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A Wasserstein norm for signed measures, with application to

non-local transport equation with source term

Benedetto Piccoli ∗ Francesco Rossi † Magali Tournus ‡

Abstract

We introduce an optimal transportation interpretation of the Kantorovich norm on the space
of signed Radon measures with finite mass, based on the generalized Wasserstein distance for
measures with different masses.

With this new interpretation, we obtain new topological properties for this norm. We use
these tools to prove existence and uniqueness for solutions to non-local transport equations with
source terms, when the initial condition is a signed measure.
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1 Introduction

The problem of optimal transportation, also called Monge-Kantorovich problem, has been inten-
sively studied in the mathematical community. Related to this problem, Wasserstein distances in
the space of probability measures have revealed to be powerful tools, in particular for dealing with
dynamics of measures like the transport Partial Differential Equation (PDE in the following), see
e.g. [1, 2]. For a complete introduction to Wasserstein distances, see [22, 23].

The main limit of this approach, at least for its application to dynamics of measures, is that
the Wasserstein distances Wp(µ, ν) (p ≥ 1) are defined only if the two positive measures µ, ν have

the same mass. For this reason, the generalized Wasserstein distances W a,b
p (µ, ν) are introduced in

[19, 20]: they combine the standard Wasserstein and total variation distances. In rough words, for

W a,b
p (µ, ν) an infinitesimal mass δµ of µ can either be removed at cost a|δµ|, or moved from µ to ν

at cost bWp(δµ, δν). An optimal transportation problem between densities with different masses has
been studied in [7, 11], where only a given fraction m of each density is transported. These works
were motivated by a modeling issue: using the example of a resource that is extracted and that
we want to distribute in factories, one aims to use only a certain given fraction of production and
consumption capacity. In this approach and contrarily to the generalized Wasserstein distance [18],
the mass that is leftover has no impact on the distance between the measures µ and ν. In another
context, for the purpose to interpret some reaction-diffusion equations not preserving masses as
gradient flows, the authors of [12] define the distance Wb2 between measures with different masses
on a bounded domain. Further generalizations for positive measures with different masses, based
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on the Wasserstein distance and its Benamou-Brenier formulation, are introduced in [9, 15, 16]. See
[8] for a unifying framewok for unbalanced optimal transport.

Such generalizations still have a drawback: both measures need to be positive. In the present
paper we introduce a norm, parametrized by two positive numbers (a, b), on the space of signed
Radon measures with finite mass on R

d. Such norm, based on an optimal transportation approach,
induces a distance generalizing the Wasserstein distance to signed measures. We then prove that
for (a, b) = (1, 1) this norm corresponds to the extension of the so-called Kantorovich distance or
Bounded-Lipschitz norm (BL norm) for finite signed Radon measures presented in [13] in the dual
form

‖µ‖BL = sup
‖f‖∞≤1, ‖f‖Lip≤1

∫

Rd

fdµ. (1)

The first novelty brought by our paper is the statement of Theorem (1) and thus lies in the dual
interpretation of the BL norm in the framework of optimal transportation. This new formulation
enables us to prove new topological properties and characterizations of the BL norm.

The second main contribution of the paper is the statement of Theorem (2) and lies in the use
of the (a, b) norm to guarantee well-posedness of the following non local transport equation

∂tµt(x) + div (v[µt](x)µt(x)) = h[µt](x), µ|t=0(x) = µ0(x), (2)

for x ∈ R
d and µ0 ∈ Ms(Rd), h[µ] ∈ Ms(Rd), where Ms(Rd) is the space of signed Radon measures

with finite mass on R
d. Equation (2) has already been studied in the framework of positive measures,

where it has been used for modeling several different phenomena, such as crowd motion and cell
development in biology; see a review in [21]. From the modeling point of view, one of the interests
of signed measures is that they can be used to model phenomena for which the measures under
study are intrinsically signed. For instance, in a model coming from the hydrodynamic equations of
Ginzburg-Landau vortices, the vortex density µt (which can be positive or negative depending on
the local topological degree) in a domain occupied by a superconducting sample satisfies (2) with
h[µt] = 0, where v[µt] is the magnetic field induced in the sample (see [3, 17]).

Another motivation to study equation (2) in the framework of signed measures is the interpre-
tation of µt as the spatial derivative of the entropy solution ρ(x, t) to a scalar conservation law. A
link between scalar conservation laws and non local transport equation has been initiated in [5, 14],
but until now, studies are restricted to convex fluxes and monotonous initial conditions, so that the
spatial derivative µt is a positive measure for all t > 0. To deal with generic scalar conservation
laws, one needs a space of signed measures equipped with a metric of Wasserstein type, see e.g. [4].

Motivated by Ginzburg-Landau vortices, the authors of [3] suggested to extend the usual Wasser-
stein distance W1 to the couples of signed measures µ = µ+ − µ− and ν = ν+ − ν− such that
|µ+|+ |ν−| = |µ−|+ |ν+| by the formula W1(µ, ν) =W1(µ

++ ν−, µ−+ ν+). This procedure fails for
p 6= 1, since triangular inequality is lost. A counter-example to the triangular inequality is provided
in [3] for d = 1 and p = 2: taking µ = δ0, ν = δ4, η = δ1 − δ2 + δ3, we obtain W2(µ, ν) = 4 whereas
W2(µ, η) + W2(η, ν) =

√
2 +

√
2.

We use the same trick from [3] to turn the generalized Wasserstein distance W a,b
1 into a norm

for signed measures, by setting

‖µ‖a,b :=W a,b
1 (µ+, µ−) = inf

η̃,ν̃∈M(Rd)
|η̃|=|ν̃|

(

a
(

|µ+ − η̃|+ |µ− − ν̃|
)

+ bW1(η̃, ν̃)
)

,

where µ+, µ− are any positive finite measures such that µ = µ+ − µ−, and where |µ| is the total
variation of µ For the reason mentioned above, this construction only defines a norm for p = 1.
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Notice that we need to restrict ourselves to Radon measures µ with finite mass.
The regularity assumptions on the vector field and on the source term are the following:

(H-1) There exists K such that for all µ, ν ∈ Ms(Rd) it holds

‖v[µ]− v[ν]‖C0(Rd) ≤ K‖µ− ν‖a,b. (3)

(H-2) There exist L,M such that for all x, y ∈ R
d, for all µ ∈ Ms(Rd) it holds

|v[µ](x)− v[µ](y)| ≤ L|x− y|, |v[µ](x)| ≤M. (4)

(H-3) There exist Q,P,R such that for all µ, ν ∈ Ms(Rd) it holds

‖h[µ] − h[ν]‖a,b ≤ Q‖µ − ν‖a,b, |h[µ]| ≤ P, supp(h[µ]) ⊂ B0(R). (5)

The main results of the paper are the following.

Theorem 1 (Kantorovich formulation for the BL norm). For µ ∈ Ms(Rd),

‖µ‖BL = ‖µ‖1,1 = inf
η̃,ν̃∈M(Rd)

|η̃|=|ν̃|

(

|µ+ − η̃|+ |µ− − ν̃|+W1(η̃, ν̃)
)

,

where µ+, µ− are any measures of M(Rd) such that µ = µ+ − µ−.

Theorem 2 (Existence, uniqueness and stability in (Ms(Rd), ‖.‖a,b)). Let v and h satisfy (H-1)-
(H-2)-(H-3) and µ0 ∈ Ms(Rd) compactly supported be given. Then, there exists a unique distribu-
tional solution to (2). In addition, for µ0 and ν0 in Ms(Rd), denoting by µt and νt the corresponding
solutions, we have the following property for t ∈ [0, 1] of continuous dependence with respect to initial
data:

‖µt − νt‖a,b ≤ ‖µ0 − ν0‖a,b exp(K1t), K1 = 2L+ 2bK(P +min{|µ0|, |ν0|}) +Q,

the following estimates on the mass and support:

|µt| ≤ |µ0|+ Pt, supp{µt} ⊂ B(0, R′ + tM) for R′ such that (supp{µ0} ∪B0(R)) ⊂ B0(R
′).

Moreover, the solution is Lipschitz in time:

‖µt+τ − µt‖a,b ≤ K2τ, K2 = aP + bM(P + |µ0|), τ ≥ 0, t+ τ ≤ 1.

Remark 3. We emphasize that the assumptions (H-2)-(H-3) are incompatible with a direct inter-
pretation of the solution of (2) as the spatial derivative of a conservation law and need to be relaxed
in a future work. Indeed, to draw a parallel between conservation laws and non-local equations,
discontinuous vector fields need to be considered.

