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Rendering deformed speckle images with a Boolean model

Frédéric Sur∗, Benôıt Blaysat†, Michel Grédiac†

Abstract

Rendering speckle images affected by a given deformation field is of primary importance to
assess the metrological performance of displacement measurement methods used in experimental
mechanics and based on digital image correlation (DIC). This article describes how to render
deformed speckle images with a classic model of stochastic geometry, the Boolean model. The
advantage of the proposed approach is that it does not depend on any interpolation scheme likely to
bias the assessment process, and that it allows the user to render speckle images deformed with any
deformation field given by an analytic formula. The proposed algorithm mimics the imaging chain of
a digital camera, and its parameters are carefully discussed. A MATLAB software implementation
and synthetic ground-truth datasets for assessing DIC software programs are publicly available.
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1 Introduction

In experimental mechanics, numerous variants of digital image correlation (DIC) are used to mea-
sure displacement or strain fields on a specimen subjected to a mechanical load and consequently
deformed [50]. DIC methods are based on two images I and I ′ of the surface of the specimen, taken
before and after deformation, respectively. The aim is to retrieve the mapping ψ : R2 → R2 which
registers I ′ on I by maximizing a correlation or minimizing an optical residual between patches ex-
tracted from I and I ′ ◦ ψ, where ◦ denotes the composition operator. With these notations, u such
that ψ(ξ) = ξ+ u(ξ) is the so-called direct displacement field, U such that ψ−1(ξ) = ξ+ U(ξ) being
the inverse displacement field. In order to ensure that the image patches contain contrasted distinctive
shapes, ink is often sprayed on the surface of the specimen, yielding a speckle pattern on the surface
of the specimen. Figure 1 shows typical examples of speckle patterns.

While the amplitude of the displacement field can be as large as several tens of pixels across the
image, the strain components, which are deduced from the gradient of the displacement field, are
generally much lower than 1% in most structures made of engineering materials such as steel, wood,
or concrete working in their normal operating range. Amplitudes greater than several percents are
reached only in components made of soft materials such as elastomers for instance, or made of the
previous materials when they are close to failure because of excessive load. Such small values make
it necessary to carefully design estimation methods. Benchmarking the performance of DIC-based
methods requires to compare the estimated displacement and the actual, yet unknown displacement.
Ground-truth databases are thus needed, that is, pairs of synthetic speckle images, taken in a reference
state on the one hand, and after deforming the image by a given prescribed mapping φ on the other
hand. It is worth noting that the displacement field returned by any DIC software program from such
pairs of images is impacted by both the errors due to the rendering of the deformed artificial speckles,
and the errors caused by the DIC program itself, while only the last ones are generally the quantity
to be characterized. It is, therefore, of prime importance to have at disposal artifact-free artificial
deformed speckles to be certain that only the errors due to the DIC programs are really estimated.
There is indeed an active community concerned by the assessment of the metrological performance of
DIC programs, as illustrated by numerous recent papers on this problem [2, 7, 8, 11, 13, 16, 18, 26, 27,
38, 41, 52] for instance. The Society for Experimental Mechanics (SEM) proposes such ground-truth
databases within the framework of the DIC challenge [47], providing the researchers with synthetic
speckle images rendered by several methods of the literature, briefly reviewed below.

1.1 Synthetic speckle rendering for DIC

In [26, 38, 41, 51, 52], a method is presented to render a speckle image under a prescribed translation via
phase modulation in Fourier domain. Translating images is, however, too limited to fully analyze the
performance of DIC programs and more complicated displacement fields should be permitted. In [43],
Fourier phase modulation is also used for interpolation with a prescribed quadratic displacement.
As noted by the authors of [14], such a method should not introduce any bias provided that the
underlying infinite-resolution speckle image satisfies the Shannon-Nyquist condition, which is a quite
strong assumption in practice. In addition to these methods, any prescribed displacement can be used
by numerically interpolating a real or synthetic speckle image [4, 16, 19, 28, 51]. DIC assessment
is, however, likely to be affected by the interpolation scheme. In order to reduce the influence of
interpolation, a possibility is to generate low-resolution images by binning pixels of an interpolated
high-resolution deformed speckle image [4, 6, 7, 10, 18, 31, 41].

TexGen [37] is a software program that generates synthetic speckle images based on Perlin noise [39].
Although the description of TexGen misses some details of the method, Perlin noise is intrinsically a
discrete scheme: it is generated in [37] through a “super-sampled” image which gives the final image
after a Monte Carlo integration mimicking the effect of the fill-factor of CCD sensors. This method
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Figure 1: First row: typical speckle images proposed in [47] for DIC program assessment. From left
to right: close-up views of images from samples Sample3, Sample12, Sample13a from [47]. Second
row: images rendered with the proposed algorithm. To generate these 300× 300 images, σ = 1 pixel
and speckle pattern parameters (same notations as in Table 2) are, from left to right: λ = 2, 000,
µ = 3 pixels (Poisson distribution of disk radii), γ = 0.6; λ = 50, 000, µ = 0.5 pixels (exponential
distribution), γ = 0.6; λ = 50, 000, µ = 0.7 pixels (exponential distribution), γ = 0.5.

is used for example in several assessment papers [11, 12, 14]. Alternatively, in the context of color
images, it is proposed in a recent paper [5] to generate synthetic speckles as the sum of randomly
distributed bell-shaped functions. Afterwards, deformed speckles seem to be numerically integrated
over a pixel with a quadrature rule. Note that this is similar to the filtered Poisson process described
in [49].

The authors of [12, 14] note that the algorithms used to render synthetic images are critical.
They suggest that the interpolation schemes used in these algorithms may introduce a bias in the
quantification of measurement uncertainties, which seems to make TexGen the method of choice
among the available ones.

