,
and thus using (6), µ ∧ ν = 0. Conversely, if µ ∧ ν = 0, then, using again (6), min{f, 1}ν = 0, and
thus the Radon decomposition gives µ = fν + ν⊥ = ν⊥ with ν⊥ ⊥ ν, which implies µ ⊥ ν.

2. We write µ = fν + ν⊥ with ν⊥ ⊥ ν. Then, µ − (µ ∧ ν) = ν⊥ + max{0, f − 1}ν and
µ − (µ ∧ ν) = max{0, 1 − f}ν. We pick E such that ν⊥(A) = ν⊥(A ∩ Ec) and ν(A) = ν(A ∩ E).
Considering F = {x ∈ E|f(x) < 1}, it is easy to check that (µ− (µ∧ν))(A) = (µ− (µ∧ν))(A∩F c)
and (ν − (µ ∧ ν))(A) = (ν − (µ ∧ ν))(A ∩ F ), and the result holds.

3. We write µ = fη + η⊥, with η⊥ ⊥ η. Then η ∧ µ = min{f, 1}η, and we can write η(A) −
(η ∧ µ)(A) =

∫
A

(
1 − min{f(x), 1}

)
dη(x). Defining B = {x ∈ A|f(x) < 1}, and E such that

η(A ∩ E) = η(A) and η⊥(A ∩ Ec) = η⊥(A), we have

η(A)− (η ∧µ)(A) =

∫
B∩E

(1− f(x))dη(x) = η(B ∩E) + η⊥(B ∩E)−µ(B ∩E) ≤ ν(B ∩E) ≤ ν(A).

4. We write µ ∧ ν = min{f, 1}ν, with µ = fν + ν⊥. Then w := µ + ν − (µ ∧ ν) = fν +

ν⊥ − min{f, 1}ν + ν, which is w(A) =
∫
A

(
1 + f(x) − min{f(x), 1}

)
dν(x) + ν⊥(A). Defining

B = {x ∈ A|f(x) < 1}, and E such that ν(A ∩ E) = ν(A) and ν⊥(A ∩ Ec) = ν⊥(A), we have

w(A) = ν(B) +

∫
A∩Bc

f(x)dν(x) + ν⊥(A) = ν(B) + µ(A ∩Bc)− ν⊥(A ∩Bc) + ν⊥(A)

= ν(B) + µ(A ∩Bc) + ν⊥(B)

and then, since ν ≤ η and ν⊥ ≤ µ ≤ η,

w(A) = ν(B ∩ E) + µ(A ∩Bc) + ν⊥(B ∩ Ec) ≤ η(B ∩ E) + η(A ∩Bc) + η(B ∩ Ec) = η(A).

4



To end this section, we recall the definition of tightness for a sequence of Ms(Rd).

Definition 3. A sequence (µn)n∈N of measures ofM(Rd) is tight if for all ε > 0, there is a compact
set K ⊂ Rd such that for all n ≥ 0, µn(Rd \ K) < ε. A sequence (µn)n∈N of signed measures of
Ms(Rd) is tight if the sequences (µ+

n )n∈N and (µ−n )n∈N given by the Jordan decomposition are both
tight.

2.2 Properties of the generalized Wasserstein distance

Lemma 3. We consider µ and ν two measures of M(Rd) of same mass. Given η ∈ M(Rd)
a measure of finite mass, there exists a transference plan π realizing the 1-Wasserstein distance
W1(µ + η, ν + η) such that η is the image of η under π and the restriction of π to π′ ∈ Π(η, η) is
supported on the diagonal {x = y}.

Proof. First, writing µ = |µ|µ̄ and ν = |µ|ν̄, the Kantorovich-Rubinstein duality gives us the
equality

W1(µ, ν) = |µ|W1 (µ̄, ν̄) = |µ| sup
‖ϕ‖Lip≤1

∫
Rd
ϕ(x)d(µ̄− ν̄)(x) = sup

‖ϕ‖Lip≤1

∫
Rd
ϕ(x)d(µ− ν)(x)

= sup
‖ϕ‖Lip≤1

∫
Rd
ϕ(x)d(µ+ η − ν − η)(x) = W1(µ+ η, ν + η).

Let us now denote by π̄ ∈ Π(µ, ν) one optimal plan realizing W1(µ, ν). We claim here that there is
a plan π ∈ Π(µ+ η, ν + η) such that η is the image of η under π and such that the restriction of π
to π′ ∈ Π(η, η) is supported on the diagonal {x = y}, π being given by the formula

π =
1

|µ+ η|
(|µ|π̄ + (Id, Id)#η) , where ((Id, Id)#η)(A×B) =

η(A)η(B)

|η|
.

Then we have

|µ+ η|
∫

Rd×Rd
|x− y|dπ(x, y) =

∫
Rd×Rd

|x− y|dπ̄(x, y) = W1(µ, ν) = W1(µ+ η, ν + η),

and thus the plan π realizes the distance W1(µ+ η, ν + η).

Lemma 4 (Properties of the generalized Wasserstein distance). Let µ, ν, η, µ1, µ2, ν1, ν2 be some
positive measures with finite mass on Rd. The following properties hold

1. W a,b
p (µ1 + µ2, ν1 + ν2) ≤W a,b

p (µ1, ν1) +W a,b
p (µ2, ν2).

2. W a,b
1 (µ+ η, ν + η) = W a,b

1 (µ, ν),

Proof. The first property is taken from [8] Proposition 11. We only prove the second property. The
first inequality is clear,

W a,b
1 (µ+ η, ν + η) = min

mµ≤µ+η
mν≤ν+η

{a (|µ+ η −mµ|+ |ν + η −mν |) + bW1(mµ,mν)}

≤ min
µ̃≤µ
ν̃≤ν

{a (|µ+ η − (µ̃+ η)|+ |ν + η − (ν̃ + η)|) + bW1(µ̃+ η, ν̃ + η)}

= min
µ̃≤µ
ν̃≤ν

{a (|µ− µ̃|+ |ν − ν̃|) + bW1(µ̃, ν̃)} = W a,b
1 (µ, ν).

(8)
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Figure 1: Representation of the measures µ, ν and η in the simple case where their support does
not overlap.

To prove the reverse inequality, we need to check that the minimum realizing W a,b
1 (µ+ η, ν+ η)

can be attained for some µ̃ ≥ η, ν̃ ≥ η .
Step 1. As a first step, we notice that we can assume that µ ⊥ ν. Indeed, if the result holds

for µ, ν satisfying µ ⊥ ν, then, for any µ, ν positive measures,

W a,b
1 (µ, ν) ≤W a,b

1 (µ− µ ∧ ν, ν − µ ∧ ν) using (8)

= W a,b
1 (µ− µ ∧ ν + µ ∧ ν + η, ν − µ ∧ ν + µ ∧ ν + η) using Lemma 2, 2,

= W a,b
1 (µ+ η, ν + η).

