N
N

N

HAL

open science

Multi-satellite mission planning using a self-adaptive

multi-agent system

Jonathan Bonnet, Marie-Pierre Gleizes, Elsy Kaddoum, Serge Rainjonneau,

Grégory Flandin

» To cite this version:

Jonathan Bonnet, Marie-Pierre Gleizes, Elsy Kaddoum, Serge Rainjonneau, Grégory Flandin. Multi-
satellite mission planning using a self-adaptive multi-agent system. IEEE 9th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO 2015), IEEE, Sep 2015, Cambridge, United
States. pp. 11-20, 10.1109/SAS0.2015.9 . hal-01665196

HAL Id: hal-01665196
https://hal.science/hal-01665196
Submitted on 15 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01665196
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18173

To link to this article : DOI: 10.1109/SAS0.2015.9
URL : http://dx.doi.org/10.1109/SAS0.2015.9

To cite this version : Bonnet, Jonathan and Gleizes, Marie-Pierre and
Kaddoum, Elsy and Rainjonneau, Serge and Flandin, Grégory Multi-satellite
mission planning using a self-adaptive multi-agent system. (2015) In: SASO
(IEEE 9th International Conference on Self-Adaptive and Self-Organizing
Systems), 21 September 2015 - 25 September 2015 (Cambridge, United States).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1109/SASO.2015.9
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Multi-satellite mission planning
using a self-adaptive multi-agent system

Jonathan Bonnet*, Marie-Pierre Gleizes', Elsy Kaddoum', Serge Rainjonneau*, Gregory Flandin*
*Institut de Recherche Technologique Saint Exupéry, Toulouse, France
Email: {surname.name} @irt-saintexupery.com
TInstitut de Recherche en Informatique de Toulouse, Université Paul Sabatier, Toulouse, France
Email: {Surname.Name} @irit.fr

Abstract—Mission planning for a constellation of Earth ob-
servation satellites is a complex problem raising significant
technological challenges for tomorrow’s space systems. The large
numbers of customers requests and their dynamic introduction in
the planning system result in a huge combinatorial search space
with a potentially highly dynamical evolution requirements. The
techniques used nowadays have several limitations, in particular,
it is impossible to dynamically adapt the plan during its con-
struction even for small modifications. Satellites of a constellation
are planned in a chronological way instead of a more collective
planning which can provide additional load balancing.

In this paper, we propose to solve this difficult and highly
dynamic problem using adaptive multi-agent systems, taking
advantage from their self-adaptation and self-organization mech-
anisms. In the proposed system, the agents, through their local
interactions, allow to dynamically reach a good solution, while
ensuring a controlled distribution of tasks within the constellation
of satellites. Finally, a comparison with a classical chronological
greedy algorithm, commonly used in the spatial domain, high-
lights the advantages of the presented system.

Keywords—adaptive multi-agent system; planning; multi-

satellite;

[. INTRODUCTION

A constellation of Earth observation satellites is a fleet,
potentially heterogeneous, of satellites. Such a fleet allows to
cover a large Earth surface, with a good revisit frequency,
ensuring different kinds of pictures and the robustness of the
system. Planning an observation mission for a constellation
is a complex task. Indeed, a lot of parameters and constraints,
often contradictory, must be taken into account as for example,
the number of satellites and their characteristics, the volume
of customers requests and their associated constraints (like the
kind of acquisition, the priority of the customer, the temporal
validity range), and external constraints (such as the cloud
coverage for optical satellites or matching the ground stations
duty cycle). In addition to this, today’s satellite systems are
subject to an important evolution (in size and dynamism).
For example the new Google Skybox constellation project will
amount to more than 24 satellites, encouraging near real time
client requests to grow drastically.

Currently, a satellite system works on a chronological
basis relying on regular “appointments” between satellites and
control ground segment when the work plan is uploaded on-
board. The clients’ requests arriving in the system are stored
in the input pool and before each “appointment”, they are
taken as input of a planning algorithm. Requests arriving

after the start of this planning process are stored for the
next programming period. Indeed, currently used planning
algorithms, such as greedy algorithm [16], fails to manage
properly linked acquisitions (as for example stereoscopic ac-
quisition where a request must be acquired several times) and
to take into account dynamic changes in a relatively short
time. To improve this, new approaches using self-adaptation
and self-organization mechanisms are required. Indeed, those
mechanisms bring more flexibility, robustness and real time
adaptation. Thus, mission plans can be dynamically computed.

Self-adaptive multi-agent systems as defined in [11] with
their ability to take into account a large number of entities
and constraints, naturally provide self-adaptation and self-
organization capabilities required to solve this kind of problem.
To build our system, we rely on AMAS4Opt (Adaptive Multi-
Agent System For Optimization) [14], a generic agent model
which provides design patterns to solve optimization problems
using cooperative self-adaptive multi-agent systems as defined
in the Adaptive Multi-Agent System (AMAS) Theory [11]. In
this model, agents are designed as close as possible to the
natural description if the entities of the problem.

This paper is organized as follows. Section II describes the
problem and presents its context. Section III develops the func-
tioning of the ATLAS system (Adaptive saTellites pLanning
for dynAmic earth obServation). Finally, Section IV presents
an evaluation of the ATLAS system and its comparison to
ChronoG, a greedy algorithm.

II. MULTI-SATELLITE SCHEDULING PROBLEM

In this section, a description of the problem and a summary
of solving methods currently used are presented.
A. Description of the Problem

Based on the work of [2] and [6], the considered problem
can be described as follows:

A set of satellites Sat = {s1,sa, ..., S, }, in which each
satellite s; has its own characteristics:

e a quasi-circular orbit around the Earth,
e an energy management module,
e a storage capacity,

e apayload, in this case observation instruments (optical
or radar), and their characteristics,

e an orbital and attitude control system, allowing the
satellite to control its position and pointing (fowards
the area to be observed).