1.2 Contribution

The contribution of the present paper is to describe a novel method to render synthetic speckle images
under any arbitrary displacement function. The advantage of the proposed approach is that it does
not require any interpolation scheme. As well as TexGen [37], all what is needed is a closed-form
expression for ψ or ψ−1 defined in the introduction. In particular, discontinuous displacement fields
can be designed. Contrary to TexGen, the proposed method is based on an infinite resolution view
of the speckle pattern lying on the specimen surface. Speckle patterns are modeled by a so-called
Boolean model, and the rendering scheme rigorously follows the image acquisition chain in a digital
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camera, from the infinite resolution view to the digital image. The numerical accuracy of the method
is carefully discussed to ensure that no bias is introduced when rendering the deformed images, to be
certain that further assessments of DIC programs relying on such images return displacement fields
free from any disturbance coming from the rendering stage. The ability of the proposed algorithm to
produce real-looking patterns is illustrated in Figure 1.

Section 2 is a reminder on the Boolean model, a classic model of stochastic geometry. This model
gives an infinite resolution view of speckle patterns. Section 3 recalls the basis of image formation in
a digital sensor, and explains how to build up a digital image from this infinite resolution view, based
on a Monte Carlo integration. The influence of algorithmic parameters is carefully questioned and a
numerical assessment of the benefit of the proposed method over the popular rendering method based
on interpolation is also provided to the reader. A short discussion on realistic noise rendering is also
proposed. Section 4 concludes the discussion.

In order to allow the researchers in the field of experimental mechanics to use the rendered speckle
images as ground-truth databases, we make a MATLAB code and several databases publicly available
on the following webpage:
members.loria.fr/FSur/software/BSpeckleRender/

Scripts permitting to reproduce the experiments of the present paper are also available.

1.3 Notations

Boldface letters denote vectorial quantities. Roman alphabet is used for sampled pixel coordinates
(integer values) and Greek alphabet for pixel coordinates in the infinite-resolution image (real values).
The indicator function of any planar set S is denoted by 1S (that is, for any ξ ∈ R2, 1S(ξ) = 1 if
ξ ∈ S, and 1S(ξ) = 0 otherwise). Provided that these quantities exist, A(S) and P(S) denote the
area and the perimeter of S, respectively.

2 Modeling speckle patterns

Since a speckle image is generally obtained by spraying ink onto the surface of the tested specimen, we
propose to model speckle images as the superposition of random black shapes on a white background.
On the non-deformed surface, these shapes are simply disks.

2.1 Non-deformed speckle images

The proposed approach consists in modeling speckle patterns within the framework of Boolean mod-
els. It is based on the notion of (homogeneous) Poisson point process of intensity λ on a bounded
domain Ω ⊂ R2, which comes down to drawing a random variable N with a Poisson distribution of
mean λA(Ω), and N independent points, uniformly distributed in Ω [3]. Such a Poisson point pro-
cess {di, 1 ≤ i ≤ N} and an independent sequence of independent and identically distributed compact
sets {Di, 1 ≤ i ≤ N} being given, a random set P is defined as the union of all Di translated by di:

P = ∪1≤i≤N (di + Di) . (1)

The random set P ⊂ R2 follows a so-called Boolean model, a classical model of stochastic geome-
try [42, 44, 48] that has been applied in various situations such as, for instance, material analysis [45],
distribution of trees in a forest [22], or film grain modeling in a resolution-free way [34] (see also [35]
and the software implementation [36]). We shall come back to this latter paper in the discussion of
the proposed algorithm.
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The infinite resolution image of the speckle pattern is defined as the following binary image:

I0(ξ) = 1P(ξ), (2)

value 0 corresponding to the bright background and value 1 to the dark ink. Since speckle is obtained
by imaging the surface of the specimen sprayed by ink, each speckle pattern Di, corresponding to an
ink droplet, is modeled as a disk of radius Ri centered at the origin. We model the Ri as independent
random variables, identically distributed following an exponential distribution of mean µ (alternative
choices are discussed in Section 2.3).

To sum up the discussion, it can be said that simulating the Boolean model of Equation (1) or,
equivalently, the infinite resolution speckle image of Equation (2), is achieved through the following
steps:

1. Generate a realization of the homogeneous Poisson process giving the di by drawing a Poisson
count N (intensity λ) and generate N points di uniformly distributed in the continuous image
domain Ω;

2. Draw N disks Di, each radius being the realization of an exponential random variable of mean µ,
centered at the di.

2.2 Deformed speckle images

Let φ be the mapping giving the coordinates φ(ξ) in the non-deformed image of a material point
of coordinates ξ in the deformed image. The infinite resolution deformed speckle image I ′0 is still a
binary image, defined by

I ′0(ξ) = I0(φ(ξ)) = I0 ◦ φ(ξ). (3)

The mapping ψ, introduced in Section 1, which DIC aims at retrieving, satisfies ψ = φ−1. Pre-
scribing φ is equivalent to prescribing the inverse displacement field U. As we shall see in Section 3,
the proposed framework permits us to render finite resolution deformed speckle images for any map-
ping φ (thus any inverse displacement field U) defined for any ξ ∈ Ω. Not only are the positions of
the disks mapped through φ, but also the shape of these disks.

However, DIC-based methods give an estimation of ψ (or, equivalently, of the direct displacement
field u). This necessitates to assess the metrological performance of a DIC-based method by comparing
its output with the inverse of the prescribed φ. Direct and inverse displacement fields are linked by
U(x + u(x)) = −u(x) but it is, in general, not easy to obtain a closed-form expression of u from U.
Except for simple cases (for instance, if the prescribed mapping φ is a uniform translation by a
vector a, ψ is a translation by −a), calculating φ−1 would require numerical methods such as fixed-
point iteration, which potentially give additional biases when assessing the performance of DIC. For
this reason, when φ is not explicitly invertible, we suggest to consider I ′0 as the non-deformed image
and I0 as the deformed one, the mapping given by DIC being in this case directly comparable to the
prescribed φ. This must be explored by further studies beyond the scope of this paper.

Since we do not address DIC assessment in the present paper, we keep on calling I0 the reference,
non-deformed speckle image, and I ′0 the deformed image.

