Joe Raad 
email: joe.raad@agroparistech.fr
  
Nathalie Pernelle 
email: nathalie.pernelle@lri.fr
  
Fatiha Saïs 
email: fatiha.sais@lri.fr
  
Detection of Contextual Identity Links in a Knowledge Base

Keywords: context, identity link discovery, scientific data

Most of the Linked Data applications currently rely on the use of owl : sameAs for linking ontology instances. However, several studies have noticed multiple misuses of this identity link. These misuses, which are mainly caused by the lack of other well-defined linking alternatives, can lead to erroneous statements or inconsistencies. We propose in this paper a new contextual identity link: identiConTo that could serve as a replacement for owl : sameAs in linking identical instances in a specified context. To detect these contextual links, we have defined an algorithm named DECIDE that has been tested on scientific knowledge bases describing transformation processes.

INTRODUCTION

Over the recent years, scientists have increasingly started to use ontologies in order to formalize the knowledge about their data. This formalization allows scientists to browse data collected and processed by other scientists for the purpose of facilitating data integration tasks and scientific knowledge discoveries. Identity links that can be declared between class instances are of importance since they can be used to fusion data described in different data sources, to predict missing values [START_REF] Saïs | Ontology-aware prediction from rules: A reconciliation-based approach[END_REF] or to evaluate the reliability of a scientific result based on its frequency [START_REF] Gamble | Quality, Trust, and Utility of Scientific Data on the Web: Towards a Joint Model[END_REF]. To represent identity links, people are increasingly relying on the use of owl : sameAs. This relationship, defined in Dean et al. [START_REF] Dean | OWL web ontology language reference[END_REF], has very strict semantics: "an owl : sameAs statement indicates that two URI references actually refer to the same thing". I.e. a statement of material 1 owl : sameAs material 2 indicates that every property asserted for material 1 can be inferred for material 2 and vice versa. In many situations, owl : sameAs is used to link two similar but distinct individuals. Jaffri et al. [START_REF] Jaffri | URI Disambiguation in the Context of Linked Data[END_REF] study the implications of such erroneous use of owl : sameAs in linking authors of the DBLP dataset with the ones present in DBpedia. To conduct the study, they have chosen 49 names with common forenames and surnames from the 491 796 authors available in the 2006 DBLP dataset. This study shows that 92% of the 49 chosen names have incorrect publications affiliated to them, caused by erroneous inferences. In datasets that describe scientific experiments, data are collected by different scientists, and the experiment's circumstances and participants (e.g. products, materials, etc.) tend to change, even slightly, from one experiment to another. Therefore, individuals can rarely be declared to be the same. Furthermore, this type of genuine identity is not always required, as the notion of identity might change depending on the context. For instance, in some applications, the fact that two drugs share the same name is sufficient to consider them as equivalent, while in other applications it is also necessary that these drugs share the same chemical structure [START_REF] Batchelor | Scientific Lenses to Support Multiple Views over Linked Chemistry Data[END_REF]. Likewise, two lemonades with different quantity but equal proportions of lemon, water and sugar can be considered the same in a gustatory context, and different in the context of an energetic and nutritional study. However, it is not easy for scientific experts to enumerate all the contexts of interest that can be relevant for a given task. Our discussions with the INRA 1 experts have shown that it is easier for them to declare constraints that should be respected by a semantic context in order to be considered relevant. For instance, an expert can declare that if the quantity of sugar is considered, the corresponding measure unit must also be considered. Then, when identity links are detected for all the contexts that respect the experts' constraints, it will be possible to focus on different links depending on the considered task.

In this paper, we propose a new contextual identity link named identiConTo. This link expresses an identity between two class instances, that is valid in a context defined regarding a domain ontology. We have defined an algorithm for DEtecting Contextual IDEntity links (DECIDE) that detects the most specific global contexts in which a couple of instances are identical. This algorithm can also be guided by a set of semantic constraints provided by experts. We have tested our approach on scientific data issued from two different projects related to the stabilization of micro-organisms and the transformation of dairy gels.

The rest of the paper is structured as follows. In the next section, we present the related work. In section 3, we present our objectives and the preliminaries. In section 4, we present the algorithm DECIDE that detects contextual identity links in a knowledge base. In section 5, and before concluding, we present the experiments we have conducted on two scientific datasets to test our approach.