From now on, we assume µ ⊥ ν.
Step 2. We decompose here the minimizer mµ and ν̃ as

mµ = µ̄+ ηµ + ηc,

mν = ν̄ + ην + ηc,
(9)

with
µ̄ ≤ µ, ν̄ ≤ ν, ηµ + ην + ηc ≤ η,

defined above, see Figure 1. This decomposition may not be unique, but there exists at least one
that we exhibit. First, we define

µ̄ = mµ ∧ µ, ν̄ = mν ∧ ν.

It is obvious that µ̄ ≤ µ and ν̄ ≤ ν. Then, calling µ̂ := mµ − µ̄ and ν̂ := mν − ν̄, we set

ηc = µ̂ ∧ ν̂, ηµ = µ̂− ηc, ην = ν̂ − ηc.
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We have mµ ≤ µ + η and then µ̂ = mµ −mµ ∧ µ ≤ η using Lemma 2,3, and samely, ν̂ ≤ η. As a
consequence,

ηµ + ην + ηc = µ̂+ ν̂ − µ̂ ∧ ν̂ ≤ η

using Lemma 2,4. Finally, we check that

µ̄+ ηc + ηµ = mµ ∧ µ+ µ̂ ∧ ν̂ + µ̂− µ̂ ∧ ν̂ = mµ ∧ µ+mµ −mµ ∧ µ = mµ, and ν̄ + ηc + ην = mν .

Step 3. Using decomposition (9), we write

W a,b
1 (µ+η, ν+η) = a (|µ− µ̄|+ |η − ηµ − ηc|+ |ν − ν̄|+ |η − ην − ηc|)+bW1(µ̄+ηµ+ηc, ν̄+ην+ηc)

We denote by π the optimal plan realizing W1(µ̄ + ηµ + ηc, ν̄ + ην + ηc). Using Lemma 3, we
can assume that π sends ηc to ηc. The mass µ̄ is then split by π into two pieces. Let us denote by
µ∗ ≤ µ̄ the mass which is sent to ν, the remainder (µ̄− µ∗) being sent on ην . Let us also denote by
ν∗ the image of µ∗ under π. We have then

|µ∗| = |ν∗|, |µ̄− µ∗| ≤ |ην |, |µ̄− µ∗|+ |ηµ| = |ν̄ − ν∗|+ |ην |, and thus |ν̄ − ν∗| ≤ |ηµ|. (10)

We claim now that the minimum realizing W a,b
1 (µ+ η, ν + η) is also attained for

µ′ = µ∗ + η, ν ′ = ν∗ + η.

Indeed, we have

|µ− µ∗|+ |ν − ν∗| = |µ− µ̄|+ |µ̄− µ∗|+ |ν − ν̄|+ |ν̄ − ν∗|
≤ |µ− µ̄|+ |ην |+ |ν − ν̄|+ |ηµ|, using (10)

≤ |µ− µ̄|+ |η − ηc − ηµ|+ |ν − ν̄|+ |η − ηc − ην |,

and
W1(µ∗ + η, ν∗ + η) ≤W1(µ∗, ν∗) ≤W1(µ̄+ ηµ + ηc, ν̄ + ην + ηc),

since the optimal plan π ∈ Π(µ̄ + ηµ + ηc, ν̄ + ην + ηc) , can be restricted to π ∈ Π(µ∗, ν∗) (by

definition of µ∗ and ν∗). Then, we can assume that the minimum realizing W a,b
1 (µ + η, ν + η) is

attained for mµ ≥ η, mν ≥ η, and the inequality in (8) in an equality.

Notice that this property is not verified for p 6= 1: the results only holds true for p = 1 because
the cost c(x, y) = |x− y| is a metric (see [10], Corollary 1.16).

Similarly to what was already done in [1] for classical Wasserstein distance, we extend the
definition of generalized Wasserstein distance for Radon measures of different masses to signed
Radon measures of different masses.

3 Generalized Wasserstein norm for signed measures

3.1 Definition

Definition 4 (Generalized Wasserstein distance extended to signed measures). For µ, ν two signed
measures with finite mass over Rd, we define

Wa,b
1 (µ, ν) = W a,b

1 (µ+ + ν−, µ− + ν+),

where µ+, µ−, ν+ and ν− are any measures in M(Rd) such that µ = µ+ − µ− and ν = ν+ − ν−.
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Proposition 1. The operator Wa,b
1 is a distance on the spaceMs(Rd) of signed measures with finite

mass on Rd.

Proof. First, we point out that the definition does not depend on the decomposition. Indeed, if
we consider two distinct decompositions, µ = µ+ − µ− = µJ+ − µJ−, and ν = ν+ − ν− = νJ+ − ν−J ,
with the second one being the Jordan decomposition, then we have (µ+ + ν−) − (µJ+ + νJ−) =
(µ− + ν+) − (µJ− + νJ+), and this is a positive measure since µ+ ≥ µJ+ and ν+ ≥ νJ+. The first

property of Lemma 4 then gives us W a,b
1 (µJ+ + νJ−, µ

J
− + νJ+) = W a,b

1 (µJ+ + νJ− + (µ+ + ν−)− (µJ+ +

νJ−), µJ− + νJ+ + (µ− + ν+)− (µJ− + νJ+)) = W a,b
1 (µ+ + ν−, µ− + ν+).

We now prove that Wa,b
1 (µ, ν) = 0 implies µ = ν. We saw that we can assume that we use the

Jordan decomposition. Since W a,b
1 is a distance, we obtain µ+ + ν− = µ− + ν+. The orthogonality

of µ+ and µ− and of ν+ and ν− implies that µ+ = ν+ and µ− = ν−, and thus µ = ν.
We now prove the triangle inequality. We have Wa,b

1 (µ, η) = W a,b
1 (µ+ + η−, µ− + η+). Using

Lemma 4, we have Wa,b
1 (µ, η) = W a,b

1 (µ+ + η−+ ν+ + ν−, µ−+ η+ + ν+ + ν−) ≤W a,b
1 (µ+ + ν−, µ−+

ν+) +W a,b
1 (η− + ν+, η+ + ν−) which is Wa,b

1 (µ, ν) + Wa,b
1 (ν, η).

For any x, y ∈ Rd, Wa,b
1 (δx,−δy) = 2a

Lemma 5. Let µ, ν, η, µ1, µ2, ν1, ν2 in Ms(Rd) with finite mass on Rd. The following properties
hold

• Wa,b
1 (µ+ η, ν + η) = Wa,b

1 (µ, ν),

• Wa,b
1 (µ1 + µ2, ν1 + ν2) ≤ Wa,b

1 (µ1, ν1) + Wa,b
1 (µ2, ν2).