2.3 Two properties of Boolean models

We finish the discussion of Boolean models by two properties which give an insight into the role of
the λ and µ parameters. Both quantities will also turn out to be useful in the following sections. The
infinite resolution image I0 takes either 0 or 1 values. It is known [42, 48] that the proportion of
1-values (corresponding to a covering ratio of the random set P over the resulting image supported
by Ω), is given by

κ(P ∩ Ω) = 1− exp (−λE (A(D0))) (4)
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distribution E(R) var(R) E(R2) covering κ perimeter θ

(Equation (6)) (Equation (7))

exponential µ µ2 2µ2 1− e−2πλµ2 2πλA(Ω)µe−2πλµ
2

uniform on [0, 2µ] µ µ2/3 4µ2/3 1− e−4πλµ2/3 2πλA(Ω)µe−4πλµ
2/3

Poisson µ µ µ+ µ2 1− e−2πλ(µ+µ2) 2πλA(Ω)µe−2πλ(µ+µ
2)

log-normal µ σ2R σ2R + µ2 1− e−πλ(σ2
R+µ2) 2πλA(Ω)µe−πλ(σ

2
R+µ2)

Table 1: Distribution of the random radii R ≥ 0 of the disks in the Boolean model. In the case of
the log-normal law (used in the Boolean model of [34]), R is such that log(R) follows a Gaussian

distribution of mean µ′ = log(µ2/
√
µ2 + σ2R) and variance σ′2 = log(1 + σ2R/µ

2).

where E(A(D0)) is the expectation of the area of the identically distributed random sets Di.
It is also known (see, e.g., [42, 48] for convex shapes Di, and [20] without the convexity assumption)

that the perimeter of P over the resulting infinite resolution image is given by

θ(P ∩ Ω) = λA(Ω)E (P(D0)) exp (−λE (A(D0))) (5)

where E(P(D0)) is the expectation of the perimeter of the random Di.
Here E(A(D0)) = πE(R2) and E(P(D0)) = 2πE(R) since the random sets are disks of random

radius R. Table 1 gives the expression of several moments of R, of the covering ratio, and of the
perimeter for four potential probability distribution of R ≥ 0.

In the experiments of the present paper, we use an exponential distribution of mean µ. Conse-
quently, the covering ratio is given by:

κ = 1− exp(−2πλµ2) (6)

and the perimeter by:
θ = 2πλAµ exp(−2πλµ2). (7)

As expected, the covering ratio being fixed, the larger the mean number of disks λ (with an average
radius µ2 inversely proportional to λ), the larger the perimeter κ.

The problem of determining the best parameters (intensity, distribution of the random shapes)
to design a Boolean model that mimic a real image is the subject of a quite large literature, see for
instance the references in [42, 48]. Although comparing the examples shown in Figure 1 shows that
the proposed rendering method provides speckle images which are quite similar to those currently
used for DIC program assessment, it could be interesting to address such issues in a separate study in
order to design Boolean models for real speckle images used in experimental mechanics.

3 Digital speckle image rendering

In this section, we explain how a finite resolution digital image is rendered from the infinite resolution
speckle image defined in Section 2.

3.1 Acquisition of an image through a digital sensor

Any digital image is made of a collection of sampled pixels whose discrete gray value is the result of
the integration of photons across the optical device. More precisely, if I0 is an infinite resolution view
of a planar surface of a specimen, the digital image I is given by the following equation:

I = QS GH I0. (8)
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In this classical setting (illustrated by example in Figure 3 of [32]), Q quantizes any real number
over b bits (thus 2b possible values), S is the sampling operator on the pixel grid, G represents the
optical distortions (such as radial distortions, or convolution with the point spread function - PSF - of
the optical device), and H is the geometric transform which maps the planar image I0 to the image
plane. In the pinhole camera model, H is a homography [24]. In this framework, further processing
steps such as γ-correction, JPEG compression, or demosaicing (discussed in [5, 9]) are not taken into
account. The digital image I corresponds to the output of a linear digital camera such as a specialized
scientific camera or the raw output of any consumer camera. Digital noise, a phenomenon which is
also overlooked by the model of Equation (8), is discussed in Section 3.5.

We simplify this generic model by assuming that the infinite resolution view is parallel to the
image plane. Homography H thus corresponds to a scale change and a rotation; here H is the identity
transform without loss of generality. Moreover, optical distortions are restricted to the convolution
with the PSF, assumed here to be an isotropic 2D Gaussian function of standard deviation σ, denoted
by Gσ. We also bring back the contrast of the imaged speckle to a [0, γ] range by multiplication by a
contrast parameter 0 < γ ≤ 1.

The digital image I eventually writes:

I = QS (γ Gσ ∗ I0) (9)

where ∗ denotes the convolution between two 2D functions.
The Fourier transform of the Gaussian function Gσ being given by F(Gσ)(u, v) = e−2π

2σ2(u2+v2) =
KG1/(2πσ)(u, v) (K being some multiplicative constant), any signal component whose frequency is
above, say, twice the standard deviation of G1/(2πσ) is smoothed out in the output image. Since
Nyquist-Shannon sampling condition is satisfied as soon as the largest frequency component of the
imaged pattern is smaller than half the sampling rate, this yields 2/(2πσ) < 1/2 here, thus σ > 0.64
pixel. As a rule of thumb, we can say that no aliasing is present in the digital image I as soon as
σ > 1 pixel, whatever the frequency components of the infinite resolution image I0. Of course, the
practical effect of aliasing depends on the spectrum of the infinite-resolution image. Indeed, although
the “twice the standard deviation” rule is questionable, this spectrum most likely does not show any
meaningful component above 1/(πσ). In practice with the Boolean images, it is probably sufficient to
set σ > 0.5. However, it could be useful to deliberately generate aliased images by using very small σ,
in order to assess the effect of aliasing on DIC algorithms.