The structure of the article is the following. In Section 2, we state and prove results of measure
theory, which are needed for the rest of the paper. We also recall the definition of generalized
Wasserstein distance. In Section 3, we to define the norm ‖ · ‖a,b on the space of signed Radon
measures with finite mass. We state a Kantorovich-Rubinstain type duality for this norm, which
proves Theorem 1. We end Section 3 by proving some topological properties for this norm. Section
4 is devoted the proof of Theorem 2.
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2 Measure theory and the Generalized Wasserstein distance

In this section, we introduce the notations and state preliminary results. Throughout the paper,
B(Rd) is the space of Borel sets on R

d, M(Rd) is the space of Radon measures with finite mass (i.e.
Borel regular, positive, and finite on every set).

2.1 Reminders on measure theory

In this section, µ and ν are in M(Rd).

Definition 4. We say that

• µ << ν if ∀A ∈ B(Rd), (ν(A) = 0) ⇒ (µ(A) = 0)

• µ ≤ ν if ∀A ∈ B(Rd), µ(A) ≤ ν(A)

• µ ⊥ ν if there exists E ∈ B(Rd) such that µ(Rd) = µ(E) and ν(E) = 0

The concept of largest common measure between measures is now recalled.

Lemma 5. We consider µ and ν two measures in M(Rd). Then, there exists a unique measure
µ ∧ ν which satisfies

µ ∧ ν ≤ µ, µ ∧ ν ≤ ν, (η ≤ µ and η ≤ ν) ⇒ η ≤ µ ∧ ν. (6)

We refer to µ ∧ ν as the largest common measure to µ and ν. Moreover, denoting by f the Radon
Nikodym derivative of µ with respect to ν, i.e. the unique measurable function f such that µ =
fν + ν⊥, with ν⊥ ⊥ ν, we have

µ ∧ ν = min{f, 1}ν. (7)

Proof. The uniqueness is clear using (6). Existence is given by formula (7) as follows. First, it is
obvious that min{f, 1}ν ≤ ν and using µ = fν + ν⊥, it is also clear that min{f, 1}ν ≤ µ. Let us
now assume by contradiction the existence of a measure η and of A ∈ B(Rd) such that

η ≤ µ, η ≤ ν, η(A) >

∫

A
min{f, 1}dν. (8)

Since ν⊥ ⊥ ν, there exists E ∈ B(Rd) such that ν(Rd) = ν(E) and ν⊥(E) = 0 (see Definition
4), then ν(A) = ν(A ∩ E) and ν⊥(A) = ν⊥(A ∩ Ec). Since η ≤ ν, we have η(A ∩ Ec) = 0, thus
η(A ∩E) = η(A), and using (8)

η(A ∩ E) >

∫

A∩E
min{f, 1}dν.

We define
B = A ∩ E ∩ {f > 1}.

Then
η(B) + η((A ∩ E) \B) = η(A ∩ E)

>

∫

A∩E
min{f, 1}dν(x)

=

∫

B
min{f, 1}dν(x) +

∫

(A∩E)\B
min{f, 1}dν

=

∫

B
1dν +

∫

(A∩E)\B
fdν

= ν(B) + µ((A ∩ E) \B)
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which contradicts the fact that both η ≤ ν and η ≤ µ. This implies that η satisfying (8) does not
exist, and then Lemma 5 holds.

2.2 Signed measures

We now introduce signed Radon measures, that are measures µ that can be written as µ = µ+−µ−
with µ+, µ− ∈ M(Rd). We denote with Ms(Rd) the space of such signed Radon measures.

For µ ∈ Ms(Rd), we define |µ| = |µJ+|+ |µJ−| where (µJ+, µJ−) is the unique Jordan decomposition
of µ, i.e. µ = µJ+ − µJ− with µJ+ ⊥ µJ−. Observe that |µ| is always finite, since µJ+, µJ− ∈ M(Rd).

Definition 6 (Push-forward). For µ ∈ Ms(Rd) and T : R
d → R

d a Borel map, the push-forward
T#µ is the measure on R

d defined by T#µ(B) = µ(T−1(B)) for any Borel set B ⊂ R
d.

We now remind the definition of tightness for a sequence in Ms(Rd).

Definition 7 (Tightness). A sequence (µn)n∈N of measures in M(Rd) is tight if for each ε > 0,
there is a compact set K ⊂ R

d such that for all n ≥ 0, µn(R
d \ K) < ε. A sequence (µn)n∈N

of signed measures of Ms(Rd) is tight if the sequences (µ+n )n∈N and (µ−n )n∈N given by the Jordan
decomposition are both tight.

For a sequence of probability measures, different notions of weak convergences are equivalent. It
is not the case for signed measures and we precise here what we call narrow and vague convergence.
In the present paper, C0(Rd;R) is the set of continuous functions, C0

b (R
d;R) is the set of bounded

continuous functions, and C0
c (R

d;R) is the set of continuous functions with compact support on R
d.

Definition 8 (Narrow and vague convergence for signed measures).

A sequence (µn)n∈N of measures in Ms(Rd) is said to converge narrowly to µ if the following holds:
for all ϕ ∈ C0

b (R
d;R),

∫

Rd ϕ(x)dµn(x) →
∫

Rd ϕ(x)dµ(x).

A sequence (µn)n∈N of measures in Ms(Rd) is said to converge vaguely to µ if the following holds:
for all ϕ ∈ C0

c (R
d;R),

∫

Rd ϕ(x)dµn(x) →
∫

Rd ϕ(x)dµ(x).

Lemma 9 (Weak compactness for positive measures). Let µn be a sequence of measures in M(Rd)
that are uniformly bounded in mass. We can then extract a subsequence µφ(n) such that µφ(n)
converges vaguely to µ for some µ ∈ M(Rd).

A proof can be found in [10, Theorem 1.41]. Notice that in [10], vague convergence is called
weak convergence. In [13, 22] however, weak convergence refers to what we define here as narrow
convergence. Notice that if a sequence of positive measures µn converges vaguely to µ and if (µn)n
is tight, then µn converges narrowly to µ.

2.3 Properties of the generalized Wasserstein distance

In this section, we recall key properties of the standard and generalized Wasserstein distance. For
more details on these topics, see [22, 20].

Definition 10 (Transference plan). A transference plan between two positive measures µ and ν of
same mass is a measure π ∈ M(Rd,Rd) which satisfies for all A,B ∈ B(Rd)

π(A× R
d) = µ(A), π(Rd ×B) = ν(B).
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Note that transference plans are not probability measures in general, as their mass is |µ| = |ν|,
the common mass of both marginals. We denote by Π(µ, ν) the set of transference plans between µ
and ν. The p-Wasserstein distance for positive Radon measures of same mass is defined for p ≥ 1
as

Wp(µ, ν) =

(

min
π∈Π(µ,ν)

∫

Rd×Rd

|x− y|pdπ(x, y)
)

1
p

.

It was extended to positive measures having possibly different mass in [19, 20], where the authors

introduce the distance W a,b
p on the space M(Rd) of Radon measures with finite mass. The formal

definition is the following.

Definition 11 (Generalized Wasserstein distance [19]). Let µ, ν be two positive measures in M(Rd).
The generalized Wasserstein distance between µ and ν is given for p ≥ 1, a > 0 and b > 0 by

W a,b
p (µ, ν) =






inf

µ̃,ν̃∈M(Rd)
|µ̃|=|ν̃|

ap(|µ − µ̃|+ |ν − ν̃|)p + bpW p
p (µ̃, ν̃)







1/p

. (9)

Proposition 12 (Scaling and dilation formulae for the generalized Wasserstein distance). Consider
a > 0 and b > 0 and let µ, ν be two measures.

1. The following scaling formula holds for p ≥ 1

W λa,λb
p (µ, ν) = λW a,b

p (µ, ν), λ > 0. (10)

2. Define Dℓ : x→ ℓx with ℓ > 0 the dilation in R
n, then it holds

W a,b
1 (Dℓ#µ,Dℓ#ν) =W a,ℓb

1 (µ, ν). (11)

Proof. The first statement is directly deduced from Definition 11. For the second statement, define

Ca,b(µ̄, ν̄, π;µ, ν) := a(|µ− µ̄|+ |ν − ν̄|) + b

∫

|x− y| dπ(x, y),

where π is a transference plan in Π(µ̄, ν̄). It holds

Ca,b(Dℓ#µ̄,Dℓ#ν̄,(Dℓ ×Dℓ)#π;Dℓ#µ,Dℓ#ν)

= a(|Dℓ#µ−Dℓ#µ̄|+ |Dℓ#ν −Dℓ#ν̄|) + b

∫

|x− y| d(Dℓ ×Dℓ)π(x, y),

= a(|µ − µ̄|+ |ν − ν̄|) + b

∫

|ℓx− ℓy| dπ(x, y) = Ca,ℓb(µ̄, ν̄, π;µ, ν).