Proof. The proof is direct. We have Wa,b
1 (µ+η, ν+η) = W a,b

1 (µ+ +ν+ +η+ +η−, µ−+ν−+η+ +η−)

which is W a,b
1 (µ+ + ν+, µ− + ν−) = Wa,b

1 (µ, ν) for the first item, and for the second item Wa,b
1 (µ1 +

µ2, ν1 + ν2) = W a,b
1 (µ1,+ + µ2,+ + ν1,− + ν2,−, ν1,+ + ν2,+ + µ1,− + µ2,−) ≤W a,b

1 (µ1,+ + ν1,−, ν1,+ +

µ1,−) +W a,b
1 (µ2,+ + ν2,−, ν2,+ + µ2,−) which is Wa,b

1 (µ1, ν1) + Wa,b
1 (µ2, ν2).

Definition 5. For µ ∈Ms(Rd) and a > 0, b > 0, we define

‖µ‖a,b = Wa,b
1 (µ+, µ−),

where µ+ and µ− are any measure of M(Rd) such that µ = µ+ − µ−.

Proposition 2. The space of signed measures (Ms(Rd), ‖.‖a,b) is a normed vector space.

Proof. First, we notice that ‖µ‖a,b = 0 implies that W a,b
1 (µ, µ−) = 0, which is µ+ = µ− so that

µ = µ+ − µ− = 0. For triangular inequality, we write that for µ, ν, η ∈ Ms(Rd), ‖µ + η‖a,b =

Wa,b
1 (µ + η, 0) ≤ Wa,b

1 (µ, 0) + Wa,b
1 (η, 0) using the second property of Lemma 5, and this is equal

to ‖µ‖a,b + ‖η‖a,b. Homogeneity is obtained by writing for λ > 0, ‖λµ‖a,b = Wa,b
1 (λµ, 0) =

W a,b
1 (λµ+, λµ−) where µ = µ+ − µ−. We denote by µ̄+, µ̄− the minimum realizing W a,b

1 (µ+, µ−),

which is W a,b
1 (µ+, µ−) = C(µ̄+, µ̄−) = a (|µ+ − µ̄+|+ |µ− − µ̄−|) + bW1(µ̄+, µ̄−), then, one mini-

mum realizing W a,b
1 (λµ+, λµ−) for λ > 0 is λµ̄+, λµ̄− so that W a,b

1 (λµ+, λµ−) = Cλ(λµ̄+, λµ̄−) =
a (|λµ+ − λµ̄+|+ |λµ− − λµ̄−|) + bW1(λµ̄+, λµ̄−). This comes from the fact that for all positive

Radon measures µ, ν, we have λC(µ, ν) = Cλ(λµ, λν). Then W a,b
1 (λµ+, λµ−) = λW a,b

1 (µ+, µ−) =

λWa,b
1 (µ, 0) = λ‖µ‖a,b.
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3.2 Topological properties

Proposition 3. For a > 0, b > 0, the norm ‖.‖a,b is equivalent to ‖.‖1,1.

Proof. For µ ∈Ms(Rd) denote by (ma,b
+ ,ma,b

− ) the positive measures such that

‖µ‖a,b = a|µ+ −ma,b
+ |+ a|µ− −ma,b

− |+ bW1(ma,b
+ ,ma,b

− ).

By definition of the minimzers, we have

‖µ‖a,b = a|µ+ −ma,b
+ |+ a|µ− −ma,b

− |+ bW1(ma,b
+ ,ma,b

− )

≤ a|µ+ −m1,1
+ |+ a|µ− −m1,1

− |+ bW1(m1,1
+ ,m1,1

− ) ≤ max{a, b}‖µ‖1,1,

and in the same way, we obtain

min{a, b}‖µ‖1,1 ≤ ‖µ‖a,b ≤ max{a, b}‖µ‖1,1.

We give now, as it was done in [9], an equivalent of the Rubinstein-Kantorovich duality for the
new distance. We denote by C0

c (Rd; R) the set of continuous functions on Rd with compact support.
For f ∈ C0

c (Rd; R), we define

‖f ′‖∞ = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

We introduce
C0,Lip
c = {f ∈ C0

c (Rd; R) | ‖f ′‖∞ <∞}.

The next proposition identifies the topology of W1,1
1 . with flat metric extended to signed measures.

Proposition 4 (The flat metric). The signed generalized Wasserstein distance W1,1
1 coincides with

the flat metric in the sense that for µ, ν in Ms(Rd),

W1,1
1 (µ, ν) = sup{

∫
Rd
ϕ d(µ− ν); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ′‖∞ ≤ 1}

Proof. The proof comes directly from the equivalent property for W 1,1
1 [9] We have

W1,1
1 (µ, ν) = W 1,1

1 (µ+ + ν−, ν+ + µ−)

= sup{
∫

Rd
ϕ d(µ+ − µ− − (ν+ − ν−)); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ′‖∞ ≤ 1}

= sup{
∫

Rd
ϕ d(µ− ν); ϕ ∈ C0,Lip

c , ‖ϕ‖∞ ≤ 1, ‖ϕ′‖∞ ≤ 1}.

Proposition 5. For µn, µ ∈Ms(Rd), we have

‖µn − µ‖1,1 →
n→∞

0 ⇒ ∀ϕ ∈ C0,Lip
c (Rd),

∫
Rd
ϕdνn →

n→∞

∫
Rd
ϕdν

Proof. The proof comes directly from Proposition 4.
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The converse statement is not true, take for instance µn = δn.
We emphasize that a sequence µn of Ms(R) which satisfies ‖µn‖a,b →

n→∞
0 is not necessarily

tight, and its mass is not necessarily bounded. For instance, we have

µn = n δ 1
n2
− n δ− 1

n2

satisfies ‖µn‖a,b =
2bn

n2
for n sufficiently large (depending on a and b, it may be less expensive to

cancel the mass than to transport it), so that ‖µn‖a,b →
n→∞

0 whereas |µn| = 2n is not bounded.

The sequence
νn = δn − δn+ 1

n

is not tight, whereas it satisfies for n sufficiently large ‖νn‖a,b = b
n →n→∞ 0.

Proposition 6. Assume that ‖µn‖a,b →
n→∞

0, then ∆mn = |µ+
n | − |µ−n | →n→∞ 0.

Proof. We have by definition ‖µn‖a,b = W a,b
1 (µ+

n , µ
−
n ). We denote by µ̄+

n , µ̄
−
n the minimizers realizing

the distance W a,b
1 (µ+

n , µ
−
n ). We have

‖µn‖a,b = a
(
|µ+
n − µ̄+

n |+ |µ−n − µ̄−n |
)

+ bW1(µ̄+
n , µ̄

−
n ), |µ̄+

n | = |µ̄−n |.