To sum up, with Equation (9), the gray level at any (discrete) pixel x of the digital image I(x) is
given by

I(x) = Q (γ I(x)) (10)

where Q(t) is a quantized representation of any real value t ∈ [0, 1] over b bits (typical values are b = 8,
12, 14, or 16 bits in high-end modern cameras), and I(x) is given by the following integral:

I(x) =

∫∫
Gσ(x− ξ) Ĩ0(ξ) dξ =

∫∫
Gσ(ξ) Ĩ0(x + ξ) dξ (11)

with Ĩ0 = I0 (reference image) or Ĩ0 = I ′0 = I0 ◦ φ (deformed image).

While it is possible to compute integrals as the one of Equation (11) with numerical series when Ĩ0
is made of a unique disk (see for instance [40]), to the best of our knowledge there is no available
formula to compute integrals such as I when Ĩ0 is made of several disks, possibly overlapping or
deformed (as in the I ′0 case). The control of the numerical accuracy of the integration scheme is
crucial here. Estimating the error of classic cubature formulas requires to bound derivatives of the
integrand, which is not possible here. Recent advances on probabilistic integration [15] generalize the
standard Monte Carlo approach and give a probability distribution for the numerical error, but it is
not clear to us whether the computational cost required by adaptive sampling is worth the gain in
convergence speed. We simply propose to estimate I with the classic Monte Carlo method.
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3.2 Monte Carlo integration

This section is a brief discussion of Monte Carlo integration in the proposed framework, which basically
consists in estimating integrals as sample means. Note that, although the context is different, the
authors of [34] also use Monte Carlo estimation to compute integrals for inhomogeneous Boolean
models. These authors aim, however, at visual quality and not at accuracy, which permits them to
drastically limit the computational burden. On the contrary, in order to obtain images well suited for
the assessment of DIC algorithms, we need to carefully set the sample size, as discussed below.

Let X be a 2D random vector of densityGσ. The integral I(x) in Equation (11) is the expectation of
the random variable Ĩ0(x+X). Let Xm, m ∈ {1 . . . NMC} be NMC independent identically distributed
random vectors, following the Gaussian distribution Gσ. The sample mean, given by

Î(x) =
1

NMC

NMC∑
m=1

Ĩ0(x + Xm) (12)

is thus an unbiased estimator of I(x). According to the central limit theorem, it is common in Monte
Carlo methods to consider that the sample mean Î(x) is a Gaussian random variable of mean I(x)
and variance s2/NMC, where s2 is the variance of the random variable Ĩ0(x + X), given by

s2 = E(Ĩ0(x + X)2)− E(Ĩ0(x + X))2 (13)

Since Ĩ0 only takes 0 or 1 values, Ĩ0(x + X)2 = Ĩ0(x + X), and since the maximum of the numerical
function f(x) = x− x2 is attained at x = 1/2, we have s2 ≤ 1/4.

The gray level I(x) is obtained by quantizing γÎ(x) over b bits (thus 2b available values). Since γI(x)
takes values between 0 and 1, the quantization scheme consists in assigning γÎ(x) to k/2b as soon as
it is in the interval [k/2b, (k+ 1)/2b[, with k ∈ {0, . . . , 2b− 1}. Since the sample mean Î(x) shows ran-
dom fluctuations, γÎ(x) may be assigned to another discrete value than the one corresponding to the
quantized γI(x), yielding quantization error. Using the model of Appendix A (that is, assuming that
γI(x) is uniformly distributed over the integration interval), we are able to compute the probability E
of such a quantization error. Here γÎ(x) is considered as a Gaussian random variable of mean γI(x)
and variance γ2s2/NMC; Equation (36) in Appendix A, with b − a replaced by the quantization step
2−b, gives the following expression of E :

E =

√
22bγs√
πNMC

. (14)

Imposing an upper bound α on the quantization error probability E thus gives

NMC ≥
22b+1γ2s2

πα2
. (15)

In practice, we set

NMC =

[
22b+1γ2s2

πα2

]
(16)

where [x] is the integer part of any real number x.
Setting NMC in such a way ensures that the random fluctuations caused by the stochastic nature of

the estimation process are canceled out by rounding, at least for a proportion 1−α of the pixels. This
ensures that the digital image I really satisfies Equation (9), except for a proportion α of the pixels
which may be affected by quantization error. Parameter α shall be adjusted to control the quantization
error, while keeping Monte Carlo integration tractable, NMC being inversely proportional to α2. This
is discussed further in Section 3.3.5.
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Data: Speckle parameters (expected number of disks in the resulting image λ, expected radius
of a disk µ, contrast γ), camera parameters (standard deviation σ of the PSF, size of
the resulting X × Y image, quantization depth b), quantization error probability α,
mapping φ (φ = Id when rendering a reference image)

1 Draw the number of disks N , following a Poisson distribution of intensity λ;
2 Draw N disk centers di uniformly distributed in the image domain, and N radii Ri following

an exponential distribution of mean µ;
3 for any pixel x ∈ {1 . . . X} × {1 . . . Y } do
4 Estimate s2 and set NMC = 22b+1γ2s2/(π2α2);
5 for m ∈ {1, . . . , NMC} do
6 Draw Xm following a 2D Gaussian distribution of standard deviation σ;
7 Define I0(φ(x + Xm)) = 1 if φ(x + Xm) belongs to a disk centered at one of the di of

radius Ri, and I0(φ(x + Xm)) = 0 otherwise.
8 end

9 Calculate Î(x) = 1
NMC

∑NMC
m=1 I0(φ(x + Xm));

10 end

11 Quantization: the resulting digital image is I(x) = [2b−1 + γ2b(0.5− Î(x))] (the resulting gray

level range is {1, . . . , 2b});
Result: a digital image I.

Algorithm 1: Speckle image rendering (sketch of the algorithm). In practice, speedups described
in Section 3.3.2 are used.

3.3 Practical implementation

In this section, we discuss the practical implementation of the proposed speckle rendering algorithm.