RELATED WORK

Data Linking. After the Linked Open Data cloud (LOD) initiative, there has been a great interest in the development of RDF data-linking approaches (see [START_REF] Ferrara | Data Linking for the Semantic Web[END_REF] for a survey). Existing data-linking approaches can be classed into different categories. Firstly, the supervised and unsupervised approaches [START_REF] Hu | A self-training approach for resolving object coreference on the semantic web[END_REF][START_REF] Nikolov | Unsupervised learning of link discovery configuration[END_REF], depending on whether the approaches use a set of labelled data to learn the parameters (e.g. weight of a property, similarity thresholds) and/or functions (e.g. aggregation functions, elementary similarity measures). Secondly, the local [START_REF] Hu | A self-training approach for resolving object coreference on the semantic web[END_REF][START_REF] Volz | Discovering and Maintaining Links on the Web of Data[END_REF] and global approaches [START_REF] Al-Bakri | Inferring Same-As Facts from Linked Data: An Iterative Import-by-Query Approach[END_REF][START_REF] Saïs | Combining a Logical and a Numerical Method for Data Reconciliation[END_REF], depending on whether or not the approaches explore the properties of type owl:ObjectProperty while measuring similarity. Finally, the informed [START_REF] Al-Bakri | Inferring Same-As Facts from Linked Data: An Iterative Import-by-Query Approach[END_REF][START_REF] Hu | A self-training approach for resolving object coreference on the semantic web[END_REF][START_REF] Saïs | Combining a Logical and a Numerical Method for Data Reconciliation[END_REF] and uninformed approaches, depending on whether the approaches consider the experts' knowledge declared 1 French National Institute for Agricultural Research as ontology axioms (e.g. keys, functionality constraints on properties) or as data-linking rules [START_REF] Volz | Discovering and Maintaining Links on the Web of Data[END_REF].

According to this classification, the approach we propose is unsupervised, global, and informed. However, our aim is not to detect owl : sameAs links but to discover identity links that are only valid in specific and explicit contexts. Identity link assessment. Identity links generated by automatic approaches are mainly represented by the owl: sameAs constructor. This relationship [START_REF] Peter | OWL Web Ontology Language Semantics and Abstract Syntax Section 5. RDF-Compatible Model-Theoretic Semantics[END_REF], has a strict semantics and requires in particular the identity of all the properties of the related individuals (i.e. owl: sameAs(i

1 , i 2 ) ∧ p(i 1 , v) ⇒ p(i 2 , v)).
Several approaches focus on detecting existing erroneous owl : sameAs statements, such as [START_REF] De | Not Quite the Same: Identity Constraints for the Web of Linked Data[END_REF][START_REF] Ding | owl:sameAs and Linked Data: An Empirical Study[END_REF][START_REF] Papaleo | Logical Detection of Invalid SameAs Statements in RDF Data[END_REF]. Some approaches are based on the structural properties of large graphs of identity links [START_REF] Ding | owl:sameAs and Linked Data: An Empirical Study[END_REF][START_REF] Guéret | Assessing linked data mappings using network measures[END_REF]. Other approaches are constraint-based [START_REF] De | Not Quite the Same: Identity Constraints for the Web of Linked Data[END_REF], or logical-based [START_REF] Papaleo | Logical Detection of Invalid SameAs Statements in RDF Data[END_REF]. These approaches aims to invalidate owl : sameAs links, while our proposed approach aims to qualify the specific contexts where two objects can be considered as identical. Weak-identity and similarity representation. Some approaches have focused on the representation of weak identity links. Halpin et al. [START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF] propose the Similarity Ontology (SO) which introduces eight new relations such as so:similar and so:claimsIdentical. Predicates prefixed with the word claims express a subjective identity or similarity relation. Their veracity depends on the (contextual) interpretation of the user. These newly introduced relations are organized in a hierarchy where existing identity properties such as rdfs:seeAlso, owl : sameAs, and SKOS predicates are also described. In this hierarchy, each predicate is characterized by the reflexivity, transitivity, and the symmetry properties. In addition, this similarity ontology can be extended with domain-specific relations. However it may be difficult to reliably deploy these distinctions in open-ended domains, and this representation does not allow to explicit the contexts in which an identity link is valid. Therefore the authors of [START_REF] Halpin | When owl: sameAs isn't the same redux: towards a theory of identity, context, and inference on the semantic web[END_REF] have proposed the use of named graphs to represent contexts, and identity links that are valid in these contexts. In Melo et al. [START_REF] De | Not Quite the Same: Identity Constraints for the Web of Linked Data[END_REF], the authors have defined a new predicate for genuine identity: lvont:strictlySameAs. The aim is to distinguish correct identity links from the existing and possibly erroneous owl : sameAs statements: whenever lvont:strictlySameAs is used, the user will know that this link is intended in the strict sense of identity. Additionally, this ontology provides two near-identity predicates: lvont:nearlySameAs and lvont:somewhatSameAs, which are intentionally left vague (e.g. the relation somewhatSameAs is defined as 'the property of being at least somewhat the same as something else, the City of Los Angeles is somewhat the same as the Greater Los Angeles area'). Contextual identity links discovery. Beek et al. [START_REF] Beek | A Contextualised Semantics for owl: sameAs[END_REF] propose an approach that allows to represent the possible contexts in which an identity link can be valid. A context is represented by a subset of properties for which two individuals have the same values. All the possible subsets of properties are organised in a lattice using the set inclusion relation. However, the proposed representation does not rely on ontology classes and does not allow selection of a property depending on the considered ontology classes.