Since ‖µn‖a,b →
n→∞

0, each of the three terms is going to zero as well. Thus,∣∣|µ+
n | − |µ−n |

∣∣ =
∣∣|µ+

n − µ̄+
n + µ̄+

n | − |µ−n − µ̄−n + µ̄−n |
∣∣

=
∣∣|µ+

n − µ̄+
n |+ |µ̄+

n | − |µ−n − µ̄−n | − |µ̄−n |
∣∣

=
∣∣|µ+

n − µ̄+
n | − |µ−n − µ̄−n |

∣∣ →
n→∞

0.

Theorem 1. The two following statements are equivalent:

(i) ‖µn − µ‖a,b →
n→∞

0.

(ii) There exists z+
n , z

−
n , m

+
n , m

−
n ∈M(Rd)

µ+
n = z+

n +m+
n ,

µ−n = z−n +m−n ,
with

W a,b
1 (z+

n , z
−
n ) →

n→∞
0,

W a,b
1 (m+

n , µ
+) →

n→∞
0,

W a,b
1 (m−n , µ

−) →
n→∞

0,

{m+
n }n and {m−n }n are tight and bounded in mass,

where µ = µ+ − µ− is the Jordan decomposition, and µn = µ+
n − µ−n is any decomposition.

Proof. We start by proving (i) ⇒ (ii). We have ‖µn − µ‖a,b = Wa,b
1 (µn, µ) = W a,b

1 (µ+
n + µ−, µ−n +

µ+) = →
n→∞

0. Let us denote by an ≤ (µ+
n + µ−) and bn ≤ (µ−n + µ+) the minimizers realizing

W a,b
1 (µ+

n + µ−, µ−n + µ+). We call πn the transference plan from an to bn.
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Step 1. The removed mass. We define by a+
n and b−n the largest transported mass which is

respectively below µ+
n and µ−n

a+
n = µ+

n ∧ an,
a−n = an − a+

n ,

b−n = µ−n ∧ bn,
b+n = bn − b−n .

The mass which is removed is then rn = r+
n + r−n := (µ+

n − a+
n ) + (µ−− a−n ) and r∗n = r∗,−n + r∗,+n :=

(µ−n − b−n ) + (µ+ − b+n ). The removed mass rn and r∗n are expressed here as the sum of two positive
measures. Indeed, it is clear by definition that a+

n ≤ µ+
n , and since an ≤ µ+

n + µ−, Lemma
2, 3 gives that a−n = an − an ∧ µ+

n ≤ µ−. We reason the same way for r∗n. Then, we have
W a,b

1 (µ+
n + µ−, µ−n + µ+) = a (|µ+

n − a+
n |+ |µ− − a−n |+ |µ−n − b−n |+ |µ+ − b+n |) + bW1(an, bn). Since

W a,b
1 (µ+

n + µ−, µ−n + µ+) goes to zero, each of the five terms of the above decomposition goes to
zero, and in particular, |µ+

n − a+
n | →n→∞ 0 and |µ−n − b−n | →n→∞ 0 which implies that that

W a,b
1 (µ+

n − a+
n , 0) →

n→∞
0, W a,b

1 (µ−n − b−n , 0) →
n→∞

0. (11)

Step 2. The transported mass. The mass a+
n is split into two pieces: νn is sent to µ−n , and

ξn is sent to µ+. Denote by ā+
n the image of a+

n under πn, then we define ν∗n = ā+
n ∧µ−n . We denote

by νn the image of ν∗n under πn. Then, we define ξn such that a+
n = νn + ξn, and we denote by ξ∗n

the image of ξn under πn. By definition, we have

W1(an, bn) = W1(νn, ν
∗
n) +W1(ξn, ξ

∗
n) +W1(wn, w

∗
n) +W1(αn, α

∗
n), (12)

with a+
n = νn+ξn, w

∗
n is defined so that b−n = ν∗n+w∗n, wn is the image of w∗n under πn, αn is defined

so that µ− = wn + αn, α
∗
n is the image of αn under πn, and it can be checked that µ+ = ξ∗n + α∗n.

Since W1(an, bn) →
n→∞

0, each of the four term of the sum (12) is going to zero.

Step 3. Conclusion.
Let us write

z+
n = νn + (µ+

n − a+
n ), z−n = ν∗n + (µ−n − b−n ), m+

n = ξn, m−n = w∗n.

We show here that the sequences defined hereinabove satisfy the conditions stated in (ii). First, we
have z+

n +m+
n = ν+

n + (µ+
n − a+

n ) + ξn = µ+
n and similarly, z−n +m−n = ν∗n + (µ−n − b−n ) + w∗n = µ−n .

Then, we have

W a,b
1 (z+

n , z
−
n ) = W a,b

1 (νn + (µ+
n − a+

n ), ν∗n + (µ−n − b−n ))

≤W a,b
1 (νn, ν

∗
n) +W a,b

1 (µ+
n − a+

n , µ
−
n − b−n ) using Lemma 4

≤W1(νn, ν
∗
n) +W a,b

1 (µ+
n − a+

n , 0) +W a,b
1 (0, µ−n − b−n )

→
n→∞

0, using (11) and (12).

Here, we also used that for |µ| = |ν|, W a,b
1 (µ, ν) ≤ W1(µ, ν). This is trivial with the definition of

W a,b
1 . Now, we also have

W a,b
1 (m+

n , µ
+) = W a,b

1 (ξn, µ
+) ≤W a,b

1 (ξn, ξ
∗
n) +W a,b

1 (ξ∗n, b
+
n ) +W a,b

1 (b+n , µ
+) (triangular inequality)

= W a,b
1 (ξn, ξ

∗
n) +W a,b

1 (α∗n, 0) +W a,b
1 (µ+ − b+n , 0)

since α∗n+ ξ∗n = b+n . We know that W a,b
1 (ξn, ξ

∗
n) ≤W1(ξn, ξ

∗
n) →

n→∞
0 using (12), and that W a,b

1 (µ+−

b+n , 0) →
n→∞

0 using (11). Let us explain now whyW a,b
1 (α∗n, 0) →

n→∞
0. We recall thatW1(αn, α

∗
n) →

n→∞

11



Figure 2: Illustration of the decomposition introduced in the proof of Theorem 1. This picture is
only a help for visualization, the shape of the measures represented here may be more complex.