3.3.1 Algorithm

Since we would like the final b-bit image to have integer values between 1 and 2b (corresponding to
the range of the gray levels), the ultimate output of the proposed algorithm is the value of 2b−1 +
γ2b(0.5− Î(x)) at any pixel x (so that ink droplets appear as a dark pattern on a bright background),
quantized over the values {1, . . . , 2b}, γ being the contrast parameter.

Algorithm 1 renders the digital image I (reference image) or I ′ (deformed image under a prescribed
mapping φ). Note that no interpolation scheme is ever used, which is the main motivation for which
this approach is proposed and tested. Figure 2 shows four synthetic speckle images, illustrating the
role of the parameters governing either the digital sensor (size X × Y , bit depth b, and PSF standard
deviation σ) or the speckle (contrast γ, intensity λ, and mean radius µ). Some of these patterns
may not look realistic in the context of experimental mechanics, but they are chosen here for the
sake of pedagogy. The parameters of these four numerical experiments are given in Table 2. The
numerical value of the perimeter θ has to be compared to the perimeter of the image domain Ω,
equal here to 2, 000 pixels. No deformation is used here (that is, φ = Id is the identity mapping).
Three examples of 300× 300 deformed speckle images can be seen in Figure 3. The amplitude of the
deformations is voluntarily large for a better visibility; this is not representative of typical deformations
encountered in experimental mechanics which are much smaller.

3.3.2 Computational speedups

Several speedups are used in the actual implementation of Algorithm 1.
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Figure 2: 8-bit 500× 500 speckle images. From left to right and from top to bottom: Experiments 1
to 4. Parameters are given in Table 2.

Variance estimation. In line 4, the variance s2 is estimated at every pixel x from a sample of
size N0 (here, N0 = 500), by s2(x) = Î(x) − Î2(x) where Î(x) is the sample mean. This online
estimation adapts the sample size NMC according to the value of I(x): NMC is maximum if I(x) is
close to 1/2 (corresponding to pixels lying near the boundary of the disks Di), and it is minimum
if I(x) is close to 0 or 1. Note that large PSF (i.e., large σ) with respect to the size of the disks are
more likely to give pixels whose gray value is not close to 0 or 1, thus larger computation time. Such
an online estimation is all the more interesting as NMC is proportional to 22b and can attain very
large values. Indeed, conservatively setting NMC to its maximum value would necessitate, for every
pixel, from 330 000 iterations for an 8-bit image to 85 millions iterations for a 12-bit image, and to
22 billions iterations for a 16-bit image (with γ = 1, s2 = 1/4, and α = 0.1 in Equation (16)).

Testing whether φ(x + Xm) belongs to P. In line 7, testing whether a point φ(x + Xm) belongs
to one of the disks Di may be time-consuming, because the number N of disks can be as high as
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Exp. γ σ λ µ covering κ perimeter θ

(pixel) ( no. of disks per image) (pixel) (Equation (6)) (Equation (7))

1 0.8 1 2,000 5 72% 3,576

2 0.8 3 4,000 2 33% 16,811

3 0.95 0.1 40,000 1 63% 91,968

4 0.6 5 300 8 38% 1,163

Table 2: Sensor and speckle parameters for Experiments 1 to 4.

several thousands and this test must be performed for any m in {1, . . . , NMC} and for any pixel x.
We propose the following speedup, based on the fact that, in practice, strain fields, thus displacement
gradients, have a limited amplitude. For any pixel x, we pre-compute the list L(x) of the indices of
disks to which φ(x + Xm) may belong. This list is defined as the list of disk indices whose center is
below a given distance to φ(x), namely:

L(x) = {i ∈ {1, . . . n}, ||φ(x)− di|| ≤ Ri + (1 + δ)B} (17)

where || · || is the Euclidean norm, δ is a uniform upper bound of the Frobenius norm of the Jacobian
matrix J of the inverse displacement field U (such that the mean value inequality writes ||U(x) −
U(y)|| ≤ δ ||x − y|| for any (x,y) ∈ R2 × R2), and the random vectors Xm are assumed for a while
to satisfy ||Xm|| ≤ B for any m ∈ {1, . . . , NMC}, with B > 0. Note that δ = 0 when rendering the
reference image for which U = 0.

Indeed, since

φ(x)− di = (φ(x)− x) + (x + Xm − φ(x + Xm)) + (φ(x + Xm)− di)−Xm, (18)

φ(x)− x = U(x), and x + Xm−φ(x + Xm) = −U(x + Xm) (by definition of mapping φ and inverse
displacement U), we have:

φ(x)− di = (U(x)−U(x + Xm)) + (φ(x + Xm)− di)−Xm. (19)

By definition of B, ||Xm|| ≤ B, and by the mean value inequality, the following inequality holds:

||U(x)−U(x + Xm)|| ≤ δB. (20)

Therefore, it follows from Equation (19) and the triangle inequality that:

||φ(x)− di|| ≤ (1 + δ)B + ||φ(x + Xm)− di||. (21)

Consequently, if φ(x + Xm) belongs to the disk Di0 , then ||φ(x + Xm) − di0 || ≤ Ri0 and i0 ∈ L(x).
This means that the indices of the disks in which φ(x + Xm) may fall belong to L(x) for every m.
This ensures that no disk is missed when restricting to L(x) the search for disks to which φ(x + Xm)
may belong.

Now, since Xm is a Gaussian vector, ||Xm|| is not uniformly bounded. This quantity has, however,
a probability smaller than p to be larger than B = G−1(1−p)σ, where G is the cumulative distribution
function of the standard normal law. Even if highly unlikely, φ(x + Xm) such that ||Xm|| > B may
erroneously give Ĩ0(φ(x + Xm)) = 0 instead of 1. On average, pNMC samples may be erroneously
evaluated in the sample mean, then giving an average error of p on the estimation of Î. We thus
choose p equal to a tenth of the standard deviation s/(

√
NMC) = πα/(

√
22b) of Î(x), so that the

bias p is well below the random fluctuations of the sample mean Î(x). With α = 0.1, this yields
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for b = 8, B = G−1(1 − p)σ = 3.75σ, for b = 12, B = G−1(1 − p)σ = 4.40σ, and for b = 16,
B = G−1(1− p)σ = 4.97σ.