To represent sets of instances described in RDF and their corresponding shared description, extensions of Formal Concept Analysis (FCA) framework have been recently introduced to handle graph descriptions [START_REF] Ferré | Graph-FCA in Practice[END_REF][START_REF] Rouane Hacene | Relational concept analysis: mining concept lattices from multirelational data[END_REF]. In Hacene et al. [START_REF] Rouane Hacene | Relational concept analysis: mining concept lattices from multirelational data[END_REF], an iterative process infers new attributes (propositionalized relations between individuals) from relations that are explored at several levels of depth in the RDF graph. A formal concept intent is made of original attributes and DL role restrictions (existential or universal restrictions) that exploits concepts that have been computed at the previous step (∃ haspublished.C2 where C2 belongs to the concept lattice). In Ferré et al. [START_REF] Ferré | Graph-FCA in Practice[END_REF], the intents of the constructed formal concepts are projected graph patterns. However, these approaches do not consider the ontology classes that can pre-exist and guide the construction of the shared intent described in the formal concepts.

CONTEXTUAL IDENTITY

In this paper we present a new approach for discovering contextual identity relationships in RDF knowledge bases. The approach aims at detecting identity links that are valid in contexts that can be defined as sub-ontologies of the domain ontology. In this section, we introduce the basic notions and the definitions that are needed to define a contextual identity link. We first present the considered data model and the problem statement. Then, we define the notion of global context and the contextual identity relationship identiConTo.

Knowledge Base

We consider a knowledge base where the ontology is represented in OWL 2 and the data represented in RDF 3 . A knowledge base B is defined by a couple (O, F ) where: -the ontology O = (C, DP, OP, A) is defined by a set of classes C, a set of owl:DataTypeProperty DP, a set of owl:ObjectProperty OP, and a set of axioms A (e.g property domains and ranges, subsumption).

-F is a collection of triples (subject, property, object), that expresses that some relationship, indicated by the property, holds between the subject and object of the triple (between two resources or between a resource and a literal value) 4 .

Problem statement

The problem of detecting contextual identity links can be defined as follows: given a knowledge base B = (O, F ) and a set I tc of instances of a target class tc of the ontology O, find for the set of all instance pairs (i 1 , i 2 ) ∈ (I tc × I tc ) the most specific global contexts in which (i 1 , i 2 ) are identical.

A global context is a sub-ontology of O which represents the vocabulary on which two instances are considered as identical. For instance, in the example depicted in Figure 1, the two instances druд3 and druд4 of the target class Druд can be seen as identical when all the ontology's properties and classes are considered with the exception of the property name for the drugs. Similarly, the two instances druд1 and druд2 can be considered as identical in two distinct contexts. In a first context, we can consider all the products composing the drugs and for every product we consider its weight. However, in this context, the description of a weight is reduced to the measure unit: we do not consider the quantity (property hasValue). A second context in which these instances are identical is the context where we take into account the weight of Paracetamol described by its value and its measure unit, but we only consider the presence of Lactose in the drugs without considering its weight. Some contexts can be more relevant than others (e.g. a value of the weight without its measure unit does not have sense). Hence, we also aim to take into account some expert knowledge that can be represented as a set of constraints on the classes and/or properties that should or should not be involved in the considered contexts.

Contexts

A global context is represented as a connected sub-ontology of the ontology O that is composed of a set of classes and properties of O, and a set of axioms which is limited to constraints on property domains and ranges. The set of classes that can be involved in a global context is the subset of classes, denoted by DepC, that are instantiated in B (see Definition 3.1 ). Moreover, we automatically choose the abstraction level of the classes involved in a global context by selecting, from the instantiated classes (direct types), the most general ones.

In what follows, we first introduce the set of classes DepC that can be involved in the contexts. Then, we formally define the global contexts and the contextual identity relation, named identiConTo, that expresses that two instances are identical in a given global context. Definition 3.1. Selected classes DepC. The set of selected classes DepC that can be involved in the contextual identity links is the subset of instantiated classes c i of B such that:

DepC = {c i ∈ C | c j ∈ C s.t . ∃x, directType(x, c j ) and c i c j } Example 1.
In Figure 1, DepC will contain all the classes of the graph except Product which is not instantiated. Therefore, par 1 and lac1 will be uniquely considered as of type Paracetamol and Lactose respectively. Example 2. In Figure 1, there exists many possible global contexts. We present one: 

Definition 3.2. Global Context. A global context is a sub- ontology GC u =(C u , DP u , OP u , A u ) of O such that C u ⊆ DepC, DP u ⊆ DP, OP u ⊆ OP
GC u = (C u , OP u , DP u , A u ) and GC v = (C v , OP v , DP v , A v ) be two global contexts. The context GC u is more specific than GC v , noted GC u ≤ GC v , if C v ⊆ C u , OP v ⊆ OP u , DP v ⊆ DP u and ∀op ∈ OP v , domain v (op) ⊑ domain u (op)
and ranдe v (op) ⊑ ranдe u (op), and ∀dp ∈ DP v , domain v (dp) ⊑ domain u (dp), and ranдe v (dp)=ranдe u (dp).