0, αn ≤ a−n ≤ µ−, α∗n ≤ b+n ≤ µ+. Since (αn)n is uniformly bounded in mass, then there exists α ∈
M(Rd) such that αϕ(n) ⇀

n→∞
α (weak compactness of uniformly bounded in mass Radon measures,

see [4]). We have also that (αϕ(n))n is tight, since αϕ(n) ≤ µ− which has a finite mass. Using Theorem

13 of [7], we deduce that W a,b
1 (αϕ(n), α) →

n→∞
0. Then, W a,b

1 (α∗ϕ(n), α) ≤ W a,b
1 (α∗ϕ(n), αϕ(n)) +

W a,b
1 (αϕ(n), α) ≤ W1(α∗ϕ(n), αϕ(n)) + W a,b

1 (αϕ(n), α) →
n→∞

0. Then, using again Theorem 13 of [7],

we deduce that α∗ϕ(n) ⇀
n→∞

α Since αn ≤ µ−, we have α ≤ µ−. Likewise, α∗n ≤ µ+ implies

α ≤ µ+. Since µ− ⊥ µ+, we have α = 0. We have W a,b
1 (αϕ(n), 0) →

n→∞
0 and W a,b

1 (αϕ(n), 0) →
n→∞

0.

The sequence (αn)n is such that every of its subsequence has a converging subsequence going to

zero. Thus, we have that the whole sequence is converging to zero, i.e. W a,b
1 (αn, 0) →

n→∞
0 and

W a,b
1 (α∗n, 0) →

n→∞
0. Lastly, the tightness of (m+

n )n and (m−n )n is given again by Theorem 13 of [7],

since W a,b
1 (m±n , µ

±) →
n→∞

0.

We prove now that (ii)⇒ (i). Let us assume (ii). We have

‖µn − µ‖a,b = W a,b
1 (µ+

n + µ−, µ−n + µ+) = W a,b
1 (z+

n +m+
n + µ−, z−n +m−n + µ+)

≤W a,b
1 (z+

n , z
−
n ) +W a,b

1 (m+
n , µ

+) +W a,b
1 (µ−,m−n )

→
n→∞

0,

which is (i).

The space (M(Rd),W a,b
p ) is a Banach space. The proof is based on the fact that a Cauchy

sequence of positive measure is both uniformly bounded in mass and tight. This is not true anymore
for a Cauchy sequence of signed measures.
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Remark 1. (Ms(Rd), ‖.‖a,b) is not a Banach space.

Proof. The sequence

µn =
n∑
i=1

(
δi+ 1

2i
− δi− 1

2i

)
is a Cauchy sequence in (Ms(Rd), ‖.‖a,b). Indeed,

Wa,b
1 (µn, µn+k) ≤ 2b

n+k∑
i=n+1

1

2i
≤ 2b

+∞∑
i=n+1

1

2i
→

n→∞
0.

However, it does not converges in (Ms(Rd), ‖.‖a,b). As seen in Proposition 5, the convergence for
the norm ‖.‖a,b implies the convergence in the sense of distributions. In the sense of distributions
we have

µn ⇀ µ∗ :=

+∞∑
i=1

(
δi+ 1

2i
− δi− 1

2i

)
/∈Ms(R).

Indeed, for all ϕ ∈ C∞C (R), since ϕ is compactly supported

〈µn − µ, ϕ〉 =
+∞∑
i=n+1

(
ϕ

(
i+

1

2i

)
− ϕ

(
i− 1

2i

))
→

n→∞
0.

Theorem 2. A Cauchy sequence in (Ms(Rd), ‖.‖a,b) uniformly bounded in mass and tight converges
in (Ms(Rd), ‖.‖a,b).

Take a tight Cauchy sequence (µn)n ∈ Ms(Rd) such that the sequences given by the Jordan
decomposition |µ+

n | and |µ−n | are uniformly bounded. Then, by weak compactness of bounded
sets in M(Rd), there exists µ+ and µ− in M(Rd) and ϕ non decreasing such that, µ+

ϕ(n) ⇀
n→∞

µ+ and µ−ϕ(n) ⇀
n→∞

µ−. Since µ+
n and µ−n are assumed to be tight, W a,b

1 (µ+
ϕ(n), µ

+) →
n→∞

0 and

W a,b
1 (µ−ϕ(n), µ

−) →
n→∞

0 (see Theorem 13 [8]). Then we have

‖µn − (µ+ − µ−)‖a,b =‖µn − µϕ(n)‖a,b + ‖µϕ(n) − (µ+ − µ−)‖a,b

≤ ‖µn − µϕ(n)‖a,b +W a,b
1 (µ+

ϕ(n) + µ−, µ−ϕ(n) + µ+)

≤ ‖µn − µϕ(n)‖a,b +W a,b
1 (µ+

ϕ(n), µ
+) +W a,b

1 (µ−ϕ(n), µ
−) →

n→∞
0

since (µn)n is a Cauchy sequence.

4 Application to the transport equation with source term

We first extend the action of flows on probability measures to signed measures, and state some
estimates about the variation of ‖µ− ν‖a,b after action of a flow on µ and ν.
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4.1 Preliminary definitions and estimates

Definition 6. For µ ∈Ms(Rd) and T a map, we define T#sµ := T#µ+−T#µ−, where µ = µ+−µ−
is the Jordan decomposition of µ.

We only have |φ#sµ| ≤ |µ| (whereas |φ#µ| = |µ|) since (φ#µ+−φ#µ+) may not be the Jordan
decomposition of φ#µ.

Lemma 6. For v(t, x) continuous in time and Lipschitz in space, we denote by Φv
t the flow it

generates, i.e. the unique solution to

d

dt
Φv
t = v(Φv

t ), Φv
0 = Id.

Given by µ0 ∈Ms(Rd), then, µt = Φv
t#

sµ0 is the unique solution of the linear transport equation
∂

∂t
µt +∇.(v(t, x)µt) = 0,

µ|t=0 = µ0

in C((0, T ),Ms(Rd)).

Proof. The proof is a direct consequence of Theorem 5.34 [10] combined with Theorme 2.1.1 [3].

Lemma 7. Let v and w be two vector fields, both satisfying for t ∈ R and x, y ∈ Rd, |v(t, x) −
v(t, y)| ≤ L|x− y| and |v(t, x)| ≤M . Let µ and ν be two measures of Ms(Rd). Then

• ‖φvt#sµ− φvt#sν‖a,b ≤ eLt‖µ− ν‖a,b

• ‖µ− φvt#sµ‖a,b ≤ b t Mµ(Rd), µ(Rd) = µ+(Rd) + µ−(Rd)

• ‖φvt#sµ− φwt #sµ‖a,b ≤ µ(Rd) (eLt−1)
L ‖v − w‖C0

• ‖φvt#sµ− φwt #sν‖a,b ≤ eLt‖µ− ν‖a,b + µ(Rd) (eLt−1)
L ‖v − w‖C0

Proof. The first three inequalities follow from Proposition 10 [9]. For the first inequality, we write

‖φvt#sµ− φvt#sν‖a,b = Wa,b
1 (φvt#

sµ, φvt#
sν) = Wa,b

1 (φvt#
sµ+ − φvt#sµ−, φvt#

sν+ − φvt#sν−)

= W a,b
1 (φvt#

s(µ+ + ν−), φvt#
s(µ− + ν+))

= W a,b
1 (φvt#

(µ+ + ν−), φvt#
(µ− + ν+)) (Prop. 10 [9])

≤ eLtW a,b
1 (µ+ + ν−, µ− + ν+)

= eLt‖µ− ν‖a,b.