As a consequence, (11) holds.

Notice that the first statement of Proposition 12 implies in particular that

W a,b
p =

b

b′
W a′,b′

p , for
a

b
=
a′

b′
. (12)

The following lemma is useful to derive properties for the generalized Wasserstein distance.

Lemma 13. The infimum in (9) is always attained. Moreover, there always exists a minimizer
that satisfy the additional constraint µ̃ ≤ µ, ν̃ ≤ ν.
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The proof can be found in [19].

For f ∈ C0
c (R

d;R), we define

‖f‖∞ = sup
x∈Rd

|f(x)|, ‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y| .

We also denote by C0,Lip
c (Rd;R) the subset of functions f ∈ C0

c (R
d;R) for which it holds ‖f‖Lip < +∞.

The following result is stated in [20, Theorem 13].

Lemma 14 (Kantorovitch-Rubinstein duality for W 1,1
1 ). For µ, ν in M(Rd), it holds

W 1,1
1 (µ, ν) = sup

{
∫

Rd

ϕ d(µ − ν); ϕ ∈ C0,Lip
c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}

.

Lemma 15 (Properties of the generalized Wasserstein distance). Let µ, ν, η, µ1, µ2, ν1, ν2 be some
positive measures in M(Rd). The following properties hold for p ≥ 1, a > 0 and b > 0

1. W a,b
p (µ1 + µ2, ν1 + ν2) ≤W a,b

p (µ1, ν1) +W a,b
p (µ2, ν2),

2. W a,b
1 (µ+ η, ν + η) =W a,b

1 (µ, ν).

Proof. The first property is taken from [19, Proposition 11]. For a = b = 1, the second statement
is a direct consequence of the Kantorovitch-Rubinstein duality in Lemma 14 for W 1,1

1 . For general
a > 0, b > 0, we use the results of Proposition 12. Indeed, also applying Kantorovich-Rubinstein
for W 1,1

1 and setting a′ = 1, b′ = ℓ = b
a , it holds

W a,b
1 (µ+ η, ν + η) = aW

1, b
a

1 (µ+ η, ν + η) = aW 1,1
1 (Dℓ#µ+Dℓ#η,Dℓ#ν +Dℓ#η) =

= aW 1,1
1 (Dℓ#µ,Dℓ#ν) = aW

1, b
a

1 (µ, ν) =W a,b
1 (µ, ν).

Definition 16 (Image of a measure under a plan). Let µ and ν two measures in M(Rd) of same
mass and π ∈ Π(µ, ν). For η ≤ µ, we denote by f the Radon-Nikodym derivative of η with respect
to µ and by πf the transference plan defined by πf (x, y) = f(x)π(x, y). Then, we define the image
of η under π as the second marginal η′ of πf .

Observe that the second marginal satisfies η′ ≤ ν. Indeed, since η ≤ µ, it holds f ≤ 1. Thus,
for all Borel set B of R

d we have

η′(B) = πf (R
d ×B) ≤ π(Rd ×B) = ν(B).

3 Generalized Wasserstein norm for signed measures

In this section, we define the generalized Wasserstein norm for signed measures and prove Theorem
(1).

Definition 17 (Generalized Wasserstein distance extended to signed measures). For µ, ν two signed
measures in Ms(Rd), we define

W
a,b
1 (µ, ν) =W a,b

1 (µ+ + ν−, µ− + ν+),

where µ+, µ−, ν+ and ν− are any measures in M(Rd) such that µ = µ+ − µ− and ν = ν+ − ν−.
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Proposition 18. The operator W
a,b
1 is a distance on the space Ms(Rd) of signed measures with

finite mass on R
d.

Proof. First, we prove that the definition does not depend on the decomposition. Indeed, if we
consider two distinct decompositions, µ = µ+ − µ− = µJ+ − µJ−, and ν = ν+ − ν− = νJ+ − ν−

J ,
with the second one being the Jordan decomposition, then we have (µ+ + ν−) − (µJ+ + νJ−) =
(µ− + ν+) − (µJ− + νJ+), and this is a positive measure since µ+ ≥ µJ+ and ν+ ≥ νJ+. The second
property of Lemma 15 then gives

W a,b
1 (µJ+ + νJ−, µ

J
− + νJ+) =

W a,b
1 (µJ+ + νJ− + (µ+ + ν−)− (µJ+ + νJ−), µ

J
− + νJ+ + (µ− + ν+)− (µJ− + νJ+)) =

W a,b
1 (µ+ + ν−, µ− + ν+).

We now prove that W
a,b
1 (µ, ν) = 0 implies µ = ν. By choosing the Jordan decomposition for

both µ and ν and observing that W a,b
1 is a distance, we obtain µ+ + ν− = µ− + ν+, thus µ = ν.

We now prove the triangle inequality. We have W
a,b
1 (µ, η) = W a,b

1 (µ+ + η−, µ− + η+). Using
Lemma 15, we have

W
a,b
1 (µ, η) =W a,b

1 (µ+ + η− + ν+ + ν−, µ− + η+ + ν+ + ν−)

≤W a,b
1 (µ+ + ν−, µ− + ν+) +W a,b

1 (η− + ν+, η+ + ν−)

= W
a,b
1 (µ, ν) + W

a,b
1 (ν, η).

We also state the following lemma about adding and removing masses.

Lemma 19. Let µ, ν, η, µ1, µ2, ν1, ν2 be in Ms(Rd), then the following properties hold

• W
a,b
1 (µ+ η, ν + η) = W

a,b
1 (µ, ν),

• W
a,b
1 (µ1 + µ2, ν1 + ν2) ≤ W

a,b
1 (µ1, ν1) + W

a,b
1 (µ2, ν2).

Proof. The proof is direct. For the first item, it holds

W
a,b
1 (µ + η, ν + η) = W a,b

1 ([µ+ + η+] + [ν− + η−], [ν+ + η+] + [µ− + η−])

= W a,b
1 (µ+ + ν− + [η+ + η−], ν+ + µ− + [η+ + η−])

which by Lemma 15 is equal to W a,b
1 (µ+ + ν−, µ− + ν+) = W

a,b
1 (µ, ν).

For the second item, it holds

W
a,b
1 (µ1 + µ2, ν1 + ν2) =W a,b

1 (µ1,+ + µ2,+ + ν1,− + ν2,−, ν1,+ + ν2,+ + µ1,− + µ2,−)

≤W a,b
1 (µ1,+ + ν1,−, ν1,+ + µ1,−) +W a,b

1 (µ2,+ + ν2,−, ν2,+ + µ2,−)

= W
a,b
1 (µ1, ν1) + W

a,b
1 (µ2, ν2),

where the inequality comes from Lemma 15.

Definition 20. For µ ∈ Ms(Rd) and a > 0, b > 0, we define

‖µ‖a,b = W
a,b
1 (µ, 0) =W a,b

1 (µ+, µ−),

where µ+ and µ− are any measures of M(Rd) such that µ = µ+ − µ−.
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It is clear that the definition of ‖µ‖a,b does not depend on the choice of µ+, µ− as a consequence

of the corresponding property for W a,b
1 .

Proposition 21. The space of signed measures (Ms(Rd), ‖.‖a,b) is a normed vector space.

Proof. First, we notice that ‖µ‖a,b = 0 implies that W a,b
1 (µ+, µ−) = 0, which is µ+ = µ− so that

µ = µ+ − µ− = 0. For triangular inequality, using the second property of Lemma 19, we have that
for µ, η ∈ Ms(Rd),

‖µ+ η‖a,b = W
a,b
1 (µ+ η, 0) ≤ W

a,b
1 (µ, 0) + W

a,b
1 (η, 0) = ‖µ‖a,b + ‖η‖a,b.

Homogeneity is obtained by writing for λ > 0, ‖λµ‖a,b = W
a,b
1 (λµ, 0) = W a,b

1 (λµ+, λµ−) where
µ = µ+−µ−. Using Lemma 14 combined with Definition 11 and the notation of Proposition 12 we
have

W a,b
1 (λµ+, λµ−) = aW

1, b
a

1 (λµ+, λµ−)

= aW 1,1
1

(

D b
a
#λµ+,D b

a
#λµ−

)

= a sup

{∫

Rd

ϕ d
(

D b
a
#λµ+,D b

a
#λµ−

)

; ϕ ∈ C0,Lip
c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}

= λ a sup

{
∫

Rd

ϕ d
(

D b
a

#µ+,D b
a

#µ−

)

; ϕ ∈ C0,Lip
c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}

= λW a,b
1 (µ+, µ−).