In order to filter out the irrelevant contexts to consider, we take in consideration the experts' knowledge when it is available. An expert can supply three types of constraints: -U nwanted properties (U P): this refers to properties that an expert wants to discard in the detection of contextual identity links. Such constraints can be used when property values correspond to unstructured (free) text, or are known to be particularly heterogeneous, or when the property subjects or objects are evolutive or insignificant to compare two instances for a given task. In such cases, an expert can declare that a property p is unwanted for a given domain c i (or a particular range c j ) by adding a constraint up = (c i , p, * ) (resp. up = ( * , p, c j )) in U P. When a property is unwanted in all domains and ranges, the constraint ( * , p, * ) can be used. In such cases, p OP ∪ DP.

-N ecessary properties (N P): a necessary property is a constraint noted np = (c i , p, * ) or ( * , p, c j ). When such constraints are added to N P, we will only consider global contexts where the property p ∈ OP or p ∈ DP, and such that c i ∈ domain(p) (resp. c j ∈ ranдe(p)).

-Co-occurrinд properties (CP): a co-occurrence constraint cp = {(c i , p 1 , * ), ..., (c i , p n , * )} can be declared to guarantee that a certain class c i will be either declared as the domain (or range) of all the properties indicated in the constraint, or none of them. For instance, to declare that the weight's value has no meaning without its measure unit, an expert can add the constraint cp 1 = {(W eiдht, hasV alue, * ), (W eiдht, hasU nit, * )}.

Contextual identity links

In our approach, two instances are considered as identical in a given global context, when all the properties contained in the global context are instantiated and when their instances (values) are equal. Therefore, we firstly define the contextual description that is considered for one instance in one context. Then we will define the conditions that must hold to consider that two instance descriptions refer to the same entity. Definition 3.4. Contextual instance description according to a global context. Given a set of RDF triples F , a global context GC u = (C u , OP u , DP u , A u ) and an instance i, a contextual description G i of i in GC u is the maximal set of triples that describe i in F such that: -G i forms a connected graph that contains at least one triple where i is a subject or an object -∀ t = < s, p, o > ∈ G i then p ∈ OP u ∪ DP u and type(s) ⊑ domain u (p) and type(o) ⊑ ranдe u (p) -∀ j a class instance of G i , and ∀dp ∈ DP u such as type(j) ⊑ domain(dp), then ∃ t a = < j, p, v > ∈ G i , with v of type literal -∀ j a class instance of G i , and ∀op ∈ OP u such as type(j) ⊑ domain(op), and c 1 ∪ c 2 ⊑ ranдe(op) then ∃ t a = < j, op, k > and t b = < j, op, l > ∈ G i with type(k) = c 1 and type(l) = c 2 From two contextual descriptions of two class instances, defined in a given context, we can define if they can be considered as identical. In this work we will consider that properties are local complete: if a property p is instantiated for a given class instance i, we consider that all the property instances are known for i. Since a local completness is assumed, two instances can be considered as identical when the contextual graphs, formed by the contextual descriptions, are isomorphic up to a renaming of the instance URI. Note that since some classes can be removed from the global context, this constraint can in fact be considered class by class. Definition 3.5. Identity in a global context. Given a global context GC u , a pair of instances (i 1 , i 2 ) are identical in GC u , noted identiConTo <GC u > (i 1 , i 2 ), only if the two labelled graphs G i 1 and G i 2 , that represent the contextual descriptions of i 1 and i 2 respectively, are isomorphic up to a rewriting of the URI of the class instances (literals must be equal).

Example 3. druд1 and druд2 are considered as identical according to the global context GC 1 defined in Example 2. (i.e. identiConTo <GC 1 > (druд1, druд2)).

The contextual identity relations will only be specified for the most specific global context(s), but can be inferred for the more general ones using the order relation between global contexts: given GC u and GC v two global contexts, with

GC u GC v , then identiConTo <GC u > (i 1 , i 2 ) ⇒ identiConTo <GC v > (i 1 , i 2 ).