A set of client’s requests R = {ry,ra,...,7m }, where r;
represents a client request and is defined by:

e its kind (optical or radar for example),
e a submission date,

e a temporal validity range (from hours to several days
or weeks),

e a geographic area,
e a priority given by the customer,
e w, the tolerated cloud coverage, 0 <= w <=1,

o aset of meshes, M* = {m},mj,...,m}}, associated
to the request r;, called sisters.

A set of meshes to acquire M = {M* M7, ..} each M’
is associated to a request 7; and decomposed into a set of
elementary meshes M* = {m?, m},...}. Indeed, request can
represent a huge area, and, because of the instrumental limit,
satellites can not necessarily acquire the whole request in a
single shot. So requests are divided into a set of meshes: a
mesh m¢ is the elementary entity that a satellite can acquire.
Each mesh possesses the constraints of its request, but it is
defined by a smaller geographic area. Thus, a request r; is
satisfied if all its meshes are acquired. To each mesh, one
or several access(es) matching to a period where the mesh is
visible by the satellite are defined. It is during one of these
accesses that the acquisition must be performed. The duration
of the acquisition slot is usually drastically smaller than the
duration of the access. Those accesses are computed by an
external module. Fig. 1 shows an access A on the mesh mﬁ,
by a satellite. An acquisition slot S is inside the access A.

A set of hard and soft constraints must be taken into
account. The set C}, of hard constraints (validity range of the
request for example) must be satisfied. The set of soft con-
straints (constraints whose operator can tolerate degradation
like the cloud coverage), C's can be released.

The objective of the problem is to provide a work plan
where the maximum number of meshes possesses an acquisi-
tion date and is affected to a given satellite. The satellites must
ensure the coverage while:

e satisfying all the hard constraints C},

e maximizing the number of satisfied soft constraint C,

oo

Figure 1. Visibility access and slot of realization

e maximizing the number of planned meshes.

In this work, the problem is solved using a decentralized and
distributed multi-agent system where agents (Section III.A)
cooperate locally to reach their own goals. The global objective
of the problem is not know by the agents, it emerges from their
local interactions.

B. State of the Art

Different papers compare the problem of mission planning
of a constellation to optimization problems such as the Mul-
tidimensional Knapsack Problem [15], [13], or the Trav-
eling Salesman Problem [17]. In the first one the knapsack
represents the memory capacity of the satellite, while in the
second, the path to find between the cities models the sequence
between acquisitions. Many algorithms exist to solve these
problems, and methods of spatial planning are inspired by
them. We gather here the most commonly used approaches
in the field, separating them between the exact methods and
the approximate methods.

Exact Methods guarantee to find the optimal solution,
if it exists. Dynamic Programming is used to decompose
the problem into simpler sub-problems. The difficulty of such
algorithms comes from the ability to recursively cut the initial
problem. As shown in [16], when applying the algorithm
linearly, the execution will quickly use most of the memory
resources making the approach inapplicable in case of complex
linked requests, as it is the case of stereoscopic imaging. It
requires several acquisitions of the same mesh with an angular
distance which creates links between sub-problems making
the decomposition impossible. [18] emit the same criticism
of algorithms built on Branch and Bound. Indeed, even if
all the solutions are not explored as the algorithm uses the
properties of the problem to avoid some branches, the use
of such methods is extremely expensive in exploration time
and required memory space. These methods are therefore not
suitable for problems with very large search spaces, like the
problem treated in this paper.

Approximate Methods can be applied to overcome these
drawbacks. They help to find a good quality solution in a
reasonable time. They differ in the heuristic used to guide
the search and the quality of the obtained solution. The most
commonly used algorithm in the spatial domain, due to a
compromise between computation time and the quality of the
solution, is the Greedy Search. Its principle is simple, it
chronologically schedules requests, and in case of a conflict
it applies a local heuristic. This algorithm is often used as a
working basis, for example in [16]. Different other methods
are adapted and applied to the problem of mission planning,
like Simulated Annealing [19], Tabu Search [3], or Genetic
Algorithms [12], [18].

All these algorithms, even if they produce quite good
results, have limitations. Firstly, they are highly dependent on
the heuristic that guides the search. Generally, such heuristics
use a set of parameters (for example size of genes in Genetic
Algorithm) that must be adjusted in order to reach good
solutions. This requires a good knowledge of the problem and
whenever something changes (size of the constellation, new
constraints, etc.), the heuristic must often be re-adjusted. Also,
when adding requests during the process of the planning, the

process must be resumed to the first opportunity of the added
request. Finally, those algorithms are generally designed to
chronologically plan the mission of a single satellite. Even if
the problem remains similar when considering a constellation,
they ignore new constraints such as the load balancing. In
addition to this, they are not suitable to handle dynamics.
Indeed, operational systems work step by step: during the
building of the plan, no request can be added.

Recently, self-organizing systems such as adaptive multi-
agent systems have proven valuable for solving dynamic
problems, thanks to their ability to adapt themselves to their
environment. For example, [9] propose an adaptive multi-agent
approach to provide self-regulated manufacturing control. A
dynamic resource allocation problem is also treated thanks
to a trust and cooperation-based algorithm by [1]. Today,
such systems are applied in a multitude of domains, we can
for example name [4] who develop an adaptive multi-agent
system for the dynamic control of heat engine or [10] who
present an application to smart grids and management of
electric vehicles. Being close to a natural description of the
problem and designing the agents as close as possible to the
entities of the problem, allow this approach to define more
intuitive and rich solving algorithms which are then more
robust to dynamics, flexible, open and provide a relevant level
of adaptation in real-time.