For the second inequality,

Wa,b
1 (µ, φvt#

sµ) = W a,b
1 (µ+ + φvt#µ

−, µ− + φvt#µ
+)

≤W a,b
1 (µ+, φvt#µ

+) +W a,b
1 (µ−, φvt#µ

−) (Lemma 4)

≤ b t ‖v‖C0(µ+(Rd) + µ−(Rd)) (Prop. 10 [9])

= b t ‖v‖C0µ(Rd) since µ = µ+ − µ− is the Jordan decomposition.
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The third inequality is given by

‖φvt#sµ− φwt #sµ‖a,b = Wa,b
1 (φvt#µ

+ + φwt #sµ−, φwt #µ+ + φvt#
sµ−)

≤W a,b
1 (φvt#µ

+, φwt #µ+) +W a,b
1 (φwt #sµ−, φvt#

sµ−)

= W1(φvt#µ
+, φwt #µ+) +W1(φwt #sµ−, φvt#

sµ−)

≤ (|µ+|+ |µ−|)(eLt − 1)

L
‖v − w‖|C0(Rd) using prop 10 [9] with µ = ν.

The last inequality is deduced from the first and the third one using triangular inequality.

4.2 Existence and uniqueness for the transport equation

We build a solution to (1) as the limit of a sequence of approximated solutions defined in the
following scheme. Consider µ0 ∈ Ms(Rd) such that supp(µ0) ∈ K, K compact, and consider
v ∈ C0(Ms(Rd), C0(Rd)) and h ∈ C0(Ms(Rd),Ms(Rd)) satisfying (H-1), (H-2), (H-3). We define a
sequence (µkt )k through the following iteration scheme.

Scheme

Initialization. Fix k ∈ N. Define ∆t =
1

2k
. Set µk0 = µ0.

Induction. Given µi∆t for i ∈ [|0, 2k|], define vki∆t := v[µki∆t] and

µkt = Φvi∆t
t #sµki∆t + (t− i∆t)h[µki∆t], t ∈ [i∆t, (i+ 1)∆t]. (13)

Proposition 7. The sequence (µkt )k defined via the scheme is a Cauchy sequence in the space
C0([0, 1],Ms(Rd), ‖.‖) with

‖µt‖ = sup
t∈[0,1]

‖µt‖a,b.

Moreover, it is uniformly bounded in mass, i.e.

sup
t∈[0,1]

|µkt | <∞. (14)

Proof. We first notice that the sequence built by the scheme satisfies

|µkt | ≤ P + |µ0|, t ∈ [0, 1]. (15)

Indeed, for t ∈ [i∆t, (i+ 1)∆t]

|µkt | ≤ |Φ
vi∆t
t #sµki∆t|+ ∆t|h[µki∆t]| ≤ |µki∆t|+ ∆tP,

and the result follows by induction. This proves (14). The sequence (µkt )k∈N is also uniformly tight
with respect to time, since using (13) and (H-2), (H-3),

supp{µkt } ⊂ B0(R) ∪ Kt,M ,

with

supp{µ} = supp{µ+} ∪ supp{µ−}, where (µ+, µ−) is the Jordan decomposition of µ,
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and
Kt,M := {x ∈ Rd, x = xK + x′, xK ∈ K, ‖x′‖ ≤ tM}.

We now set the same notations than in [7] and define mk
j := µkj

2k

, vkj := v[mk
j ] and the corresponding

flow f j,kt := φ
vkj
t . Fix k ∈ N and t ∈ [0, 1]. Define j ∈ [0, 2k] such that t ∈

]
j

2k
, j+1

2k

]
First case. If t ∈

]
j

2k
, 2j+1

2k+1

]
, we call t′ = t− j

2k
≤ 1

2k+1 and we obtain

Wa,b
1 (µkt , µ

k+1
t ) = Wa,b

1 (f j,kt′ #smk
j + t′h[mk

j ], f
2j,k+1
t′ #smk+1

2j + t′h[mk+1
2j ])

≤ Wa,b
1 (f j,kt′ #smk

j , f
2j,k+1
t′ #smk+1

2j ) + Wa,b
1 (t′h[mk

j ], t
′h[mk+1

2j ])

≤ eLt′Wa,b
1 (mk

j ,m
k+1
2j ) + |mk

j |
(eLt

′ − 1)

L
‖vkj − vk+1

2j ‖C0(Rd) + t′QWa,b
1 (mk

j ,m
k+1
2j )

≤ Wa,b
1 (mk

j ,m
k+1
2j )

(
eLt
′
+ (P + |µ0|) 1

L
(eLt

′ − 1) + t′Q

)
Since

eLt
′ ≤ 1 + 2Lt′ ≤ 2L2−(k+1),

(eLt
′ − 1)

L
≤ 22−(k+1),

we have

‖µkt − µk+1
t ‖a,b ≤ ‖µkj

2k

− µk+1
2j
k+1

‖a,b
(

1 + 2−(k+1)
(
2L+ 2(P + |µ0|) +Q

))
, t ∈

[
j

2k
,
2j + 1

2k+1

]
.

(16)

Second case. If t ∈
]

2j+1
2k+1 ,

j+1
2k

]
, we call t′ = t− 2j+1

2k+1 ≤ 1
2k+1 and we have,

µkt = f j,k
t′+ 1

2k+1

#smk
j +

(
t′ +

1

2k+1

)
h[mk

j ] = f j,kt′ #sf j,k1
2k+1

#smk
j + t′h[mk

j ] +
1

2k+1
h[mk

j ],

µk+1
t = f2j+1,k+1

t′ #s

(
f2j,k+1

1

2k+1

#smk+1
2j +

1

2k+1
h[mk+1

2j ]

)
+ t′h

[
f2j,k+1

1

2k+1

#smk+1
2j +

1

2k+1
h[mk+1

2j ]

]
= f2j+1,k+1

t′ #sf2j,k+1
1

2k+1

#smk+1
2j +

1

2k+1
f2j+1,k+1
t′ #sh[mk+1

2j ] + t′h

[
f2j,k+1

1

2k+1

#smk+1
2j +

1

2k+1
h[mk+1

2j ]

]
and thus

‖µkt − µk+1
t ‖a,b ≤ Wa,b

1

(
f j,kt′ #sf j,k1

2k+1

#smk
j , f

2j+1,k+1
t′ #sf2j,k+1

1

2k+1

#smk+1
2j

)
+

1

2k+1
Wa,b

1

(
h[mk

j ], f
2j+1,k+1
t′ #sh[mk+1

2j ]
)

+ t′Wa,b
1

(
h[mk

j ], h

[
f2j,k+1

1

2k+1

#smk+1
2j +

1

2k+1
h[mk+1

2j ]

])
.