DECIDE -DETECTING CONTEXTUAL IDENTITY

Before we present the algorithm in sub-section 4.2, we introduce in 4.1 the terminologies that are used throughout the algorithm. Definition 4.2. Identity Graph. An identity graph IG <i 1 ,i 2 > = (V , E) for a pair of individuals (i 1 , i 2 ), is a connected labelled undirected graph, where V is a set of nodes and E is a set of edges. Each node n i represents a set of pairs I 1 × I 2 , and the local contexts LC in n (c) and LC out n (c) that generalize all the most specific local contexts LC in n (c) and LC out n (c) for which the pairs are considered as identical. A node n 1 representing a set of pairs I 1 × I 2 is linked to a node n 2 representing the set of pairs J 1 × J 2 by an edge e(n1, n2) labelled as p, if ∀ (i 1 , i 2 ) ∈ I 1 × I 2 , ∃ j 1 ∈ J 1 and j 2 ∈ J 2 such that: -∃ < i 1 , p, j 1 > and < i 2 , p, j 2 > ∈ F if p ∈ LC out n 1 (c) -∃ < j 1 , p, i 1 > and < j 2 , p, i 2 > ∈ F if p ∈ LC in n 1 (c). In an identity graph IG <i 1 ,i 2 > , a graph path дp i is a sequence of distinct nodes {n 1 , n 2 , ..., n m } rooted by n 1 which describes (i 1 , i 2 ), and respects the following condition: n k , n l ∈ дp i , with k < l and LC n l (c) ≤ LC n k (c).

Preliminaries

Figure 2 presents the identity graphs IG 1 and IG 2 of the pair of drugs (druд3, druд4).

Algorithm

The goal of the algorithm DECIDE (DEtection of Contextual IDEntity) is to determine for each pair of instances (i 1 , i 2 ) ∈ I tc × I tc of a target class tc given by the user, the set of the most specific global contexts in which the identity relation identiConTo is true. DECIDE requires to have the set of facts F of the considered knowledge base and the target class tc as inputs. In addition, DECIDE may consider different constraint lists U P, N P, CP given by an expert. In this paper, we restrict the description of this algorithm to its two main functions, nonetheless a more detailed description with different use-cases is available in [START_REF] Raad | DECIDE -Detecting Contextual Identity[END_REF]. The algorithm DECIDE, described in Algorithm 1:

-collects the selected classes (definition 3.1), in order to indicate the level of abstraction to be considered in building the GC ← дener at eGC(n 0 , a, GC, LCset, N , I G); is not more specific than LC ex (c), then this function is not recalled for this graph node, and the domain representing the type of the node source and the range representing c of the object property op that led to this graph element will be removed from LC ex (c).

In both ( 2) and ( 3), LC n (c) and the most specific local context that generalizes LC n (c) and LC ex (n) will be added to a list LCset, in order to guarantee the presence of these local contexts in other global contexts. Therefore, resulting in several most specific global contexts for the same pair.

The time complexity of this algorithm is O(n × I 2 ), with n = the number of pairs of the target class tc, and I = the number of instances in F . DECIDE is implemented in Java using the Jena T DB triple store, and is available at http://github.com/raadjoe/DECIDE_v2. When applied on the pair (druд1, druд2), DECIDE results in two global contexts GC 1 and GC 2 , representing the most specific contexts in which these two drugs are identical: 

EXPERIMENTS 5.1 Datasets description

Our approach has been evaluated on two scientific datasets exploited using the 1.4 version5 of the ontology PO 2 [START_REF] Ibanescu | POˆ2-A Process and Observation Ontology in Food Science. Application to Dairy Gels[END_REF], which aims at modelling transformation processes. Each process can be conducted over several itineraries, with each itinerary representing a sequence of transformation steps (drying, heating, etc.). In this ontology, as in most knowledge bases used to model scientific experiments, a distinction is made between the actual experiments that include these steps with their participants, and between the observations conducted at the end of each step. These observations contain a large number of missing information, since not every measure (e.g. temperature, pH) is consistently observed in each experiment's step. The distinction between the experiments and the observations can be seen in the ontology's core model 6 .

-The first dataset in which we have tested our approach describes the process of micro-organisms' stabilization, conducted in 20 different itineraries in the context of the INRA7 CellExtraDry project. This dataset contains 1 721 979 statements, 208 instantiated selected classes, 415 136 individuals and 159 properties (83 object properties).

-The second dataset describes the process of the dairy gels' transformation, conducted in 12 itineraries in the context of the INRA Carredas project. This dataset contains 237 838 statements, 555 instantiated selected classes, 42 269 individuals, and 159 properties (83 object properties).

We have tested the algorithm DECIDE separately on each of these datasets, in order to detect the most specific global contexts in which the individuals of the target class Mixture are identical. A mixture, similarly to the class Druд in Figure 1, is composed of a set of products and is transformed during the different steps of the process. DECIDE has been executed on an 8GB RAM Windows 10 machine, with an Intel Core 4 × 2.6 GHz process.