To the best of our knowledge, multi-agent systems have not
yet been applied to plan missions for satellite constellations
on-ground. However, multi-agent systems have been used to
plan on-board mission of a constellation of Earth observation
satellites like [7]. In their approach, the satellites are defined
as communicating agents through Inter-Satellite Links (ISL).
The purpose is not the planning algorithm itself, but the
distribution of tasks between satellites. For that, they negotiate
among themselves the distribution of demands received from
the ground to maximize the number of satisfied requests.
Because of the Inter-Satellite Links, the applicability of this
method requires a number of conditions such as the size of
the constellation or the distance between satellites.

In this work, we focus on the usage of self-adaptive multi-
agent systems as defined by the AMAS Theory (Section III),
in order to plan on-ground the mission of a constellation of
satellites.

III. ATLAS

In the Adaptive Multi-Agent System Theory [11], agents
are defined as autonomous, adaptive and cooperative entities
that possess local objective. The local cooperation between
agents allows the system to self-adapt in order to realize the
function for which it is designed. Cooperation is defined as
the ability agents have to work together in order to realize a
common global goal. It implies that the activities of the agents
are supplementary, and dependency links and solidarity exist
between them. To deal with dynamic environments, agents
possess mechanisms enabling them to autonomously modify
their organization.

In order to identify the agents of the ATLAS system, we
followed the ADELFE toolkit (French acronym for “Toolkit
to develop software with emergent functionality” - Atelier
de Développement de Logiciels a Fonctionnalité Emergente).

ADELFE allows to develop software with emergent func-
tionality [5]. The goal of this methodology is to guide the
development of adaptive multi-agent systems, through several
work definitions, from preliminary requirements to design
and fast prototyping. Thus, ADELFE allows to qualify the
environment of the system, the exchanged messages and to
identify the system entities.

To ease the design of agents behavior and interactions for
solving optimization problems based on the AMAS Theory,
the AMAS4Opt agent model has been proposed [14]. This
model provides design patterns for two cooperative agent roles:
“constrained role” and “service role”. One agent can have one
or both roles and switches at runtime between them depending
on the situation it faces. The agents having the “constrained
role” manages the constraints and must be satisfied, while the
agents having the “service role” are skilled to help the agents
under the “constrained role”. This model uses the notion of
so-called criticality of agents with the “constrained role” as
an engine for the cooperation between agents. We have used
and extended this model to design the agents and the general
architecture of the ATLAS system.

In this section, the identified agents, their behavior, inter-
actions and the criticality measure of agent under “constrained
role” are detailed. Then, the extension of the AMAS4Opt
model, the cost measure, representing the criticality of agents
under the “service role” is presented.

A. Agents

Given the problem description and using the ADELFE
toolkit, we identified nine kinds of entities:

e three types of cooperative agents: the request agent,
the mesh agent and the satellite agent (their behaviors
are detailed later in this paper),

o three types of active entities: the cloud coverage, the
solar ephemeris and the downloading station. These
entities do not have a goal to satisfy, but they still
interact and influence agent activities and decisions.

o three types of passive entities: the memory of the
satellites, their battery and the module in charge
of attitude and orbit computation. These entities are
considered passive because they do not interact with
others entities, they are resources.

The AMAS4Opt model allows to design the behavior
and interactions between agents. In our case and given the
AMASA4Opt agent roles definition, the satellite agents play the
“service role”, and the mesh agents and request agents play
the “constrained role”.

Below, the three types of cooperative agents indicating their
local objective, the entities of the system with which they
interact during the solving process and agents with whom they
have to negotiate (exchange of information, service requests,
etc.) to reach their objective, are presented.

Satellite agent type (service role)
e goal: to acquire requested data,

e interacts with:

- attitude and orbit computation module,
- cloud coverage,

- battery,

- memory,

- solar ephemeris,

e negotiates with:
- mesh agents.

Request agent type (constrained role)

e goal: to have all its meshes planned,

e negotiates with:
- mesh agents.

Mesh agent type (constrained role)

e goal: to be planned,

e negotiates with:

- satellite agents,
- request agents.

In the current version of the ATLAS system, the decompo-
sition of requests into meshes is not taken into account because
of the lack of real data. Thus, interactions between mesh agents
and request agents is not currently implemented. Note that the
interactions will only affect the criticality of the mesh agent.
Indeed, whenever once of its mesh is planned, the criticality
of the other meshes (sister’s) must increase.

B. Self-Adaptive Multi-Satellite Planning

In the ATLAS system and based on the agent behavior
definitions given by AMAS4Opt, the planning of the con-
stellation is provided by the cooperation between its agents.
This cooperation is ensured through the exchange of messages
between agents and is guided by two indicators: the criticality
and the cost. It is this cooperation that allows to produce a
mission plan maximizing the number of scheduled requests
and balancing the load within the constellation (this balanced
load can be considered as a constraint). The life cycle of each
agent is decomposed into three steps: “Perceive - Decide -
Act”. During phases of perception and action, agents receive
and send messages (these exchanged messages are shown
in table I). The phase of decision is the key step. Indeed,
according to its perception and its state, the agent chooses
which action it has to perform.

The cycle “Perceive - Decide - Act” is repeated until the
system provides a solution. As the agents only have partial
perceptions, they do not know if a global solution is reached.
In order to detect that a good and coherent solution is obtained,
and stop the agents, we introduce an Observer: as its name
suggests, its function is only to observe the evolution of the
system. Whenever this one is stable: agents do not change their
state, the Observer asks all the agents to stop and exposes the
solution. It is very important to note that the Observer has no
interaction with agents during the solving, it only observes and
stops them: it does not belong to the solving process.

The sequence diagram presented in Fig. 2 describes an
example of interaction between a mesh agent and two satellites
agents. In this example, a mesh agent can be planned by two
satellite agent. The diagram can be described as follows:

Satellite Agent 1 Satellite Agent 2
I I

1
4 1a: askForASlot() ! !