We provide here an example that illustrates the competition between cancellation and trans-
portation. This example is used later in the paper.

Example 22. Take µ = δx − δy. Then

‖µ‖a,b =W a,b
1 (δx, δy) = inf

µ̃,ν̃∈M(Rd)
|µ̃|=|ν̃|

{a(|δx − µ̃|+ |δy − ν̃|) + bW1(µ̃, ν̃)} .

Using Lemma 13, the minimum is attained and it can be written as µ̃ = ǫδx and ν̃ = ǫδy for some
0 ≤ ǫ ≤ 1. Then

‖µ‖a,b = min
0≤ǫ≤1

{2a(1− ǫ) + bǫ|x− y|} .

The minimizers depend on the distance between x and y. For b|x − y| < 2a, the minimum is
attained for ǫ = 1 and ‖µ‖a,b = b|x− y|. In that case, we say that all the mass is transported. On
the contrary, for b|x− y| > 2a, the minimum is attained for ǫ = 0 and ‖µ‖a,b = 2a, and we say that
all the mass is cancelled (or removed). For b|x− y| = 2a, we can both transport and cancel.

3.1 Topological properties

In this section, we study the topological properties of the norm introduced above. In particular,
we prove that it admits a duality formula, that indeed coincides with (1). We first prove that the
topology of ‖.‖a,b does not depend on a, b > 0.

Proposition 23. For a > 0, b > 0, the norm ‖.‖a,b is equivalent to ‖.‖1,1.
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Proof. For µ ∈ Ms(Rd) denote by (ma,b
+ ,ma,b

− ) the positive measures such that

‖µ‖a,b = a|µ+ −ma,b
+ |+ a|µ− −ma,b

− |+ bW1(m
a,b
+ ,ma,b

− ),

and similarly define (m1,1
+ ,m1,1

− ). Their existence is guaranteed by Lemma 13. By definition of the
minimizers, we have

‖µ‖a,b = a|µ+ −ma,b
+ |+ a|µ− −ma,b

− |+ bW1(m
a,b
+ ,ma,b

− )

≤ a|µ+ −m1,1
+ |+ a|µ− −m1,1

− |+ bW1(m
1,1
+ ,m1,1

− ) ≤ max{a, b}‖µ‖1,1,

In the same way, we obtain

min{a, b}‖µ‖1,1 ≤ ‖µ‖a,b ≤ max{a, b}‖µ‖1,1.

We now give an equivalent Kantorovich-Rubinstein duality formula for the new distance. For
f ∈ C0

b (R
d;R), similarly to C0

c (R
d;R), we define the following

‖f‖∞ = sup
x∈Rd

|f(x)|, ‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y| ,

and we introduce
C0,Lip
b = {f ∈ C0

b (R
d;R) | ‖f‖Lip <∞}.

In the next proposition, we express the Kantorovich-Rubinstein duality for the norm W
1,1
1 . This

shows that W
1,1
1 coincides with the Bounded Lipschitz norm introduced in [13], also called Fortet

Mourier distance in [23].

Proposition 24 (Kantorovitch-Rubinstein duality for W
1,1
1 ). The signed generalized Wasserstein

norm ‖.‖1,1 coincides with the bounded Lipschitz norm: for µ in Ms(Rd), it holds

‖µ‖1,1 = sup

{
∫

Rd

ϕ dµ; ϕ ∈ C0,Lip
b , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}

.

We emphasize that Proposition 24 does not coincide with Lemma 14, since it involves non-
compactly supported test functions.

Proof. By using Lemma 14 we have

‖µ‖1,1 =W 1,1
1 (µ+, µ−) = sup

{
∫

Rd

ϕ dµ; ϕ ∈ C0,Lip
c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}

.

We denote by

S = sup

{
∫

Rd

ϕ dµ; ϕ ∈ C0,Lip
b , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}

.

First observe that S < +∞. Indeed, it holds
∫

Rd ϕ dµ ≤ ‖ϕ‖∞|µ| < +∞. Denote with ϕn a sequence

of functions of C0,Lip
b such that

∫

Rd ϕn dµ → S as n → ∞. Consider a sequence of functions ρn in

10



C0,Lip
c such that ρn(x) = 1 for x ∈ B0(n), ρn(x) = 0 for x /∈ B0(n + 1) and ‖ρn‖∞ ≤ 1. For the

sequence ψn = ϕnρn of functions of C0,Lip
c , it holds

∣

∣

∣

∣

∫

Rd

ψn dµ− S

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Rd

(ψn − ϕn) dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Rd

ϕn dµ − S

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∫

Rd\B0(n)
dµ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Rd

ϕn dµ− S

∣

∣

∣

∣

since ‖ϕn‖∞ ≤ 1. The first term goes to zero with n, since µ being of finite mass is tight, and the
second term goes to zero with n by definition of S and ϕn. Then

S = sup

{∫

Rd

ϕ dµ; ϕ ∈ C0,Lip
c , ‖ϕ‖∞ ≤ 1, ‖ϕ‖Lip ≤ 1

}

,

and Proposition 24 is proved.

This proves Theorem (1). In the rest of the section, we state topological properties for the norm
‖.‖a,b.

Remark 25. We observe that a sequence µn of Ms(R) which satisfies ‖µn‖a,b →
n→∞

0 is not neces-

sarily tight, and its mass is not necessarily bounded. For instance, we have that

νn = δn − δn+ 1
n

is not tight, whereas it satisfies for n sufficiently large

‖νn‖a,b =
b

n
→

n→∞
0.

See Example 22 for the details of the calculation. Now take the sequence

µn = n δ 1
n2

− n δ− 1
n2
.

As explained in Example 22, depending on the sign of 2a− 2b
n2 , we either cancel the mass or transport

it. For n large enough, 2a ≥ 2b
n2 , so we transport the mass. Thus for n sufficiently large it holds

‖µn‖a,b =
2bn

n2
→

n→∞
0

whereas |µn| = 2n is not bounded.

Remark 26. Norm ‖.‖1,1 does not metrize narrow convergence, contrarily to what is stated in [13].
Indeed, take µn = δ√2πn+π

2
− δ√

2πn+ 3π
2

. We have

‖µn‖1,1 ≤
∣

∣

∣

∣

∣

√

2πn+
π

2
−

√

2πn +
3π

2

∣

∣

∣

∣

∣

→
n→∞

0,

even though for ϕ(x) = sin(x2) in C0
b (R), we have

∫

R

ϕdµn = 2, n ∈ N.

11



Remark 27. We have as a direct consequence of Proposition 24 that

‖µn − µ‖a,b →
n→∞

0 ⇒ ∀ϕ ∈ C0,Lip
b (Rd),

∫

Rd

ϕdµn →
n→∞

∫

Rd

ϕdµ. (13)

However, the reciprocal statement of (13) is false: define

µn := n cos(nx)χ[0,π].

For

ϕn :=
1

n
cos(nx),

it is clear that
∫

R

ϕn dµn =

∫ π

0
cos2(nx) dx =

π

2
6→ 0.

In particular,

sup
ϕ∈C0,Lip

b
(R)

∫

R

ϕd(µn − 0) ≥ π

2
,

hence by Proposition 24, ‖µn − 0‖ ≥ π
2 does not converge to zero. We now prove that, for each ϕ

in C0,Lip
b (R), it holds

∫

R
ϕdµn → 0. Given ϕ ∈ C0,Lip

b (R), define

f(x) :=

{

ϕ(−x), when x ∈ [−π, 0],
ϕ(x), when x ∈ [0, π],

and extend f as a 2π-periodic function on R. We have

∫

R

ϕdµn =

∫

R

f dµn.

Since f is a 2π-periodic function, it also holds
∫

f dµn = nan, where an is the n-th cosine coefficient
in the Fourier series expansion of f . We then prove nan → 0 for any 2π-periodic Lipschitz function
f , following the ideas of [24, p. 46, last line]. Since f is Lipschitz, then its distributional derivative
is in L∞[−π, π] and thus in L1[−π, π]. Then

an =
1

2π

∫ π

−π
f(x) cos(nx) dx = − 1

2nπ

∫ π

−π
f ′(x) sin(nx) dx = −b

′
n

n
,

where b′n is the n-th sine coefficient of f ′. As a consequence of the Riemann-Lebesgue lemma,
b′n → 0, and this implies nan → 0.

We recall from [20] that the space (M(Rd),W a,b
p ) is a complete metric space. The proof is based

on the fact that a Cauchy sequence of positive measures is both uniformly bounded in mass and
tight. This is not true anymore for a Cauchy sequence of signed measures.