Since L(x) is significantly smaller than the number N of disks (its cardinality is typically below 5
and is independent of the image size), the calculation time of the Monte Carlo estimation is significantly
reduced by pre-computing L(x) for any pixel x. This approach is relevant for limited strain (δ is usually
below some percents), since the cardinality of L(x) increases with δ.

A remark on unbounded strain fields. Without any additional assumption, if the strain field is
not bounded, Φ(x + Xm) may belong to any disk Di and building L(x) would be useless. However,
when considering unbounded strain yet bounded displacement, we have:

||U(x)−U(x + Xm)|| ≤ 2M (22)

where M is an upper bound to the displacement field. In this case, the list L(x) satisfies:

L(x) = {i ∈ {1, . . . n}, ||φ(x)− di|| ≤ Ri + 2M +B} (23)

instead of the definition given by Equation (17).

Parallel execution. Sample mean calculation is parallelized by running lines 5 to 8 on a Graphics
Processing Unit (GPU).

Pseudo-random sample. The authors of [34] use the same random sequence (Xm)1≤m≤NMC
for

any pixel x, which slightly improves the computation time. We do not adopt this simplification in
order to avoid the results to be affected by a systematic bias. Generally speaking, we do not use any
heuristic speedup which could bias subsequent statistics estimated from the speckle images.

3.3.3 Influence of the parameters on the calculation time

Apart from memory management, the calculation time of a serial execution of Algorithm 1 is pro-
portional to the number of pixels in the image, and to the size of the Monte Carlo sample. This
sample size is proportional to 1/α2 and contrast γ, and it increases with the bit depth b, the size being
proportional to 22b. As mentioned above, it also increases with σ, large-support PSF giving a sample
variance s2 close to the maximum value 1/4 for a larger number of pixels. Nevertheless, typical values
for σ are below 1 pixel, as lenses used for mechanical tests are sharp. The evolution of the calculation
time of a parallel execution does not strictly follow these guidelines as it also depends on hardware
considerations.

Monte Carlo estimation is well suited to an execution on a parallel architecture (either on a multi-
processor / multi-core system or on a GPU): our software implementation of the proposed algorithm is
a MATLAB 2016A code with parallelization on a GPU, using single-precision floating point numbers
(cf. the discussion of Section 3.3.4 below). Table 3 gives the computation times for rendering the
500×500 images of the experiments of the previous section. Note that rendering 1, 000×1, 000 images
would require four times these calculation times. Two desktop computers have been used for this test.
Configuration 1 is equipped with a 4-core Intel Xeon E3-1270 v3 @3.50Ghz CPU with 32 Gb memory
and a Nvidia Quadro K2000 graphic card with 2 Gb memory. Configuration 2 is equipped with a
6-core Intel Xeon E5-1650 v4 @ 3.60GHz CPU with 64 Gb memory and a NVidia Titan X graphic card
with 12 Gb memory. The CPU implementation is parallelized through multi-core processing. The 8-
bit non-deformed speckle images of Figure 3 require between 2.8 min and 4.3 min on Desktop 2. Note
that our code is likely to run faster in the near future, thanks to rapid improvements of MATLAB
and of the computing power of GPU. Our software implementation would benefit greatly from a
native CUDA code or from exploiting large-scale parallel computing resources, especially for 16-bit
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Time (min)

Config. 1 Config. 2

Experiment No. CPU GPU GPU

1 (8-bit, α = 0.05) 40.3 14.5 5.0

2 (8-bit, α = 0.05) 146.5 71.2 24.3

3 (8-bit, α = 0.05) 28.6 11.3 3.6

4 (8-bit, α = 0.05) 32.6 14.2 8.0

1 (8-bit, α = 0.1) 10.7 4.9 3.6

2 (8-bit, α = 0.1) 38.7 24.2 17.5

3 (8-bit, α = 0.1) 8.1 4.0 2.9

4 (8-bit, α = 0.1) 8.5 6.1 5.8

1 (12-bit, α = 0.1) 3,132∗ 1,063∗ 73.6

2 (12-bit, α = 0.1) 9,427∗ 4,820∗ 360.4

3 (12-bit, α = 0.1) 2,101* 589∗ 57.0

4 (12-bit, α = 0.1) 1,990∗ 877∗ 69.5

1 (16-bit, α = 0.1) - - 14,214∗∗

2 (16-bit, α = 0.1) - - 66,875∗∗

3 (16-bit, α = 0.1) - - 11,789∗∗

4 (16-bit, α = 0.1) - - 17,390∗∗

Table 3: Calculation times in minutes for rendering 500 × 500 images. Asterisks mark extrapolated
times based on the time needed for rendering 5, 000 pixels, double asterisks based on 20 pixels.

images. Nevertheless, it should be noted that calculation time is not really critical in the considered
application: the ultimate goal of this work is to produce once and for all several ground-truth datasets
for DIC assessment.

All other things being equal, increasing σ increases the calculation time, as discussed above. It
depends, however, on the perimeter of the speckle pattern: relatively large σ and large perimeter
values (as in Experiment 2) give larger computation times than relatively large σ and small perimeter
values (as in Experiment 4), since, in this latter case, much less pixels x lie at the border of a disk
and have an average gray value.

3.3.4 Single-precision or double-precision calculation?

It should be noted that an accurate calculation of the sample mean requires some attention. Although
it is difficult to assess thoroughly the effect of rounding errors due to the machine representation of real
values [23], the aim of this section is to discuss whether single-precision floating point representation is
sufficient for the present problem. This question is important in practice, since memory occupation is
divided by two when using single-precision instead of double-precision, and, chiefly, most GPU process
single-precision floats much faster.