1
1b: askForASlot()
2a: estimationSlot() ﬂ

2b: estimationSlot()

3: askForConfirmation()

[CONFIRMED] 4: confirmSlot(true)

[NOT S: confirmSlot(false)
CONFIRMED]

6: askForConfirmation()

I

7: confirmSlot(true)

el

-

Figure 2. Sequence diagram

e First, the mesh agent sends an askForASlot() message
to the both satellite agents (actions la and 1b).

e At the reception of this ask, both satellite agents com-
pute the difficulty to schedule the mesh and answer
with estimationSlot() message (actions 2a and 2b).

e When all satellite agents answered, the mesh agent
chooses the satellite with the lowest cost (in or-
der to be as cooperative as possible) and sends it
a askForConfirmation() (action 3). The mesh agent
keeps in memory all other answers. In this example,
the chosen satellite agent is the number 1.

e The satellite agents can confirm or not (confirmSlot()).
If confirmed (action 4), the mesh agent is planned.

e If the chosen satellite agents does not confirm (ac-
tion 5), the mesh agent sends a askForConfirmation()
(action 6) to the second satellite agent.

e The satellite agent confirms (action 7).

e Finally, the mesh agent is scheduled (point 8).

As we mentioned earlier, an important constraint of this
problem is that the arrival of requests is dynamic. Customers
can make an order at any time. Current systems, because of
their chronological approach, cannot completely handle this
constraint. It is not a problem for ATLAS, requests can be
injected during the execution of the system, regardless of
their accessibility date and corresponding agents are created at
runtime. The autonomous cooperative behavior of the agents
and the self-adaptation and self-organization mechanisms make
the system self-organized, and able to dynamically plan re-
quests. Thus, we can qualify ATLAS as a dynamic continued
resources allocation system.

The functioning of ATLAS is based on the exchange of
messages (Table I) between agents and their processing. In or-
der to illustrate how agents interact between them, we present
two case studies. The fist one (Fig. 3) is a simple scenario with
two mesh agents (AM1 and AM2) to plan with two satellite

TABLE 1. AGENTS AND MESSAGES

Agent Message

Description

Satellite | estimationSlot(Cost c¢)
confirmSlot(Boolean b)
cancel(Access a)

Inform the mesh of the cost to reserve a slot
Confirm (or not) the planning of a mesh
Cancel the planning of a mesh

Mesh askForASlot(Access a)
askForConfirmation(Access a)
informRequest()

Ask a satellite for planning
Ask a satellite for confirmation
Transmit new information to its request

Request | informMesh()

Transmit new information to a mesh

Figure 3. Simple case study

agents (AS1 and AS2). The second (Fig. 4) presents a dynamic
scenario to highlight how the ATLAS adaptive mechanisms
work. A new mesh agent (AM2) is introduced into ATLAS
and it only can be acquired by a satellite agent (AS1) at an
already booked access (al). The situations exposed in the two
figures are not linked.

Fig. 3 exemplifies how two mesh agents (AM1 and AM2)
negotiate with two satellite agents (AS1 and AS2), in order to
be planned. AM1 can be planned by AS1 (access al.l) while
AM?2 by AS1 and AS2 (the two accesses a2.1 and a2.2). The
solving follows these cycles:

cycle 1: for all their access, AM1 and AM2 ask
for coverage to satellite agents: three demands ask-
ForASlot() are sent,

e cycle 2: AS1 and AS2 compute costs of planning (cl,
c2 and c3) and return these costs to the mesh agents
thanks to estimationSlot() messages,

cycle 3: AM1 and AM2 select the lowest costs
and ask confirmation to the satellite agents
(askForConfirmation()),

cycle 4: AS1 and AS2 validate the slot of reservation:
they inform the mesh agents (confirmSlot()) and book

; Criticality(AM2) >
i Criticality(AM1)

Cycle 4

—» message

— reservation

Figure 4. Case study with self-adaptation

the slot in their plan.

The scenario (Fig. 4) illustrates a dynamic situation where
a new mesh agent (AM2) is introduced in ATLAS. AM2 is
very urgent and can only be acquired by the satellite agent
(AS1). In addition to this, the access that AM2 asks for (al)
is already attributed to another mesh agent: AM1. The four
following solving cycles show how the three agents interact
between them and how ASI1 self-adapts its mission plan to
dynamically book the more critical mesh agent:

e cycle 1: AM1 is planned on the access al with ASI,
AM2 sends askForASlot() to AS1 for the same access
al,

e cycle 2: ASI starts by comparing the criticality of
AMI1 and AM2. As AM2 is more critical, AS1 com-
putes the cost to plan this mesh agent at access al and
answers it (estimationSlot()),

e cycle 3: AM2 sends a askForConfirmation() message

to ASI,

e cycle 4: AS2 plans AM2 (confirmSlot()) and cancels
AMI. This agent (AM1) restarts its life cycle (step 5
in the flowchart description).

C. Criticality and Cost Measures

Criticality: in ATLAS, the dissatisfaction of mesh agents is
represented by their criticality degree. [8] defines the criticality
measure as “the distance between the current state [of the
agent] and the state in which its local objective is achieved”.

The rules of local behavior of satellite agents are defined
to encourage the planning of the most critical mesh agents.
This criticality is represented by a set of ordered values.
In the current version of the system, this measure includes
two criteria. The first criterion concerns the priority to
plan the mesh P. This is defined by the customer when
sending its request. In case of equality of this first criterion,
the satellite agent uses the number of remaining access Ra
(second criterion). Thus, a mesh agent, that is visible only
once by the satellites, has the priority over other meshes visible
several times. Indeed, if the satellite agent favors a mesh agent
with multiple access instead of a mesh with a single access,
this one cannot be planned. Finally, the mesh agents change
their criticality according to their status and the responses to
their messages sent to satellite agents. The criticality of a mesh
agent is represented as a set of value Cm = (P, Ra) .