Remark 28. Observe that (Ms(Rd), ‖.‖a,b) is not a Banach space. Indeed, take the sequence

µn =

n
∑

i=1

(

δi+ 1
2i

− δi− 1
2i

)

.
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It is a Cauchy sequence in (Ms(Rd), ‖.‖a,b): indeed, by choosing to transport all the mass from
µ+n + µ−n+k onto µ+n+k + µ−n with the cost b, it holds

W
a,b
1 (µn, µn+k) ≤ 2b

n+k
∑

i=n+1

1

2i
≤ 2b

+∞
∑

i=n+1

1

2i
→

n→∞
0.

However, the sequence (µn)n does not converge in (Ms(Rd), ‖.‖a,b). As seen in Remark 27, the
convergence for the norm ‖.‖a,b implies the convergence in the sense of distributions. In the sense
of distributions we have

µn ⇀ µ∗ :=

+∞
∑

i=1

(

δi+ 1
2i

− δi− 1
2i

)

/∈ Ms(R).

Indeed, for all ϕ ∈ C∞
c (R), since ϕ is compactly supported, it holds

∫

R

ϕ(x) (dµn(x)− dµ∗(x)) =

+∞
∑

i=n+1

(

ϕ

(

i+
1

2i

)

− ϕ

(

i− 1

2i

))

→
n→∞

0.

The measure µ∗ does not belong to Ms(R), as it has infinite mass.

Nevertheless, we have the following convergence result.

Theorem 29. Let µn be a Cauchy sequence in (Ms(Rd), ‖.‖a,b). If µn is tight (in the sense of
Definition 7) and has uniformly bounded mass, then it converges in (Ms(Rd), ‖.‖a,b).

Proof. Take a tight Cauchy sequence (µn)n ∈ Ms(Rd) such that the sequences given by the Jordan
decomposition |µ+n | and |µ−n | are uniformly bounded. Then, by Lemma 9, there exists µ+ and µ−

in M(Rd) and ϕ1 non decreasing such that, µ+ϕ1(n)
⇀

n→∞
µ+ vaguely. Then, |µ−n | being uniformly

bounded, there exists ϕ2 non decreasing such that for ϕ = ϕ1 ◦ ϕ2 it holds

µ−ϕ(n) ⇀
n→∞

µ− vaguely.

Since µ+n and µ−n are assumed to be tight, the sequences µ−
ϕ(n)

and µ+
ϕ(n)

also converge to µ− and

µ+ narrowly, and it holds W a,b
1 (µ+ϕ(n), µ

+) →
n→∞

0 and W a,b
1 (µ−ϕ(n), µ

−) →
n→∞

0, due to [19, Theorem

13]. We then have

‖µn − (µ+ − µ−)‖a,b ≤‖µn − µϕ(n)‖a,b + ‖µϕ(n) − (µ+ − µ−)‖a,b

≤ ‖µn − µϕ(n)‖a,b +W a,b
1 (µ+ϕ(n) + µ−, µ−ϕ(n) + µ+)

≤ ‖µn − µϕ(n)‖a,b +W a,b
1 (µ+ϕ(n), µ

+) +W a,b
1 (µ−ϕ(n), µ

−) →
n→∞

0.

Here, we used the fact that (µn)n is a Cauchy sequence.

We end this section with a characterization of the convergence for the norm. If a sequence µn of
signed measures converges toward µ ∈ Ms(Rd), then for any decomposition of µn into two positive
measures µn = µ+n − µ−n (not necessarily the Jordan decomposition), we have that each µ+n , µ

−
n is

the sum of two positive measures: m+
n , z

+
n and m−

n , z
−
n , respectively. The measures m+

n and m−
n are

the parts that converge respectively to µ+ and µ−. Both m+
n and m−

n are uniformly bounded and
tight. The measures z+n and z−n are the residual terms that may be unbounded and not tight. They
compensate each other in the sense that W a,b

1 (z+n , z
−
n ) vanishes for large n.
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4 Application to the transport equation with source term

This section is devoted to the use of the norm introduced in Definition 20 to guarantee existence,
uniqueness, and stability with respect to initial condition for the transport equation (2). We denote
the set of test functions (i.e. C∞ with compact support) on a given space X by D(X).

Definition 30 (Measure-valued weak solution). A measure-valued weak solution to (2) is a contin-
uous map with respect to the weak-* topology of measures (i.e µ ∈ C0([0, 1];Ms(Rd)) such that for
all ϕ ∈ D([0, 1) × R

d) it holds

∫ 1

0
dt

∫

Rd

(dµt(∂tϕ(t, x) + v[µt] · ∇ϕ(t, x)) + dh[µt]ϕ(t, x)) = −
∫

Rd

dµ0ϕ(0, ·). (14)

Equivalently, µ satisfies µt=0 = µ0 and for all ϕ ∈ D(Rd) it holds

d

dt
〈µt, ϕ〉 = 〈µt, v[µt] · ∇ϕ〉+ 〈h[µt], ϕ〉, (15)

where

〈µt, ϕ〉 :=
∫

Rd

ϕ(x)dµt(x).

The equivalence of definitions is classical, see e.g. [2, Chap 8]. We will also use the following
classical fact: for µt solving the transport equation with source (2), any interval [t1, t2] ⊂ [0, 1) and
all ϕ ∈ D([t1, t2]× R

d), it holds
∫ t2

t1

dt

∫

Rd

(dµt(∂tϕ(t, x) + v[µt] · ∇ϕ(t, x)) + dh[µt], ϕ(t, x)) =

∫

Rd

dµt2ϕ(t2, ·) −
∫

Rd

dµt1ϕ(t1, ·).
(16)

4.1 Estimates of the norm under flow action

In this section, we extend the action of flows on probability measures to signed measures, and state
some estimates about the evaluation of ‖µ‖a,b under a flow action on µ. Notice that for µ ∈ Ms(Rd)
and T a map, we have T#µ = T#µ+ − T#µ−, where µ = µ+ − µ− is any decomposition of µ.
Observe that in general, given µ ∈ Ms(Rd) and T : R

d 7→ R
d a Borel map, it only holds

|T#µ| ≤ |µ|, (17)

even by choosing the Jordan decomposition for (µ+, µ−), since it may hold that T#µ+ and T#µ−

are not orthogonal. However, if T is injective (as it will be in the rest of the paper), it holds
T#µ+ ⊥ T#µ−, hence |T#µ| = |µ|.
Lemma 31. For v(t, x) measurable in time, uniformly Lipschitz in space, and uniformly bounded,
we denote by Φv

t the flow it generates, i.e. the unique solution to

d

dt
Φv
t = v(t,Φv

t ), Φv
0 = Id.

Given µ0 ∈ Ms(Rd), then, µt = Φv
t#µ0 is the unique solution of the linear transport equation






∂

∂t
µt +∇ · (v(t, x)µt) = 0,

µ|t=0 = µ0

in C([0, T ],Ms(Rd)).
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Proof. The proof is a direct consequence of [22, Theorem 5.34] combined with [6, Theorem 2.1.1].

Lemma 32. Let v and w be two vector fields, both satisfying for all t ∈ [0, 1] and x, y ∈ R
d the

following properties:
|v(t, x) − v(t, y)| ≤ L|x− y|, |v(t, x)| ≤M.

Let µ and ν be two measures of Ms(Rd). Then

• ‖Φv
t#µ‖a,b ≤ eLt‖µ‖a,b

• ‖µ− Φv
t#µ‖a,b ≤ b t M |µ|,

• ‖Φv
t#µ−Φw

t #µ‖a,b ≤ b|µ| (eLt−1)
L ‖v − w‖L∞(0,1; C0)

• ‖Φv
t#µ−Φw

t #ν‖a,b ≤ eLt‖µ − ν‖a,b + b min{|µ|, |ν|} (eLt−1)
L ‖v −w‖L∞(0,1; C0)

Proof. The first three inequalities follow from [20, Proposition 10]. For the first inequality, we write

‖Φv
t#µ‖a,b =W a,b

1 (Φv
t#µ

+,Φv
t#µ

−)

≤ eLtW a,b
1 (µ+, µ−) by [20, Prop. 10]

= eLt‖µ‖a,b.

For the second inequality,

‖µ− Φv
t#µ‖a,b =W a,b

1 (µ+ +Φv
t#µ

−, µ− +Φv
t#µ

+)

≤W a,b
1 (µ+,Φv

t#µ
+) +W a,b

1 (µ−,Φv
t#µ

−) (Lemma 15)

≤ b t ‖v‖C0(|µ+|+ |µ−|) by [20, Prop. 10]

= b t ‖v‖L∞(0,1; C0(R))|µ| since µ = µ+ − µ− is the Jordan decomposition.