In Equation (12), computing the sample mean basically consists in dividing two integer numbers.
If the division and the number representation follow IEEE-754 standard (implemented in MATLAB),
the sample mean is thus determined up to the “machine epsilon”, which is εs = 2−23 in single precision
and εs = 2−52 in double precision [17, 23]. The machine epsilon is well below the quantization step 1/2b
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even when 16-bit images are rendered.
However, the sample size NMC = [γ2s222b+1/π2α2], can be as large as 10 · 22b−1 when α = 0.1.

The sample size and the summation involved in the sample mean must be performed with a datatype
adapted to this range. Integers below 224 = 16, 777, 216 being represented exactly by a single-precision
value, the summation involved in the sample mean can be calculated safely when b = 8, since 10·22b−1 =
327, 680 in this case. Sample sizes above 224 likely give, however, rounding errors. Such a value is
attained for b = 12. The problem can be avoided by rearranging the summation, which must be done
in practice.

The parallel calculation of the sample mean requires indeed that the whole series (Xm) of random
vectors is generated on the GPU and fits its memory. Such a single-precision 2 ×NMC vector would
require around 5 Mb of memory for NMC corresponding to b = 8, around 1.2 Gb for b = 12, and 1
million Gb for b = 16. It is thus obviously needed to split the sample and to calculate the sample
mean by summation of the results obtained on the sub-samples. We actually perform the calculation
of the sample mean by computing the average value of K means mk over subsamples of size N such
that NMC = KN . We compute independently the K terms of the following sum:

Î =
K∑
k=1

N

NMC
mk (24)

with

mk =
1

N

N∑
m=1

Ĩ0(x + Xm). (25)

Setting N ≤ 224 ensures that the summation in Equation (25) is not affected by rounding errors.
Note that N ≤ 224 may be required in order that (Xm)1≤m≤N and auxiliary variables fit the GPU
memory. As discussed above, each mk is determined up to εs, thus, in the worst case, N/NMCmk

too. Î being the sum of K term determined up to 2εs, it is determined up to 2Kεs. For instance,
N = 223 is required to fit a 2 Gb GPU memory. In this case, K = NMC/N ' 10 · 22b−22 is at most
around 10 · 22 for a 12-bit image, thus the numerical error 2Kεs of Î is at most around 10 · 2−21 and
is well below the quantization step 1/2−12. On the contrary, a 16-bit quantization would give 2Kεs
at most around 10 · 2−10 which is above the quantization step 1/216. In this case, rounding error
in single-precision calculation may cause quantization error. It should, however, be noted that this
calculation corresponds to a worst case, in which all of the mk in the sum of (24) are affected by a
rounding error. Compensated summation may also be used in practice [23].

We can conclude that all calculations can be led safely with single-precision floating point numbers
when rendering 8-bit or 12-bit images. Concerning 16-bit images, the worst case analysis shows that it
would be safer to lead the calculations with double-precision floats. Whether this is really a problem
in real-world rendering requires, however, further investigation.

To conclude this discussion on practical aspects of the software implementation, let us mention
that the period of the pseudo-random generator must be long enough in order that the random sam-
ple (Xm)1≤m≤NMC

generated at any pixel x can still be considered as a realization of an independently
distributed process. The period of the generators implemented in MATLAB seems to be well above
what is needed.
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Figure 3: From the left to the right: inverse displacement field U, reference (non-deformed), and
deformed speckle images. First row: Ux (displayed) is a sine wave of amplitude 5 and period 50
pixels, and Uy = 0. Second row: Uy (displayed) is such that the derivative along y (corresponding to
the strain component εyy) is a sine wave of amplitude .5 along y and of period decreasing with x, and
Ux = 0. Third row: U flow is defined as the “punch” function of [37]. Here, x-axis and y-axis denote
vertical and horizontal axis, respectively.
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Figure 4: Difference image δ for Experiments 1 to 4 of Figure 2 (8-bit images, α = 0.05), from top
left to bottom right. Green pixels have no quantization error, yellow pixels are such that δ ≥ 1, and
blue pixels are such that δ ≤ −1. The proportion of pixels such that the difference image is different
from 0 is equal to 2.6%, 7.0%, 1.5%, and 4.9%, respectively.

3.3.5 Rendering accuracy assessment

In Section 3.2, setting the sample size by bounding the error probability by α means that the numerical
accuracy of the estimation of I is expected to be below the quantization step for a proportion of the
pixels at most equal to 1− α.

Nevertheless, some assumptions permitting to establish Equation (15) may not be valid. For
example, the calculation of Appendix A assumes that the sample mean is normally distributed. Central
limit theorem backs this hypothesis; this is, however, only an asymptotic result. Bounding ||Xm|| by
B in Section 3.3.2 may also introduce a bias. Moreover, the implementation of Algorithm 1 relies on a
pseudo-random generator which only approximates the notion of realization of independent variables.

We therefore perform a sanity check of the proposed algorithm. Of course, it is not possible to
measure the numerical accuracy (i.e., the discrepancy between the estimated gray level Î which may
show random fluctuations, and the deterministic theoretical gray level I which is unknown) based on
the rendering of a single image. The difference δ(x) between two images rendered by two independent
Monte Carlo estimations (after quantization on b bits), run on the same infinite resolution speckle
image, should, however, be different from 0 for a proportion of pixels smaller than 2α.