Discovered contextual identity links

Table 1 presents the results of DECIDE applied on these two scientific datasets, without considering their observations (i.e. the properties related to the observations have been declared as unwanted properties). In the CellExtraDry dataset, the 210 instances of the target class Mixture which can form 21945 pairs, have resulted in 31092 contextual identity links valid in 28 global contexts in total, while the 191271 pairs of mixtures in the Carredas dataset have resulted in 239410 identity links valid in 231 different global contexts in total. On average in the CellExtraDry and Carredas datasets, each identity graph of each pair of mixtures is composed of 11 nodes (7 respectively), and each pair is identical in 1.41 most specific global contexts (1.25 respectively).

Each global context is represented as a named graph [START_REF] Carroll | Named graphs, provenance and trust[END_REF] in the original dataset, with each named graph containing the detected identity statements. A contextual identity statement between two instances i 1 and i 2 indicates that this context represents the most specific global context in which these two instances are identical (definition 3.5), with each contextual identity statement being symmetric, transitive, and reflexive. Some of the detected contexts contain up to 20 classes and 35 properties, while less specific ones contain only one class and one property.

We have repeated the experiments on each dataset, while taking into account a constraint cp that expresses that a weight value cannot be considered without its unit of measure and vice versa. While the number of distinct most specific global contexts have remained unchanged in both datasets, we have noticed a change in around 40 % of the generated most specific global contexts. More precisely, each global context containing one of the properties without the other has been replaced by another (new) global context where these two properties are not considered for the class W eiдht. 

Use of contextual identity links for prediction

The goal of this experimentation is to test if contextual identity links can be exploited for prediction tasks. More precisely, we want to find out the probability of two experiments, being identical in a certain context, to have similar observations. Therefore, we will be able to predict to a certain degree of certainty, some experiments' unobserved measures. According to Leibniz's "Indiscernibility of Identicals" principle [START_REF] Forrest | The Identity of Indiscernibles[END_REF], a genuine identity between two objects (e.g. experiments), indicates that every property (e.g. an observed measure) asserted to one is asserted to the other: x = y ∩ p(x, z) → p(y, z) with p ∈ OP ∪ DP. In this prediction task, we aim to detect for each context GC i , the set Ψ of properties {p 1 , ..., p n }, where identiConTo <GC i > (x, y) ∩ p(x, z 1 ) → p(y, z 2 ) with z 1 ≃ z 2 and Ψ ∩ (OP GC i ∪ DP GC i ) = ∅. Such rules can be written as r : identiConTo <GC i > (x, y) → same(m), with m representing a certain measure (e.g. pH measure). Since the detected contextual identity links are only stated for the most specific contexts of each pair, we have exploited the global contexts' order relation (definition 3.3) to obtain the complete set of contextual identity links for each global context.

In order to evaluate the quality of a rule r we calculate: the rule's average error rate: for each pair (x, y) identical in GC i , we calculate the error rate for their m measure values, if they exist for both x and y. For instance, the error rate for the pair (x, y) for the measure pH:

er pH (x, y) = |pH (x )-pH (y)|×100 |pH (max )-pH (min)|
with pH (max) and pH (min) representing the maximum and the minimum values taken for the measure pH in the dataset. From the sum of all this measure's error rate of all these pairs, we obtain the rule's average error rate.

the rule's support: represents the number of pairs identical in GC i that have the measure m, divided by the total number of pairs in GC i .

We have generated 112 rules in the CellExtraDry dataset (averaging 4 rules per context), and 3677 rules in the Carredas dataset (averaging 15 rules per context). On average, in CellExtraDry a This decrease shows that rules discovered in more specific global contexts are more precise than the ones discovered in more general contexts, and that the contextual identity links can for example be exploited to predict missing properties values with different confidence level. We have asked the domain experts to evaluate the plausibility of the 20 best detected rules (in terms of error rate and support combined) on a scale of "Strongly Agree", "Agree", "Disagree", and "Strongly Disagree". The experts have strongly agreed on the plausibility of 9 rules, agreed on 4 rules, and strongly disagreed on the plausibility of 1 rule. The experts were not sure of the plausibility of the 6 remaining rules for various reasons. Table 2 presents some of the rules strongly agreed as plausible in the Carredas dataset. For instance, the first rule indicates that there is a high probability that mixtures with the same weight of Rennet, Sardine, and Sodium Chloride, and containing (i.e. not necessarily the same weight) Lipids, Water, and Proteins, to have similar adhesiveness.

Discussion

Our collaboration with the domain experts, and the experiments' results conducted on these scientific datasets have shown us that:

-the use of genuine identity links such as the owl:sameAs link is rarely required in scientific datasets, since the experiments' environment tend to change, even slightly from one experiment to another, which could result in a propagation of incorrect observational measures.

-asking domain experts to specify the contexts in which two objects are considered identical is not an intuitive task, as the identity contexts can differ from one expert and task to another. Instead, specifying some constraints on these contexts is a more effective way to benefit from the experts' knowledge.