(17)

We have first, using Lemma 7,

Wa,b
1

(
f j,kt′ #sf j,k1

2k+1

#smk
j , f

2j+1,k+1
t′ #sf2j,k+1

1

2k+1

#smk+1
2j

)
≤ (1 + 2L2−(k+1))Wa,b

1

(
f j,k1

2k+1

#smk
j , f

2j,k+1
1

2k+1

#smk+1
2j

)
+ 2−(k+1)2P‖vkj − vk+1

2j+1‖C0(Rd)

Since, according to the first case,

Wa,b
1

(
f j,k1

2k+1

#smk
j , f

2j,k+1
1

2k+1

#smk+1
2j

)
≤ ‖mk

j −mk+1
2j ‖

a,b
(

1 + 2−(k+1)
(
2L+ 2(P + |µ0|)

))
16



and

‖vkj − vk+1
2j+1‖C0(Rd) ≤ KWa,b

1 (mk
j ,m

k+1
2j+1) ≤ KWa,b

1 (mk
j ,m

k+1
2j ) +KWa,b

1 (mk+1
2j ,mk+1

2j+1)

≤ KWa,b
1 (mk

j ,m
k+1
2j ) +KWa,b

1 (mk+1
2j ,mk+1

2j+1)

= KWa,b
1 (mk

j ,m
k+1
2j ) +KWa,b

1 (mk+1
2j , f2j,k+1

1

2k+1

#smk+1
2j )

= KWa,b
1 (mk

j ,m
k+1
2j ) +KM2−(k+1),

we have

Wa,b
1

(
f j,kt′ #sf j,k1

2k+1

#smk
j , f

2j+1,k+1
t′ #sf2j,k+1

1

2k+1

#smk+1
2j

)
≤ ‖mk

j −mk+1
2j ‖

a,b
(

1 + 2−(k+1)
(
4L+ 2(P + |µ0|)(1 + L) + 2KP

))
+ 2−2(k+1)2PKM

(18)

Secondly,

Wa,b
1

(
h[mk

j ], f
2j+1,k+1
t′ #sh[mk+1

2j ]
)

≤ Wa,b
1

(
h[mk

j ], f
2j+1,k+1
t′ #sh[mk

j ]
)

+ Wa,b
1

(
f2j+1,k+1
t′ #sh[mk

j ], f
2j+1,k+1
t′ #sh[mk+1

2j ]
)

≤ t′MP + eLt
′
Q‖mk

j −mk+1
2j ‖

a,b ≤ +MP2−(k+1) + (1 + 2L2−(k+1))‖mk
j −mk+1

2j ‖
a,b,

(19)

and third

Wa,b
1

(
mk
j , f

2j,k+1
1

2k+1

#smk+1
2j +

1

2k+1
h[mk+1

2j ]

)
≤ Wa,b

1

(
mk
j , f

2j,k+1
1

2k+1

#smk+1
2j

)
+ 2−(k+1)Wa,b

1

(
0, h[mk+1

2j ]
)

≤ Wa,b
1

(
mk
j ,m

k+1
2j

)
+ Wa,b

1

(
mk+1

2j , f2j,k+1
1

2k+1

#smk+1
2j

)
+ 2−(k+1)aP

≤ ‖mk
j −mk+1

2j ‖
a,b + 2−(k+1)(|µ0|+ P (1 + a)).

(20)

Plugging (18), (19) and (20) into (17), and combining with (16) gives us

‖µkt − µk+1
t ‖a,b ≤ (1 + 2−kC1)‖mk

j −mk+1
2j ‖

a,b + C22−2k, t ∈
]
j

2k
,
j + 1

2k

]
,

with

C1 =
(
1 + 3L+ (P + |µ0|)(1 + L) +KP +Q

)
, C2 =

1

4
(MP (1 + 2K) + |µ0|+ P (1 + a)).

By induction on j, we obtain

‖µkt − µk+1
t ‖ ≤ ‖mk

2k −m
k+1
2k+1‖a,b ≤

2k−1∑
j=0

(1 + 2−kC1)j2−2kC2 ≤
C2

C1
(eC1 − 1)2−k.

Since the right hand side is the term of a convergent series, then (µkt )k is a Cauchy sequence.

Theorem 3 (Existence and uniqueness). Let v and h satisfy (H-1), (H-2), (H-3) and µ0 ∈
Ms(Rd) compactly supported given. Then, there exists a unique distributional solution to (1) in
C0
(
(0, 1),Ms(Rd)

)
.

17



Proof. The proof is based on the proof of the same result for positive measures written in [9]. We
first focus on existence.

Step 1. Existence. Since the sequence given by the scheme (µkt )k is a Cauchy sequence
(Proposition 7) which is uniformly bounded in mass, in the space

(
C0(0, 1), Ms(Rd)

)
, we can define

using Theorem 2

µt := lim
k→∞

µkt , C0
(

(0, 1),Ms(Rd)
)
.

The goal is to prove that for all ϕ ∈ D((0, 1)× Rd)∫ 1

0
dt (〈µt, ∂tϕ(t, x) + v[µt].∇ϕ(t, x)〉+ 〈h[µt], ϕ(t, x)〉) = 0, 〈µ, ϕ〉 :=

∫
Rd
ϕ(t, x)dµt(x) (21)

We first notice that

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x) + v[µkj∆t].∇ϕ(t, x)〉+ 〈h[µkt ], ϕ(t, x)〉

)
−→
k→∞

0

Indeed, µt := φvt#
sµ0 is a weak solution of ∂

∂tµt+∇. (v(x)µt) and µt = µ0 + th(x) is a weak solution

of ∂
∂tµt = h(x), so that

∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x) + v[µkj∆t].∇ϕ(t, x)〉+ 〈h[µkt ], ϕ(t, x)〉

) ∣∣∣
=

∣∣∣∣∣∣
2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt 〈(t− j∆t)h[µkj∆t], v[µkj∆t].∇ϕ(t, x)〉

∣∣∣∣∣∣
≤MP‖∇ϕ‖∞2−(k+1) −→

k→∞
0.