The evolution of the criticality of a mesh agent increases
if the number of its accesses is reduced and when the end of
its validity range comes closer. It is equal to zero when the
acquisition of the mesh agent is planned.

Cost: the criticality, as defined in the AMAS4Opt model
does not allow full cooperation between agents. Indeed, this
measure only allows agents with the “service role” to know
which agents with the “constrained role” have the priority and
by that to be cooperative. An agent with the “constrained
role” cannot favor an agent with the “service role” against
another and so cannot make a cooperative choice. To solve
this problem, we add the cost measure.

The cost is an indicator of the difficulty for the satellite
agent to take into account and plan a mesh agent. It is
computed by the satellite agent and returned to the mesh agent
that sends acquisition demand. The mesh agent will therefore
receive a cost (estimationSlot()) from each solicited satellite
agent. To favor cooperation, a mesh agent chooses the satellite
agent answering with the lowest cost. Here are some elements
that increase the cost:

e the need to adapt the plan by moving scheduled mesh,
in this case the cost contains the criticality of the mesh
agent to cancel C'm,

e an important memory load (many meshes are already
planned by the satellite) M1,

e a large number of demands received D,

The cost is represented by the triplet C' = (C'm, M1, D). A
satellite agent answers with a low cost if, for example, it has
no mesh scheduled or if it has received a few messages.

IV. SCENARIOS GENERATION

In this section, the process of scenario generation is de-
tailed as well as solution quality indicators. These different
scenarios are used in Section V and VI in order to test ATLAS
and compare it with a greedy algorithm, commonly used to
plan satellites mission.

A. Generator of Scenarios

Before building mission plans, each customer’s request is
converted into a list of corresponding meshes to acquire. This
preprocessing does not concern ATLAS. Indeed, ATLAS is
designed to build a mission plan. It takes as an entry the list
of meshes to plan and their characteristics, and provides a
mission plan.

In order to test our system, we implement and use a
generator of scenarios. The generator starts by constructing a
complete mission plan, where each satellite is fully occupied
by the acquisition of several meshes. The meshes and their
characteristics are randomly generated in order to fill all the
available time of each satellite. Once this complete mission
plan is generated, the generator adds to each planned mesh
a validity range and a random number of accesses, each per-
formed by a satellite randomly chosen from the constellation.
The random number of access is linked to an accessibility

factor defined by the user in order to increase (or not) the

accessibility. This factor allows to generate the maximum
number of satellites that can acquire the mesh. Thus, the
generator defines a list of several meshes, each possessing
several accesses and can be acquired from different satellites
of the constellation.

In addition, the generator assigns a priority to each mesh.
This priority corresponds to the priority given by the customer
and represents the first criteria of the mesh agent criticality
measurement. The generator randomly associates a priority to
each mesh respecting the following distribution:

e 50% of “routine” priority, the lowest priority;
e 30% of “normal” priority;
e 20% of “urgent” priority.

As previously presented, customer’s requests do not arrive
in the same time. To introduce this dynamic, all meshes are
not available at the start of the system execution, but arrive
during solving. Thus, we can show how the system self-adapts
at runtime.

This generator allows to produce a significant number of
scenarios representative of the combinatorial of the problem.
This generation process has been validated by experts of the
space field. Those different scenarios enable to test the validity,
the robustness and the scalability of ATLAS.

B. Experimental Setup

Nine different scenarios have been produced by the gen-
erator, to illustrate increasingly large constellations (from 2 to
10 satellites). Table II presents their characteristics. In these
scenarios, we progressively increase the factor of accessibility
of meshes by satellites. The larger is the constellation, the
more the meshes are visible by different satellites. Thus, when

TABLE II. DESCRIPTION OF THE SCENARIOS

S | Number of | Number of | Number of | Accessibility
Satellites Meshes Access Factor (%)

1 2 173 481 50

2 3 263 773 55

3 4 341 1041 60

4 5 424 1545 65

5 6 514 2157 70

6 7 580 2661 75

7 8 677 3748 80

8 9 771 5128 90

9 10 861 5677 100

increasing the number of possible accesses, the number of
possible solutions increases as well as the size of search space.

Finally, to assess the ability of ATLAS and ChronoG
(Section VI) to handle a large volume of low priority meshes
(“routine”), a special scenario with 5 satellites was created,
this scenario is named S_special. To create this scenario, we
start from the generated scenario number 4 in Table II (424
meshes) and duplicate all the meshes to obtain a set of 848
meshes. The mesh priority was then fixed according to the
following distribution: 10% of “urgent”, 15% of “normal” and
75% of “routine”. This scenario is over-constrained as it is
impossible to plan the whole set of the meshes (the number
of meshes was doubled from the scenario number 4).

C. Quality Solution Indicators

In the following sections, three indicators are used to define
the quality of solutions produced by ATLAS and ChronoG.

e The percentage of planned meshes P. This percentage
is computed using the number of meshes to plan M
(the entry of the system) and the number of planned
meshes M’ (the system output), P = w

e The global criticality level Ge. This indicator allows
to observe the system execution. The fewer there are
meshes that are satisfied and the more the global
criticality is high. Thus, a good system that planned
a maximum of meshes should have a weak global
criticality at the end of this execution.

e The load balancing L indicates the occupation percent-
age of each satellite, in order to see if the constellation
is entirely used.

e The scalability S. This last quality solution indicator
allows to test a system with a huge set of requests.

V. ATLAS RESULTS

In this section, the results obtained with ATLAS to plan
acquisitions over a constellation of satellites are presented.
Following experiments are made using scenarios given by the
generator presented in the Section IV. As ATLAS is a dynamic
distributed approach, all of the presented results are an average
over a hundred executions of ATLAS, the variance being lower
than 2%.