-thousands of explicit contextual identity links can be detected in a reasonable time, despite the high connectivity between all these graph's instances.

-the contextual identity links can be used to generate rules that can help predict some of the missing observational measures.

-the relevancy of a certain context can vary depending on the conducted observations. For instance, the identity of the mixtures' composition is required in tasks that study the mixtures' acidity, while the identity of the mixtures' steps is required in tasks studying the experiments' environmental impact.

-rules detected in more specific contexts have better error rates than the ones detected in less specific contexts.
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CONCLUSION

We propose in this paper an approach of Detecting Contextual Identity links (DECIDE) in a knowledge base, based on the notion of a global context that represents a sub-ontology. DECIDE detects for each pair of individuals of a target class given by the user, the most specific contexts in which this pair is identical. More general contexts can be inferred from the detected most specific ones, thanks to the order relation that hierarchizes all the global contexts. Furthermore, this approach can take into account some experts' constraints, which can be in the form of a list of necessary properties for the identity link, list of unwanted properties, and list of properties that must occur together. A first experiment of this approach has been realized on two scientific datasets, in which these contextual identity links have been used to generate rules that can serve for the prediction of missing experimental observations. These prediction rules' certainty varies depending on the specificity of the context. As a next step, we would like to exploit these contextual identity links in other tasks. In particular, we would like to discover causality rules, in which these contextual identity links can serve for comparing experiments and selecting the relevant variables, that can explain the cause of some of the experiments results' variations.

  and A u is a set of domain and range constraints that are more specific than those described in A: ∀op ∈ OP u , domain u (op) ⊑ domain O (op) and ranдe u (op) ⊑ ranдe O (op), and ∀dp ∈ DP u , domain u (dp) ⊑ domain O (dp).

GC 1 =

 1 (C = {Dr uд, P ar acet amol, Lact ose, W eiдht }, O P = {isComposedO f , hasW eiдht }, DP = ∅, A = {domain(isComposedO f ) = Dr uд, r anдe(isComposedO f ) = Lact ose ⊔ P ar acet amol , domain(hasW eiдht ) = Lact ose ⊔ P ar acet amol , r anдe(hasW eiдht ) = W eiдht }) Definition 3.3. Order relation between global contexts. Let

Figure 1 :

 1 Figure 1: An extract of ontology O, four instances druд1, druд2, druд3 and druд4 of the target class Druд.

Definition 4 . 1 .

 41 Local Contexts. A local context of a class c is a context that is limited to datatype and object properties that are defined for c. In the algorithm, we will note: -LC out u = (C out u , OP out u , DP out u , A out u ), a local context where ∀p ∈ OP out u ∪ DP out u , domain(p) = c and -LC in u = (C in u , OP in u , DP in u , A in u ) a local context where DP in u = ∅ and ∀op ∈ OP in u , ranдe(op) = c.

Figure 2 :

 2 Figure 2: The two possible Identity Graphs for the pair (drug3, drug4). For simplicity reasons, C, OP, and DP are not represented in this Figure for all the local contexts.

GC 1 =

 1 (C = {Dr uд, P ar acet amol, Lact ose, W eiдht }, O P = {isComposedO f , hasW eiдht }, DP = {hasU nit }, A = {domain(isComposedO f ) = Dr uд, r anдe(isComposedO f ) = Lact ose ⊔ P ar acet amol , domain(hasW eiдht ) = Lact ose ⊔ P ar acet amol , r anдe(hasW eiдht ) = W eiдht , domain(hasU nit ) = W eiдht , r anдe(hasU nit ) = x sd:st r inд }) GC 2 =(C = {Dr uд, P ar acet amol, Lact ose, W eiдht }, O P = {isComposedO f , hasW eiдht }, DP = {hasV alue, hasU nit }, A = {domain(isComposedO f ) = Dr uд, r anдe(isComposedO f ) = Lact ose ⊔ P ar acet amol , domain(hasW eiдht ) = P ar acet amol , r anдe(hasW eiдht ) = W eiдht , domain(hasV alue) = W eiдht , r anдe(hasV alue) = x sd:f loat , domain(hasU nit ) = W eiдht , r anдe(hasU nit ) = x sd:st r inд })

  If GC does not contain a local context LC ex (c) for the class c, or if GC contains LC ex (c) with LC ex (c) equal to the local context LC is more specific than LC ex (c), then this function is recursively recalled for each destination node n d in IG, such as there is an edge from n to n d labelled op and we have in the axioms of LC ex (c): domain of op = c and type(n d ) ⊑ ranдe(op). (3) If GC contains a local context LC ex (c) for the class c, and LC n (c)