Now, to guarantee (21), it is enough to prove that

lim
k→∞

∣∣∣ ∫ 1

0
dt (〈µt, ∂tϕ(t, x) + v[µt].∇ϕ(t, x)〉+ 〈h[µt], ϕ(t, x)〉)

−
2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x) + v[µkj∆t].∇ϕ(t, x)〉+ 〈h[µkt ], ϕ(t, x)〉

) ∣∣∣ = 0

We have

∣∣∣ ∫ 1

0
dt (〈µt, ∂tϕ(t, x)〉)−

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt
(
〈µkt , ∂tϕ(t, x)〉

) ∣∣∣ ≤ ‖∂tϕ‖∞‖µt − µkt ‖ −→
k→∞

0,

∣∣∣ ∫ 1

0
dt〈h[µt], ϕ(t, x)〉 −

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈h[µkt ], ϕ(t, x)〉

∣∣∣ ≤ Q‖ϕ‖∞‖µt − µkt ‖ −→
k→∞

0,

18



and

∣∣∣ ∫ 1

0
dt〈µt, v[µt].∇ϕ(t, x)〉 −

2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt , v[µkj∆t].∇ϕ(t, x)〉

∣∣∣
≤
∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt − µt, v[µkj∆t].∇ϕ(t, x)〉

∣∣∣+
∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt , (v[µkj∆t]− v[µkt ]).∇ϕ(t, x)〉

∣∣∣
+
∣∣∣ 2k−1∑
j=0

∫ (j+1)∆t

j∆t
dt〈µkt , (v[µt]− v[µkt ]).∇ϕ(t, x)〉

∣∣∣
≤ ‖∇ϕ‖∞

(
M‖µt − µkt ‖+ LM(P + |µ0|)2−(k+1) + (P + |µ0|)L‖µt − µkt ‖

)
−→
k→∞

0.

Step 2. Any weak solution to (1) is Lipschitz in time. In this step, we prove that any
weak solution to the transport equation (1) satisfies for some L1 ≥ 0

‖µt+τ − µt‖a,b ≤ L1τ, t ≥ 0, τ ≥ 0, (22)

with L1 = P + bM(P + |µ0|). To do so, we consider a solution µt to (1). We define the velocity field
w(t, x) := v[µt](x) and the signed measure bt = h[µt]. The velocity field w is continuous in time,
since by definition, µt is continuous in time and v is Lipschitz with respect to µ. Then, µt is the
unique solution of

∂tµt(x) + div .(w(t, x)µt(x)) = bt(x), µ|t=0(x) = µ0(x). (23)

Uniqueness of the linear equation (23) is a direct consequence of Lemma 6. Thus, the unique
solution µt to (23) can be obtained as the limit of scheme defined above. We have for k ≥ 0

‖µt+τ − µt‖a,b = ‖µt − µkt ‖a,b + ‖µkt − µkt+τ‖a,b + ‖µkt+τ − µt+τ‖a,b,

where µkt is given by the scheme. The two outside terms can be rendered as small as desired for
k ≥ k0 large enough, and for ` := min{i ∈ {1, . . . , 2k}, t ≤ i

2k
}, j := min{i ∈ {1, . . . , 2k}, , t+ τ ≤

i
2k
} with the notations of the scheme

‖µkt+τ − µkt ‖a,b = ‖mk
j −mk

` ‖a,b = ‖
j−1∑
i=`

(mk
i+1 −mk

i )‖a,b = ‖
j−1∑
i=`

(φ
v[mki ]
∆t #smk

i + ∆th[mk
i ]−mk

i )‖a,b

≤
j−1∑
i=`

‖φv[mki ]
∆t #smk

i −mk
i ‖a,b + ∆t‖

j−1∑
i=`

h[mk
i ]‖a,b.

(24)
Using (H-3), we have

∆t‖
j−1∑
i=`

h[mk
i ]‖a,b ≤

j − `
2k

P ≤ Pτ +
P

2k
, (25)

and using Lemma 7 and (15)

j−1∑
i=`

‖φv[mki ]
∆t #smk

i −mk
i ‖a,b ≤

j − `
2k

bM(P + |µ0|) ≤ bM(P + |µ0|)τ +
bM(P + |µ0|)

2k
, (26)

19



which proves (22).
Step 3. Any weak solution to (1) satisfies

‖µt+τ − (φv[µt]
τ #sµt + τh[µt])‖a,b ≤ K1τ (27)

with K1 = L1 + bM(P + |µ0|) + P . Indeed, let us consider a solution µt to (1). As in the previous
step, µt is the unique solution to (23), and thus it can be obtained as the limit of the sequence
provided by the scheme. With the notations used in Step 2 and using Lemma 7

‖µt+τ − (φv[µt]
τ #sµt + τh[µt])‖a,b ≤ ‖µt+τ − µkt+τ‖a,b + ‖µkt+τ − (φv[µt]

τ #sµkt + τh[µt])‖a,b

+ ‖φv[µt]
τ #s(µt − µkt )‖a,b

≤ (1 + eL)‖µt+τ − µkt+τ‖a,b + ‖µkt+τ − (φv[µt]
τ #sµkt + τh[µt])‖a,b.

The first term can be rendered as small as needed for k sufficiently large, we focus then on the
second term

‖µkt+τ − (φv[µt]
τ #sµkt + τh[µt])‖a,b ≤ ‖µkt+τ − µkt ‖a,b + ‖µkt − φv[µt]

τ #sµkt ‖a,b + τ‖h[µt]‖a,b

≤ (L1 + bM(P + |µ0|) + P )τ +
1

2k
(P + bM(P + |µ0|)),

which proves (27).
Step 4. Uniqueness of the solution to (1). Assume that µt and νt are two solutions to (1)

and define e(t) = ‖µt − νt‖a,b. We denote

Rµ(t, τ) = µt+τ − (φv[µt]
τ #sµt + τh[µt]), Rν(t, τ) = νt+τ − (φv[νt]

τ #sνt + τh[νt]).

Using Lemma 7 and Step 3, and ea ≤ 1 + a for 0 ≤ a ≤ 1, we have

e(t+ τ) = ‖µt+τ − νt+τ‖a,b = ‖φv[µt]
τ #sµt + τh[µt] +Rµ(t, τ)− φv[νt]

τ #sνt − τh[νt]−Rν(t, τ)‖a,b

≤ ‖φv[µt]
τ #sµt − φv[νt]

τ #sνt‖a,b + τ‖h[µt]− h[νt]‖a,b + ‖Rµ(t, τ)‖a,b + ‖Rν(t, τ)‖a,b

≤
(
eLτ + (P + |µ0|)

eLτ − 1

L
K +Q

)
‖µt − νt‖a,b + 2K1τ

≤ (1 + τ(L+ P + |µ0|+Q)) ‖µt − νt‖a,b + 2K1τ,

which is
e(t+ τ)− e(t)

τ
≤Mτ, t > 0, τ ≤ 1

L
, M = L+ P + |µ0|+Q. (28)

Gronwall Lemma implies that

e(t) +M ≤Me(0) +M2K1t, t > 0,

which is e(t) ≤ Ke(0) for t ≤ 1

2K1
. This proves uniqueness of the solution for t ≤ 1

2K1
, and a

bootstrap argument guarantees uniqueness for all time.
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