TABLE III DYNAMIC CONSIDERATION WITH ATLAS 1 AND 2
ATLAS 1 | ATLAS 2
Stability 17 24
% Routine 68 91
% Normal 92 95
% Urgent 89 95
% Total 87 94

A. Percentage of Planned Meshes

First experimentation compares two versions of ATLAS.
The first one (named ATLAS 1) is a version where the self-
adaptation mechanisms of the agents are not implemented.
Indeed, in ATLAS 1, when a mesh agent is planned by
a satellite agent, it cannot be canceled. At the contrary,
in ATLAS 2 all self-adaption mechanisms are implemented.
Thus, in ATLAS 2, satellite agents are fully cooperative with
mesh agents: they can cancel or move less critical mesh to
release space in order to plan critical mesh agents. ATLAS 1
and 2 are tested using the scenario number 4 of Table II.
However, in order to underline self-adaptive mechanisms, the
arrival of meshes into both systems is controlled. Indeed, all
“normal” and “routine” priorities are available at the start
of the execution, but “urgent” ones are inserted at cycle 10.
Table III exposes the results. ATLAS 2 plans more “urgent”
meshes (95%) than ATLAS 1 (only 89%) and the percentage
of planned meshes is more important for ATLAS 2 (94%) than
for ATLAS 1 (87%). The stability (the cycle when the Observer
decides to expose the solution) is reached at cycle 17 in the
case of ATLAS 1 rather than at cycle 24 for ATLAS 2. That
is explained by the fact that when “urgent” requests arrive,
most of slots are occupied in both systems, but satellite agents
of ATLAS 2, thanks to their self-adaptation mechanisms,
can re-organize their plan to accommodate “urgent” requests,
while ATLAS 1 cannot free space. This experiment shows
the importance and the contribution of the self-adaptation
mechanisms: more customers requests can be planned, and
“urgent” priorities are dynamically taken into account and
planned. Moreover, the number of cycles needed to reach a
stability is small, so ATLAS 2 quickly adapts itself.

e ATIAST —e—ATLAS2

‘GLOBAL CRITICALITY

cvae

Figure 5. Evolution of the global criticality

— - ATWAS1 —aTas2

CRITICAITY

1
cycLe

Figure 6. Evolution of the global criticality during the solving

B. Evolution of the Global Criticality

Fig. 5 shows the evolution of the global criticality for
executions of ATLAS 1 and 2 in the case the arrival of “urgent”
meshes is controlled. This global criticality is not used during
the solving, it is just an indicator computed by summing the
client priority of not planned mesh agents at each cycle of
execution: Ge; = > Pj, where ¢ is the cycle, M the set of

jeM
unplanned mesh ag]ents and P is the client priority of the mesh
agent j. The increase at cycle 11 is caused by the arrival of the
“urgent requests”. The stabilization is reached by ATLAS 1 at
cycle 17 while ATLAS 2 continues to decrease thanks to its
self-adaption mechanisms, as it can plan more requests.

Fig. 6 compares the evolution of the global criticality in
the case where the arrival of all meshes are not controlled.
This situation is more realistic because clients requests can
arrive at anytime. At first, we see that for both systems the
criticality increases. This fast increase is explained by the fact
that meshes just arrive into the system. From cycle 4, first
meshes are planned so the criticality decreases for two cycles.
Between cycle 7 and 15, the criticality is rising again because
meshes continue to arrive along time. In the case of ATLAS 2,
the criticality is higher because the system cancels meshes
to free some space for more critical meshes. Finally, from
cycle 15, the global criticality does not evolve for ATLAS 1
(the system can no longer plan meshes), while it continues to
decrease for ATLAS 2. Indeed, starting cycle 15, ATLAS 1
can no longer plan meshes because satellites have no more
free space. Here again, ATLAS 2 is more efficient. Thanks to
their self-adaptation and self-organizing mechanisms, agents
reorganize their plans and so schedule a maximum of meshes
decreasing by that the global criticality of the system.

VI. COMPARISON TO A CHRONOLOGICAL GREEDY
ALGORITHM: CHRONOG

A. ChronoG

To analyze the quality of solutions provided by ATLAS,
we compare it to the commonly used algorithm in the spa-
tial domain: the chronological greedy algorithm, named here
ChronoG. ChronoG treats the constellation satellite by satel-
lite. At each step of time ¢ of the planning of each satellite,
ChronoG checks if the slot is free or if a mesh is already
scheduled.

e If a mesh is scheduled, ChronoG goes to the next step,
else ChronoG checks if a mesh can be set at this step,
by determining whether the mesh possesses an access
encompassing the current time .

e If several meshes can be set, ChronoG uses an heuris-
tic to select the best one (see Fig. 7).

e In case of equality, ChronoG selects the mesh with
the smallest difference between the end of its access
and the current time .

Finally, ChronoG plans the chosen mesh by booking its
duration.

Fig. 7 explains the heuristic used by ChronoG: the three
accesses A, B and C, respectively belonging to the meshes m1,
m2 and m3, (ml and m2 have “normal” priority and m3 has
“urgent” one) can be scheduled at ¢. C will be chosen because
it belongs to the most critical mesh: m3 has no more available
access and its priority is “urgent”. Note that ChronoG is not
able to manage informations at runtime. All informations about
dynamic events are available at the beginning.

B. Comparison to ChronoG

1) Percentage of Planned Meshes and Scalability: The nine
scenarios presented in the Section IV are used to compare
the performances of ATLAS and ChronoG on different case
studies. Fig. 8 shows the global percentage of planned meshes.
ATLAS is always better by more than 10% than ChronoG.
ATLAS self-organization mechanisms allow it to go back on
decisions, unlike ChronoG which schedules chronologically.