		11	else
	19 return M Scont ex t s;	12 if (LC 18 else
	identity graphs and generating the most specific global contexts. Then for each pair of individuals of the target class tc: -constructs the identity graph(s) (definition 4.2), using a depth-first search algorithm. When different mappings between instances of the same class can be considered, a new identity graph	19 c 25 return GC;
	identity is constructed.	
	-generates the most specific global context(s) by relying on	
	the constructed identity graphs. A global context GC is constructed	(i.e. the most specific global context). There is three cases:
	using the set of local contexts and insures the presence of no more	
	than one local context per class in the same global context. The	(1)
	most specific global contexts are generated using the function	

14 if ( GC 1 ∈ GC s e t , such as GC 1 ≤ GC) then

[START_REF] Halpin | When owl: sameAs isn't the same redux: towards a theory of identity, context, and inference on the semantic web[END_REF] 

GCset .add (GC) ; 16 if (∃ GC 2 ∈ GC s e t , such as GC ≤ GC 2 ) then 17

GCset .r emove(GC 2 ) ; 18 M Scont ex t s .add (GCSet, (i 1 , i 2 )); дenerateGC, which traverses the identity graph IG using also a depth-first search algorithm. This function, described in Algorithm 2, aims to add its most specific outgoing local context LC n (c), which is already calculated in IG, to the current global context GC Algorithm 2: Generate GC Input: -n: an identity graph node a s : axiom indicating the type of the node source with the property source -GC: the current global context -LCset : set of unused local contexts -N : list of visited nodes -I G: the identity graph Output: GC: the current most specific global context 1 if (n N ) then 2 N .add(n) ; 3 LC n (c) ← дetOutдoinдLocalCont ex t (n) ; 4 LC e x (c) ← GC .дet Exist inдLocalCont ex t (c) ; 5 if (LC e x (c) == null or LC e x (c) == LC n (c)) then 6 GC .add (LC n (c)) ; //if it does not exist 7 E n ← I G .дetOutдoinдEdдes(n) ; 8 foreach (e = (op, n, n d ) ∈ E n ) do 9 a d ← {domain(op) = c, r anдe(op) = type(n d )} ; 10 GC ← дener at eGC(n d , a d , GC, LCset, N , I G) ; n (c) LC e x (c))

then 13 E n ← I G .дetOutдoinдEdдes(n) ; 14 foreach (e = (op, n, n d ) ∈ E n ) do 15 a d ← {domain(op) = c, r anдe(op) = type(n d )} ; 16 if (a d ∈ LC e x (c)) then 17 GC ← дener at eGC(n d , a d , GC, LCset, N , I G); s ← a s .дet Domain() ; 20 LC(c s ) ← GC .дet Exist inдLocalCont ex t (c s ) ; 21 LC(c s ).r emove(a s ) ; 22 GC .r epl ace(LC(c s )); //replace existing LC(c s ) 23 LCset .add(LC n (c)) ; //if it does not exist 24 LCset .add(int er sect (LC n (c), LC e x (c))) ; //if it does not exist n (c) of n, then LC n (c) is added to GC. This function is then recursively recalled for each node n d in IG, such as there is an edge from n to n d . (2) If GC contains a local context LC ex (c) for the class c, and LC n (c)

Table 1 :

 1 Results of DECIDE on the CellExtraDry and Carredas datasets with the target class Mixture

		CellExtraDry Carredas
	# Individuals of target class	210	619
	# Possible Pairs	21 945	191 271
	# Dependant Classes (Total Classes)	191 (208)	488 (555)
	# Graph Nodes per pair	11	7
	# Different Global Contexts	28	231
	# Identity Links	31 092	239 410
	# Identity Links per pair	1.41	1.25
	Execution Time (approx. minutes)	2	26

  Table 1 indicates that the individuals of the target class Mixture are connected to most of the datasets' instantiated classes, 191 out of 208 in CellExtraDry and 488 out of 555 classes in Carredas, thus showing that an identity between two mixtures can also indicate an identity between the experiments' steps in which these two mixtures exist.

Table 2 :

 2 Examples of Detected Rules in the Carredas dataset This low support in both datasets shows the large number of observational measures that are missing in each experiment. After testing all the rules in each global context, we have deducted that on average, the error rate of a rule decreases by 22% when a global context is replaced by a more specific global context in the CellExtraDry dataset, and decreases by 31.5% in the Carredas dataset.

	Rule	Error Rate Support
	identiConTo <GC 102 > (x, y) → same(Adhesiveness)	2.2 %	23 %
	identiConTo <GC 74 > (x, y) → same(Sweetness)	4.5 %	13 %
	identiConTo <GC 202 > (x, y) → same(Bitterness)	7.1 %	29 %
	identiConTo <GC 124 > (x, y) → same(Acidity)	8.2 %	21 %
	rule's average error rate is 7.3% and the rule's support is 0.4%, while
	in Carredas a rule's average error rate is 20% and a rule's support
	is 1%.		
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We do not consider blank nodes in this work

The core ontology of P O 2 is available at: http://agroportal.lirmm.fr/ontologies/PO2
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