The third inequality is given by

‖Φv
t#µ− Φw

t #µ‖a,b =W1
a,b(Φv

t#µ
+ +Φw

t #µ
−,Φw

t #µ
+ +Φv

t#µ
−)

≤W a,b
1 (Φv

t#µ
+,Φw

t #µ
+) +W a,b

1 (Φw
t #µ

−,Φv
t#µ

−)

≤ b
(

W1(Φ
v
t#µ

+,Φw
t #µ

+) +W1(Φ
w
t #µ

−,Φv
t#µ

−)
)

≤ b (|µ+|+ |µ−|)(e
Lt − 1)

L
‖v − w‖|L∞(0,1; C0(R))

by using [20, Prop. 10] with µ = ν.
The last inequality is deduced from the first and the third ones using triangular inequality.

4.2 A scheme for computing solutions of the transport equation

In this section, we define an approximation scheme for solutions to (2). This will be useful to prove
existence of solutions. We then prove Theorem 2.

Fix µ0 ∈ Ms(Rd) such that supp(µ0) ⊂ K, with K compact. Let v ∈ C0,Lip(Ms(Rd), C0,Lip(Rd))
and h ∈ C0,Lip(Ms(Rd),Ms(Rd)) satisfy (H-1)-(H-2)-(H-3). We now define a sequence (µkt )k of
approximated solutions for (2) through the following Euler-explicit-type iteration scheme. For sim-
plicity of notations, we define a solution on the time interval [0, 1] only.
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Scheme

Initialization. Fix k ∈ N. Define ∆t =
1

2k
. Set µk0 = µ0.

Induction. Given µki∆t for i ∈ {0, 1, . . . , 2k − 1}, define vki∆t := v[µki∆t] and

µkt = Φ
vki∆t

t−i∆t#µ
k
i∆t + (t− i∆t)h[µki∆t], t ∈ [i∆t, (i+ 1)∆t]. (18)

Remark 33. The flow Φt−i∆t encodes the transport part ∂tµ+div (vµ) = 0 while (t− i∆t)h encodes
the reaction ∂tµ = h.

We now prove equi-Lipschitz continuity of the sequence (µkt )k. We also define the following
sup-norm on curves in C0([0, 1],Ms(Rd)) by writing

‖µ‖ := sup
t∈[0,1]

‖µt‖a,b.

Proposition 34. The sequence (µkt )k ∈ C0([0, 1],Ms(Rd), ‖.‖) is equi-Lipschitz with respect to time,
i.e. there exists L′ = aP + bM(P + |µ0|) independent on k such that for all t, s ∈ [0, 1] it holds

‖µkt − µks‖a,b ≤ L′|t− s|. (19)

Moreover, the sequence is uniformly bounded in mass and compactly supported, i.e.

|µkt | ≤ Pt+ |µ0|, supp{µt} ⊂ B(0, R′ +M) (20)

for R′ such that (supp{µ0} ∪B0(R)) ⊂ B0(R
′).

Remark 35. Estimates (20) are expected at the discrete level from the PDE (2) with the assump-
tions (H-1), (H-2), (H-3). Indeed, the transport part preserves mass, while the reaction term gives
a mass growth that is at most linear. Likewise, the support estimate is expected from the PDE since
h has support in B0(R) (no mass created out of this ball) and transport cannot expand the support
with a speed faster than |v| ≤M .

Proof. We first prove (20). The sequence built by the scheme satisfies

|µkt | ≤ Pt+ |µ0|, t ∈ [0, 1], (21)

where P is such that |h[µ]| ≤ P by (H-3). Indeed, it holds directly from (18) and from (H-3) that

|µk(i+1)∆t| ≤ |Φvk
i∆t

∆t #µki∆t|+∆t|h[µki∆t]| ≤ |µki∆t|+∆tP,

then by induction on i (for k fixed), we have

|µki∆t| ≤ Pi∆t+ |µ0|. (22)

Thus for t ∈ [i∆t, (i+ 1)∆t], using again (18) and (H-3)

|µkt | ≤ |Φvk
i∆t

t−i∆t#µ
k
i∆t|+ (t− i∆t)|h[µki∆t]| ≤ |µki∆t|+ (t− i∆t)P ≤ |µ0|+ Pt,

using (22) for the last inequality. This proves the first estimate of (20), as t ≤ 1. We now prove the
second statement of (20). First observe that supp{µ} = supp{µ+} ∪ supp{µ−}, where (µ+, µ−) is
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the Jordan decomposition of µ. Choose K such that supp{µ0} ⊂ K and use (18) and (H-2)-(H-3)
to write

supp{µkt } ⊆ Kt,M,R,

with
Kt,M,R := {x ∈ R

d, x = xK,R + x′, xK,R ∈ K ∪B0(R), ‖x′‖ ≤ tM}.
Take now R′ such that K ∪ B0(R) ⊂ B0(R

′). Then, it holds Kt,M,R ⊂ B(0, R′ + tM). Again by
recalling t ≤ 1, we have the second statement of (20).

We now prove that (µkt )k is Lipschitz with respect to time. We have two cases:

• Let t, s ∈ [i∆t, (i + 1)∆t] for some i ∈ {0, 1, . . . , 2k − 1}. By applying (18), the triangular
inequality and Lemma 32, we have

‖µkt − µks‖a,b ≤ ‖Φvk
i∆t

t−i∆t#µ
k
i∆t − Φ

vk
i∆t

s−i∆t#µ
k
i∆t‖a,b + ‖(t− i∆t)h[µki∆t]− (s− i∆t)h[µki∆t]‖a,b

= ‖Φvki∆t
t−s #ν1 − ν1‖a,b + ‖(t− s)h[µki∆t] + ν2 − ν2‖a,b

≤ |t− s|bM |ν1|+ a|t− s| |h[µki∆t]| ≤ |t− s|(bM |µki∆t|+ aP )

≤ |t− s|(bM(Ps + |µ0|) + aP ),

where ν1 = Φ
vki∆t

s−i∆t#µ
k
i∆t and ν2 = (s − i∆t)h[µki∆t]. Recall that s ∈ [0, 1] and observe that

this implies Lipschitz continuity on [i∆t, (i + 1)∆t].

• Choose now any t, s ∈ [0, 1] and assume t < s with no loss of generality. Then choose
i, j ∈ {0, 1, . . . , 2k − 1} the unique indexes so that

i∆t ≤ t < (i+ 1)∆t < . . . < (j − 1)∆t < s ≤ j∆t.

By applying triangular inequality and the estimate of the previous case on each term, it holds

‖µkt − µks‖a,b ≤ ‖µkt − µk(i+1)∆t‖a,b + ‖µk(i+1)∆t − µk(i+2)∆t‖a,b + . . . + ‖µk(j−1)∆t − µks‖a,b

≤ L′((i+ 1)∆t− t+ (i+ 2)∆t− (i+ 1)∆t+ . . .+ s− (j − 1)∆t) = L′(s − t).

This proves uniform Lipschitz continuity.

We now prove that µkt is an approximated solution of (2).

Proposition 36. There exists L′′ such that, for each k and ϕ ∈ D([0, 1) × R
d) satisfying

‖ϕ(t, ·)‖∞ ≤ 1, ‖ϕ(t, ·)‖Lip ≤ 1, for all t ∈ [0, 1], (23)

it holds
∣

∣

∣

∣

∫ 1

0
dt

∫

Rd

(

dµkt (∂tϕ(t, ·) + v[µkt ] · ∇ϕ(t, ·)) + dh[µkt ]ϕ(t, ·)
)

+

∫

Rd

dµ0ϕ(0, ·)
∣

∣

∣

∣

≤ L′′

2k
. (24)

Proof. By using the formulation (16), for each interval [i∆t, (i+1)∆t] and ϕ ∈ D([i∆t, (i+1)∆t]×R
d)

it holds

∫ (i+1)∆t

i∆t
dt

∫

Rd

dΦ
v[µk

i∆t
]

t−i∆t #µ
k
i∆t(∂tϕ(t, ·) + v[µki∆t] · ∇ϕ(t, ·)) =

∫

Rd

dΦ
v[µk

i∆t]
∆t #µki∆tϕ((i + 1)∆t, ·)−

∫

Rd

dµki∆tϕ(i∆t, ·)

17



and
∫ (i+1)∆t

i∆t
dt

∫

Rd

(

d((t− i∆t)h[µki∆t])(∂tϕ(t, ·) + dh[µki∆t]ϕ(t, ·)
)

=

∫

Rd

d(∆t h[µki∆t])ϕ((i + 1)∆t, ·) −
∫

Rd

d0ϕ(i∆t, ·).