Table IV compares the percentage of each kind of priority
planned by ATLAS and ChronoG. Gray background repre-
sented best percentage. We see that for the “urgent” meshes
ChronoG is always better than ATLAS, it is because ChronoG
plans urgent meshes first. But it books slots that could be suited
for lower priority meshes. Indeed, we can see that ATLAS
reached a stable behavior for the three kinds of priorities
but ChronoG plans less than 60% of routine priority meshes
decreasing by that the global percentage of planned meshes.

Using the scenario S_special, the ability of ATLAS and
ChronoG to manage high priority meshes while planning a
maximum number of meshes is analyzed. Table V presents the
percentage of “urgent” and ‘“normal” meshes planned and the
global percentage of the planned meshes. ChronoG plans all
the “urgent” meshes, and 90% of the “normal” priority ones,

Request: remaining slots
M1: 5 (including A)

M2: 2 (including B)

M3: 1 (icluding C)

[siot of realisation

_[c]
I
t

I Scheduled Free

Mission Plan

Figure 7. Heuristic of ChronoG

100

% OF PLANNED MESHES
/

s
SCENARIOS

Figure 8. Comparison of ATLAS and ChronoG
TABLE IV. PERCENTAGE OF EACH KIND OF PLANNED MESH FOR
ATLAS (A) AND CHRONOG (CG)

% Urgent | % Normal | % Routine | % Total
S|IA|CG|A|CGCG|A| CG|A|CG
1194 100 | 94| 98 | 94| 60 |94 | 80
2 (97| 100 | 95 91 95 63 95 | 79
3196 98 (94| 92 |96 | 55 95 | 75
4193 98 | 95| 8 |94 | 55 94 | 74
5|94 100 | 93 89 92 57 93 | 74
6|92 | 100 | 91 85 | 93 60 | 92| 75
71920 99 [92| 8 | 92| 56 |92 74
8193 96 90 85 91 58 91 | 74
9192 99 |91 88 |92 | 55 90 | 73

but only 45% of whole set of meshes are planned: only 29%
of “routine” meshes are present in the solution. ATLAS plans
less “urgent” meshes than ChronoG (80%) but ensures 81%
of the whole set of meshes. The construction of the plan by
ATLAS is not disturbed by the scalability.

These results can be explained by the fact that the heuris-
tic of ChronoG favors high priority meshes and has not a
cooperative behavior. Thus, high priority meshes are always
booked over others. On the contrary, ATLAS is cooperative
and used a continuous approach. Thus, mesh agents choose
less costly answers from satellite agents that begin by booking
more critical meshes. Cost and criticality allow the system to
be cooperative and to plan a maximum of meshes.

TABLE V. PERCENTAGE OF PLANNED MESH ACCORDING TO PRIORITY
ATLAS | ChronoG
% Urgent 80 100
% Normal 82 90
% Routine 80 29
% Total 81 45

2) Load Balancing: As we previously said, another im-
portant criterion when establishing a mission plan, is load
balancing. To illustrate load balancing, a portion of the mission
plan is presented (see Fig. 9 and 10). In this case, two
identical agile satellites (A and B) are following each other,
their agility allows them to acquire meshes parallel to their

& Satellite &

p—— — = Satellite B
/ - Mot planned
et "
p—— oy W
R T e e R e
S NI
—
" s]
- B
soneat = -

L i
e = Satellite A
] " = Satellite B
il - Not planned
— 4 A b
e #
£ — —_ Tl e
L
et "
— 1 —
b
L] -—
— -
preeesy =

Fig. 10. Mission planned with ATLAS

moving direction but also in front or behind them. In addition,
each mesh can be acquired by the two satellites. Fig. 9 and 10
represent tasks that satellites have to execute during their flight.
The central axis represents the ground track, ie the travel of the
satellites seen from the ground. On the top of the central axis
(black boxes) are the tasks of satellite B, the tasks of the A
are on its bottom (grid boxes). Boxes are colored in function
of the attributed satellite, they are empty if the mesh is not
affected.

In the plan produced by ChronoG (Fig. 9), satellite A has
only nine tasks scheduled while satellite B eleven. Fig. 10
shows the plan produces by ATLAS where twelve meshes are
acquired for A and eleven for B. Also note that the ChronoG
plan counts more inactivity periods than the plan produced
by ATLAS. This is explained by the fact that ChronoG is a
chronological approach. Because of that and because there is
no cooperation between meshes and satellite, first urgent tasks
are processed and planned before others. Thus, when a mesh is
planned, it cannot free its slot to favor another. On the contrary,
thanks to its self-adaptation and cost mechanisms, ATLAS can
efficiently balance the load on the different satellites of the
constellation.

VII. DISCUSSION

Current systems are based on a global chronological
heuristic. With the evolution of today’s constellations and the
increase of clients’ requests, this chronological approach is
facing strong limitations.

Firstly, adding or deleting a mesh (modifying the list of
meshes to plan) during the construction of the plan is difficult
and costly. This is especially the case for the greedy algorithm:

meshes arriving after the start of the processing are stored.
If a mesh imposes a modification (because of its priority for
example), the plan must be completely re-computed since the
date of the modified mesh. That is why meshes that arrive
during the generation of the mission plan are processed several
hours after. On the contrary, ATLAS is an open dynamic
system. Adding or deleting a mesh during the execution
is possible. These modifications are local perturbations and
agents self-adapt and change their organization to converge
toward a new solution.

Secondly, classical systems consider first high priority re-
quests and book available slots of the plan. Thus, the beginning
of the mission plan is full and compact, while the end is
rather empty. In addition to this, those systems are not adapted
to constellations: load balancing is not taken into account,
and some satellites have more acquisitions to perform than
others. In ATLAS, agents use cost and criticality measures to
cooperate and provide a balance load within the constellation.

Finally, space planning systems belong to the category
of complex systems. Such systems are composed of many
entities in interaction (agents, passive and active entities in
our problem). Thus, another limitation is the way methods
are used today to plan constellations. Presently, satellites of
a constellation are most of the time planned one at a time,
so the plan does not take advantage of the benefits of the
constellation. On the contrary, the decentralized decision-
making and distributed nature of ATLAS make it easier to
consider all the satellites of the constellation at once.