By adding on both sides and recalling the definition of µk in (18), it holds

∫ (i+1)∆t

i∆t
dt

∫

Rd

(

dµkt ∂tϕ(t, ·) + dΦ
v[µk

i∆t
]

t−i∆t #µ
k
i∆tv[µ

k
i∆t] · ∇ϕ(t, ·)) + dh[µki∆t]ϕ(t, ·)

)

=

∫

Rd

dµk(i+1)∆tϕ((i + 1)∆t, ·)−
∫

Rd

dµki∆tϕ(i∆t, ·).

Recall that µt = Φ
v[µk

i∆t
]

t−i∆t #µ
k
i∆t + (t− i∆t)h[µki∆t] and sum all terms i = 0, . . . , 2k − 1. By recalling

that ϕ(1, ·) = 0, we have

2k−1
∑

i=0

∫ (i+1)∆t

i∆t
dt

∫

Rd

(

dµkt (∂tϕ(t, ·) + v[µki∆t] · ∇ϕ(t, ·)) + dh[µki∆t]ϕ(t, ·)
)

=

−
2k−1
∑

i=0

∫ (i+1)∆t

i∆t
dt

∫

Rd

(t− i∆t)h[µki∆t] v[µ
k
i∆t] · ∇ϕ(t, ·)) −

∫

Rd

dµ0ϕ(0, ·). (25)

Recall that (19) implies that for each t ∈ [i∆t, (i + 1)∆t] it holds ‖µkt − µki∆t‖a,b ≤ L′∆t, hence by
(H-1)-(H-3) it holds

‖v[µki∆t]− v[µkt ]‖C0(Rd) ≤ KL′∆t, ‖h[µki∆t]− h[µkt ]‖a,b ≤ QL′∆t.

By using (25), we have
∣

∣

∣

∣

∫ 1

0
dt

∫

Rd

(

dµkt (∂tϕ(t, ·) + v[µkt ] · ∇ϕ(t, ·)) + dh[µkt ]ϕ(t, ·)
)

+

∫

Rd

dµ0ϕ(0, ·)
∣

∣

∣

∣

≤

2k−1
∑

i=0

∣

∣

∣

∣

∣

∫ (i+1)∆t

i∆t
dt

∫

Rd

(t− i∆t)h[µki∆t] v[µ
k
i∆t] · ∇ϕ(t, ·))

∣

∣

∣

∣

∣

+

2k−1
∑

i=0

∣

∣

∣

∣

∣

∫ (i+1)∆t

i∆t
dt

∫

Rd

(

dµkt (v[µ
k
t ]− v[µki∆t]) · ∇ϕ(t, ·)) + d(h[µkt ]− h[µki∆t])ϕ(t, ·)

)

∣

∣

∣

∣

∣

≤
∫ 1

0
dt∆tPM‖∇ϕ(t, ·)‖C0(Rd) +

∫ 1

0
dt

∫

Rd

d|µkt |L′K∆t‖∇ϕ(t, ·)‖C0(Rd) + L′Q∆t‖ϕ‖C0(Rd) ≤

∆tPM +∆tL′((P + |µ0|)K +Q).

Here we used that h[µki∆t] and µ
k
t have bounded mass, see (H-3)-(20), as well as bounded C0 norm

of v, due to (H-2). Observe that ‖∇ϕ(t, ·)‖C0(Rd) = ‖ϕ(t, ·)‖Lip and recall ∆t = 1
2k
. By choosing

L′′ := PM + L′((P + |µ0|)K +Q) not depending on k, we have the result.

4.3 Proof of Theorem 2

In this section, we prove Theorem 2, stating existence and uniqueness of the solution to the Cauchy
problem associated to (2). The proof is based on the proof of the same result for positive measures
written in [20]. We first focus on existence.
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Step 1. Existence. Recall Proposition 34: the sequence given by the scheme (µkt )k is uniformly
Lipschitz continuous, uniformly bounded in mass and tight. Since µk0 = µ0 for all k, this implies
that the sequence is also uniformly bounded and equi-continuous. By Ascoli-Arzelà Theorem, this
implies that the sequence is relatively compact in C0

(

[0, 1],Ms(Rd)
)

, hence there exist converging
sub-sequences. By passing to one of such subsequences, for which we use the index j, we define

µt := lim
j→∞

µjt , (26)

We now prove that µt satisfies (14) for all ϕ ∈ D([0, 1) × R
d). Observe that each ϕ satisfies

supt∈[0,1] ‖ϕ(t, ·)‖C0(Rd), ‖ϕ(t, ·)‖Lip < +∞. Moreover, by homogeneity of (14) and of ‖ϕ(t, ·)‖C0(Rd),
‖ϕ(t, ·)‖Lip, ‖∂tϕ(t, ·)‖C0(Rd), ‖∂tϕ(t, ·)‖Lip with respect to ϕ → λϕ, it is sufficient to prove that µt
satisfies (14) for all ϕ ∈ D([0, 1) × R

d) with the additional constraint

‖ϕ(t, ·)‖C0(Rd), ‖ϕ(t, ·)‖Lip, ‖∂tϕ(t, ·)‖C0(Rd), ‖∂tϕ(t, ·)‖Lip ≤ 1 for all t ∈ [0, 1). (27)

Observe that for each ϕ ∈ D([0, 1) × R
d) satisfying (27) it holds

C :=

∣

∣

∣

∣

∫ 1

0
dt

∫

Rd

(dµt(∂tϕ(t, x) + v[µt] · ∇ϕ(t, x)) + dh[µt]ϕ(t, x)) +

∫

Rd

dµ0ϕ(0, ·)
∣

∣

∣

∣

≤ L′′

2j
+

∣

∣

∣

∣

∫ 1

0
dt

∫

Rd

d(µt − µjt)∂tϕ(t, ·) + dµtv[µt] · ∇ϕ(t, ·) − dµjtv[µ
j
t ] · ∇ϕ(t, ·)) + d(h[µt]− h[µjt ])ϕ(t, ·)

∣

∣

∣

∣

Since such estimate holds for any j, it is sufficient to prove that the right-hand side tends to zero
for j → +∞. We have

C ≤ L′′

2j
+ ‖µ − µj‖ sup

t∈[0,1]
max{‖∂tϕ(t, ·)‖∞, ‖∂tϕ(t, ·)‖Lip}+

∣

∣

∣

∣

∫ 1

0
dt

∫

Rd

d(µt − µjt)v[µt] · ∇ϕ(t, ·)
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 1

0
dt

∫

Rd

dµjt (v[µt]− v[µjt ]) · ∇ϕ(t, ·))
∣

∣

∣

∣

+ ‖h[µ]− h[µj ]‖ ≤ L′′

2j
+ ‖µ− µj‖+

‖µ− µj‖M sup
t∈[0,1]

‖ϕ(t, ·)‖Lip +
∫ 1

0
dt

∫

Rd

d|µjt |L‖µt − µjt‖a,b‖ϕ(t, ·)‖Lip +Q‖µ− µj‖

≤ L′′

2j
+ ‖µ − µj‖ (1 +M + (P + |µ0|)L+Q) .

By letting j → +∞ and recalling that (26) is equivalent to ‖µ− µj‖ → 0, we have the result.

Remark 37. From this construction, we do not prove uniqueness of the limit for the sequence µk.
Yet, we will prove uniqueness of the solution to (2) in Step 4, that will in turn ensure uniqueness
of the limit.

Step 2. Any weak solution to (2) is Lipschitz in time. In this step, we prove that any
weak solution in the sense of Definition 30 to the transport equation (2) is Lipschitz with respect
to time, since it satisfies

‖µt+τ − µt‖a,b ≤ L′τ, t ≥ 0, τ ≥ 0, (28)

with L′ defined in Proposition (34). To do so, we consider a solution µt to (2). We define the vector
field w(t, x) := v[µt](x) and the signed measure bt = h[µt]. The vector field w is uniformly Lipschitz
and uniformly bounded with respect to x, since v is so. The field w is also measurable in time, since
by definition, µt is continuous in time. Then, µt is the unique solution of

∂tµt(x) + div .(w(t, x)µt(x)) = bt(x), µ|t=0(x) = µ0(x). (29)
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Uniqueness of the solution of the linear equation (29) is a direct consequence of Lemma 31. Moreover,
the scheme presented in Section 4.2 can be rewritten for the vector field w and the source b, in which
dependence with respect to time is added and dependence with respect to the measure is dropped.
Thus, the unique solution µ to (29) can be obtained as the limit of this scheme µk.

For each k ≥ 0 it holds

‖µt+τ − µt‖a,b ≤ ‖µt − µkt ‖a,b + ‖µkt − µkt+τ‖a,b + ‖µkt+τ − µt+τ‖a,b ≤ 2‖µ− µk‖+ L′τ,

where we used (19) for Lipschitz continuity of µk. By letting k → +∞ we have ‖µ− µk‖ → 0, thus
(28) holds.

Step 3. Any weak solution to (2) satisfies the operator splitting estimate: there exist
K ′, τ ′ > 0 such that for all t ∈ [0, 1) and τ ∈ (0, τ ′) saisfying t+ τ ≤ 1, it holds

‖µt+τ − (Φv[µt]
τ #µt + τh[µt])‖a,b ≤ K ′τ2. (30)

To this end , consider µt as the solution to the non-autonomous linear equation (29), as in Step
2: this allows to define the trajectory µkt given by the scheme presented in Section 4.2 and to prove
that µt is the limit of µkt . We now prove an estimate similar to (30) for µkt .

Fix k ∈ N
∗ and let t = i∆t, τ = n∆t < log(2)/L for some i ∈ {0, . . . , 2k − 1}, n ∈ N and

t+ τ ≤ 1 This ensures eLτ ≤ 1 + 2Lτ . Define

an := ‖µk(i+n)∆t − (Φ
v[µk

i∆t]
n∆t #µki∆t + n∆th[µki∆t])‖a,b.

Observe that it holds a1 = 0, while for n ≥ 2 it holds

an ≤ ‖Φ
v[µk

(i+n−1)∆t
]

∆t #µk(i+n−1)∆t − (Φ
v[µk

i∆t
]

∆t #(Φ
v[µk

i∆t
]

(n−1)∆t#µ
k
i∆t + (n− 1)∆th[µki∆t]))‖a,b +

‖∆th[µk(i+n−1)∆t]−∆th[µki∆t]‖a,b + ‖Φv[µk
i∆t]

∆t #(n− 1)∆th[µki∆t]− (n− 1)∆th[µki∆t]‖a,b

≤ eL∆t‖µk(i+n−1)∆t − (Φ
v[µk

t ]

(n−1)∆t#µ
k
i∆t + (n− 1)∆th[µki∆t])‖a,b +

b|µki∆t|
eL∆t − 1

L
‖v[µk(i+n−1)∆t]− v[µki∆t]‖C0 +∆tQ‖µk(i+n−1)∆t − µki∆t‖a,b

+(n− 1)∆t(∆tbM |h[µki∆t]|
≤ (1 + 2L∆t)an−1 + (|µ0|+ P )2∆tan−1 +∆tQan−1 + (n− 1)∆t2MP

≤ (1 +K ′
1∆t)an−1 +K ′

2τ∆t.

Here, we used (H-1)-(H-2)-(H-3), Lemma (32) as well as Lipschitz continuity and boundedness of
mass proved in Proposition 34. Observe that K ′

1,K
′
2 do not depend on n or k, with K1 > L. Thus,

choose τ ′ = log(2)/K1 independent on k and observe that for all τ ∈ (0, τ ′) it holds

‖µk(i+n)∆t − (Φ
v[µk

i∆t
]

n∆t #µki∆t+n∆th[µki∆t])‖a,b ≤ K2τ∆t
(1 +K ′

1∆t)
n − 1

K ′
1∆t

=
K ′

2

K ′
1

τ(eK
′
1τ − 1) ≤ 2K ′

2τ
2.

(31)
We are now ready to prove (30). For t ∈ [0, 1) fixed, build the sequence ik ∈ {0, . . . 2k − 1} such

that |t− ik2
−k| < 2−k. Similarly, for τ ∈ (0, τ ′) fixed, build the sequence nk ∈ {0, . . . 2k} such that

|t− (ik + nk)2
−k| < 2−k. Observe that limk→+∞ ‖µ − µk‖ = 0, together with (19), implies

‖µt+τ − µk(ik+nk)2−k‖a,b ≤ ‖µt+τ − µkt+τ‖a,b + ‖µkt+τ − µk(ik+nk)2−k‖a,b ≤ ‖µ− µk‖+ L′2−k → 0.
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and similarly ‖µt−µk
ik2−k‖a,b → 0. By using (H-1)-(H-2)-(H-3) and Lemma 32, this in turn ensures

‖Φ
v[µk

ik2−k
]

nk2−k #µkik2−k − Φv[µt]
τ #µt‖a,b ≤ ‖Φ

v[µk

ik2−k
]

nk2−k #µkik2−k − Φ
v[µk

ik2−k
]

τ #µkik2−k‖a,b +

‖Φ
v[µk

ik2−k
]

τ #µkik2−k − Φv[µt]
τ #µkik2−k‖a,b + ‖Φv[µt]

τ #µkik2−k − Φv[µt]
τ #µt‖a,b

≤ |µkik2−k |M |nk2−k − τ |+ |µkik2−k |
eLτ − 1

L
K‖µt − µkik2−k‖a,b + eLτ‖µt − µkik2−k‖a,b → 0

as well as

‖nk2−kh[µkik2−k ]− τh[µt]‖a,b ≤ ‖nk2−kh[µkik2−k ]− τh[µkik2−k ]‖a,b + τ‖h[µkik2−k ]− τh[µt]‖a,b ≤
P |nk2−k − τ |+ τQ‖µkik2−k − µt‖a,b → 0.

Since nk2
−k → τ ∈ (0, τ ′), for k sufficiently large one can apply (31), thus

lim
k→+∞

‖µt+τ − (Φv[µt]
τ #µt + τh[µt])‖a,b ≤ lim

k→+∞

(

‖µt+τ − µk(ik+nk)2−k‖a,b +

‖µk(ik+nk)2−k − (Φ
v[µk

ik2−k
]

nk2−k #µkik2−k + nk2
−kh[µkik2−k ])‖a,b + ‖Φ

v[µk

ik2−k
]

nk2−k #µkik2−k − Φv[µt]
τ #µt‖a,b

+‖nk2−kh[µkik2−k ]− τh[µt]‖a,b
)

≤ 0 + 2K ′
2τ

2 + 0 + 0.

that is (30) for K ′ = 2K ′
2.

Step 4. Uniqueness of the solution to (2) and continuous dependence. Assume that µt
and νt are two solutions to (2) with initial condition µ0, ν0, respectively. Define ε(t) := ‖µt− νt‖a,b,
that is a Lipschitz function by Step 2. We denote

Rµ(t, τ) = µt+τ − (Φv[µt]
τ #µt + τh[µt]), Rν(t, τ) = νt+τ − (Φv[νt]

τ #νt + τh[νt]).

Fix τ < τ ′ < log(2)/L, that ensures eLτ ≤ 1 + 2Lτ . By Step 3, it holds

ε(t+ τ) = ‖µt+τ − νt+τ‖a,b = ‖Φv[µt]
τ #µt + τh[µt] +Rµ(t, τ)− Φv[νt]

τ #νt − τh[νt]−Rν(t, τ)‖a,b

≤ ‖Φv[µt]
τ #µt − Φv[νt]

τ #νt‖a,b + τ‖h[µt]− h[νt]‖a,b + ‖Rµ(t, τ)‖a,b + ‖Rν(t, τ)‖a,b

≤ eLτ‖µt − νt‖a,b + (P +min{|µ0|, |ν0|})
eLτ − 1

L
‖v[µt]− v[νt]‖C0 + τQ‖µt − νt‖a,b + 2K ′τ2

≤
(

eLτ + b(P +min{|µ0|, |ν0|})2τK + τQ
)

ε(t) + 2K ′τ2 ≤ (1 + τK3)ε(t) + 2K ′τ2

for K2 = 2L + 2Kb(P + min{|µ0|, |ν0|}) + Q. By letting τ → 0, we deduce ε′(t) ≤ K3ε(t) almost
everywhere. Then, ε(t) ≤ ε(0) exp(K2t), that implies continuous dependence with respect to the
initial data.

Moreover, if µ0 = ν0, then ε(0) = 0, thus ε(t) = 0 for all t. Since ‖.‖a,b is a norm, this implies
µt = νt for all t, that corresponds to uniqueness of the solution.
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[5] Giovanni A. Bonaschi, José A. Carrillo, Marco Di Francesco, and Mark A. Peletier. Equivalence
of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D. ESAIM
Control Optim. Calc. Var., 21(2):414–441, 2015.

[6] Alberto Bressan and Benedetto Piccoli. Introduction to the mathematical theory of control,
volume 2 of AIMS Series on Applied Mathematics. AIMS, 2007.

[7] Luis A. Caffarelli and Robert J. McCann. Free boundaries in optimal transport and Monge-
Ampère obstacle problems. Ann. of Math. (2), 171(2):673–730, 2010.
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