We have presented the interest of an adaptive multi-agent
approach to produce high quality mission plans for constella-
tions of Earth observation satellites: dynamic planning, high
percentage of customers request planned, a fairness distribution
of task within the constellation and a the system scalability.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we have presented the ATLAS system based
on self-adaptive multi-agent approach to dynamically plan a
constellation of Earth observation satellites. The autonomous
cooperative behaviors of the designed agents increase the self-
adaptation and self-organization of the system. Thus, a mission
plan can be computed insuring more flexibility, robustness and
real time adaptation. ATLAS can dynamically take into account
a large number of high priority requests and balance the load
of the constellation.

From the different conducted experiments, we underline the
fact that the considered self-adaptive approach delivers better
results than commonly used methods. Mission plans generated
by ATLAS are more balanced and optimized than mission
plans delivered by ChronoG. In addition to this, ATLAS is less
affected by the increase of the volume of meshes: autonomous
behaviors of the agents allows the system to adapt itself in
order to plan a maximum of meshes, while respecting the
constraints.

Future works will focus on adding another level of adap-
tation to reach better solutions. The remaining behaviors of
request agents and sister meshes will be implemented, and
the criticality measure of mesh agents will take into account
this influence. Finally, we plan on testing ATLAS on real

scenarios given by CNES (Centre National d’Etudes Spatiales)
and Airbus Defence & Space - GEO-Information who are in
charge of the Spor and Pléiades constellations. These scenarios
will allow us to compare our results with actual mission plans.

ACKNOWLEDGMENTS

Authors would like to thanks Institut de Recherche Tech-
nologique Saint Exupéry for funding this research.

REFERENCES

[1] Anders, G., Steghofer, J.-P.,, Siefert, F., and Reif, W. (2013). A trust- and
cooperation-based solution of a dynamic resource allocation problem.
In Self-Adaptive and Self-Organizing Systems 2013, pages 1-10.

[2] Bensana, E. and Verfaillie, G. (1999). Earth Observation Satellite
Management. In Constraints, volume 299, pages 293-299.

[3] Bianchessi, N., Cordeau, J. F., Desrosiers, J., Laporte, G., and Raymond,
V. (2007). A heuristic for the multi-satellite, multi-orbit and multi-
user management of Earth observation satellites. European Journal of
Operational Research, 177(2):750-762.

[4] Boes, J., Migeon, F., and Gatto, F. (2013). Self-Organizing Agents
for an Adaptive Control of Heat Engines (short paper). In Interna-
tional Conference on Informatics in Control, Automation and Robotics
(ICINCO), 2013, pages 243-250.

[5] Bonjean, N., Mefteh, W., Gleizes, M.-P., Maurel, C., and Migeon, F.
(2014). Adelfe 2.0. In Handbook on Agent-Oriented Design Processes,
pages 19-63.

[6] Bonnet, G. (2008). Coopération au sein d’une constellation de satel-
lites. PhD thesis.

[7] Bonnet, G. and Tessier, C. (2009). Multi-agent collaboration: A satellite
constellation case. Frontiers in Al and Applications, 179.

[8] Bouziat, T., Combettes, S., Camps, V., and Glize, P. (2014). La
criticité comme moteur de la coopération dans les systeémes multi-agents
adaptatifs (short paper). In Journées Francophones sur les Systémes
Multi-Agents, 2014, pages 149-158.

[9] Clair, G., Kaddoum, E., Gleizes, M.-P., and Picard, G. (2008). Self-
Regulation in Self-Organising Multi-Agent Systems for Adaptive and
Intelligent Manufacturing Control (regular paper). In [EEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems (SASO)
2008, pages 107-116.

[10] de O Ramos, G., Rial, J. C. B., and Bazzan, A. L. (2013). Self-adapting
coalition formation among electric vehicles in smart grids. In Self-
Adaptive and Self-Organizing Systems 2013, pages 11-20. IEEE.

[11] Gleizes, M.-P. (2012). Self-adaptive Complex Systems (regular pa-
per). In European Workshop on Multi-Agent Systems, Maastricht, The
Netherlands, volume 7541, pages 114-128.

[12] Globus, A., Crawford, J., Lohn, J., and Pryor, A. (2003). Scheduling
earth observing satellites with evolutionary algorithms. In Conference
on Space Mission Challenges for Information Technology.

[13] Grasset-Bourdel, R., Flipo, A., and Verfaillie, G. (2011). Planning and
replanning for a constellation of agile Earth observation satellites.

[14] Kaddoum, E. (2011). Optimization under Constraints of Distributed
Complex Problems using Cooperative Self-Organization. PhD thesis.

[15] Lemaitre, M. and Verfaillie, G. (2006). Tutorial on Planning activities
for Earth watching and observation satellites and constellation. /CAPS.

[16] Lemaitre, M., Verfaillie, G., Jouhaud, F., Lachiver, J. M., and Bataille,
N. (2002). Selecting and scheduling observations of agile satellites.
Aerospace Science and Technology, 6(5):367-381.

[17] Mancel, C. (2004). Modélisation et résolution de problemes
d’optimisation combinatoire issus d’application spatiales. PhD thesis.

[18] Mansour, M. A. and Dessouky, M. M. (2010). A genetic algorithm
approach for solving the daily photograph selection problem of the
spot5 satellite. Computers & Industrial Engineering, 58(3):509-520.

[19] Wu, G., Wang, H., Li, H., Pedrycz, W., Qiu, D., Ma, M., and Liu, J.
(2014). An adaptive Simulated Annealing-based satellite observation
scheduling method combined with a dynamic task clustering strategy.
Computing Research Repository, abs/1401.6098:23.