We have calculated this difference for the images of Figure 2 and various bit-depths. Table 4 gathers
the obtained results. We can see that the proportion of pixels in the difference image δ affected by
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Experiment % pixels # pixels # pixels

No. bit α s.t. δ 6= 0 s.t. |δ| = 1 s.t. |δ| = 2

1 4 0.1 2.4 % 6,034 0

2 4 0.1 9.2 % 22,894 0

3 4 0.1 1.4 % 3,552 0

4 4 0.1 2.3 % 5,774 0

1 8 0.05 2.6 % 6,525 0

2 8 0.05 7.0 % 17,521 0

3 8 0.05 1.5 % 3,679 0

4 8 0.05 4.9 % 12,126 0

1 8 0.1 5.1% 12,666 0

2 8 0.1 13.9% 34,692 1

3 8 0.1 2.9% 7,294 0

4 8 0.1 9.6 % 24,052 0

1 12 0.1 4.95% 12,369 0

2 12 0.1 14.2% 35,550 0

3 12 0.1 2.9% 7305 1

4 12 0.1 9.8% 24,414 2

1b 4 0.1 2.6 % 6,676 0

2b 4 0.1 9.2% 23,062 0

3b 4 0.1 1.4 % 3,600 0

4b 4 0.1 2.6% 6,530 0

1b 8 0.05 2.0 % 5,105 0

2b 8 0.05 6.4% 16,017 0

3b 8 0.05 1.2% 2,971 0

4b 8 0.05 3.9% 9,705 0

1b 8 0.1 3.3% 8,323 0

2b 8 0.1 12.8 % 32,112 0

3b 8 0.1 2.4 % 6,119 0

4b 8 0.1 7.3 % 18,160 0

1b 12 0.1 3.8% 9,566 2

2b 12 0.1 14.1% 35,407 0

3b 12 0.1 2.4 % 6,025 0

4b 12 0.1 7.7% 19,257 0

Table 4: From left to right: experiment number, bit-depth of the render image, probability error α,
proportion of pixels x such that the difference δ(x) between two quantized independent Monte Carlo
estimation is different from 0, number of pixels such that |δ(x)| = 1, and number of pixels such
that |δ(x)| = 2. In all these experiments, |δ(x)| is never larger than 2. The proportion of pixels has
to be compared to 2α, and the numbers of pixels have to be compared to the 500× 500 pixels in the
images. Several bit depths b have been tested. Experiments 1b to 4b have the same parameters as
Experiments 1 to 4, but the “punch” function of Figure 3 is used.
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quantization errors (i.e., such that δ(x) 6= 0) is below 2α, as expected from the theory. The result
still holds for the strong (inverse) displacement field corresponding to Experiments 1b to 4b. This
confirms that at most a proportion α of pixels from the rendered digital image I may be affected by
quantization error. Moreover, this experiment also shows that the vast majority of these erroneous
pixels have a gray value error of 1. If the user generates noisy images (as in Section 3.5), quantization
errors are likely to be much below the noise floor. Finally, Figure 4 shows the difference image δ
for α = 0.05. We can see that the pixels affected by quantization error mainly lie at the borders of
the black disks.

Since this experiment suggests that setting α = 0.1 actually gives at most 5% of pixels affected
by quantization error (except when σ has a quite large value, as in Experiment 2 where the error
probability is still bounded by α), we recommend to use this value when computing the sample
size NMC.

3.3.6 Comparing the proposed rendering method with interpolation and pixel binning

As mentioned in the introduction, some authors render the speckle image of a deformed state by
interpolating a high-resolution, either real or synthetic, speckle image under the prescribed displace-
ment, and make use of pixel binning to reduce interpolation error. How much pixels should be binned
together with respect to the interpolation scheme is, to the best of our knowledge, an overlooked
problem which has not yet a rigorous solution. A full comparison of both methods in the context of
the assessment of DIC algorithms is beyond the scope of this paper. Comparing the retrieved displace-
ment field with respect to the prescribed displacement field indeed depends on various factors such as
the systematic bias modeled by a Savitzky-Golay filter [43], error caused by the interpolation scheme
needed by DIC itself [7, 8], the shape of the speckle patterns [29, 30], and quantization noise. It is
thus difficult to isolate the error solely caused by the process rendering the input speckle images. We
propose, however, a numerical experiment suggesting that the proposed method is much more reliable
than interpolation and pixel binning.

We render two 1024 × 1024 8-bit speckle images with the proposed algorithm, one, I, for the
reference state and the other, I ′, for the deformed state. The value of α is such that at most 5%
of the pixels have an incorrect gray value, as discussed in the preceding section. The prescribed
displacement field U is such that Uy(x, y) is a sine function of x of amplitude 0.5 pixel and of period
linearly increasing from 10 to 150 pixels along the y-axis, and Ux = 0. We also render an image of
the deformed state I ′ with interpolation, either by a linear or cubic scheme. We define the binning
operator Bp such that Bp(I) is obtained from any image I by substituting each p× p array of pixels
in I by its mean value, giving the image Bp(I) whose dimensions are p times smaller than the input
image I. Pixel binning reduces the gray value error, resulting from the α parameter in the proposed
method or from the interpolation scheme, at the price of a reduced spatial resolution. For example,
B8(I ′) is a 128× 128 image. Since the proposed rendering method has a controlled error, still reduced
by pixel binning, its output can be considered as ground truth data. In order that the binned images
Bp(I) and Bp(I ′) show the same intensity distribution and carry the same amount of information, we
render the 1024× 1024 images I and I ′ such that the random disks have an average radius of p (thus
Bp(I) and Bp(I ′) show disks of average radius 1 for any value of p). The number of disks is such that
the covering is 50% (cf. Table 1), and the Gaussian PSF has a standard deviation of 1 pixel.

Figure 5 shows the frequency distribution of the absolute difference |Bp(I ′)−Bp(I ′)|, for linear and
cubic interpolation and p belonging to {1, 2, 4, 8}. As we can see, when no binning is used (p = 1), less
than 40% of the pixels have the same gray value with the two methods. A significant proportion has
a gray value error larger than 4. As expected, pixel binning reduces the gray value error. However,
more than 20% of the pixels show a gray value error larger than 1 with a 4× 4 binning scheme, either
with linear or cubic interpolation, while our method was proved to have much less than 5% of spurious
gray values. It can also be noticed that, unsurprisingly, cubic interpolation gives less erroneous gray
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Figure 5: Top row: the 1024 × 1024 speckle image when no binning is employed, the 1024 × 1024
speckle image before the 8 × 8 binning (both in reference state), and Uy displacement field over a
1024×1024 field. Middle and bottom rows: frequency distribution of the gray level differences (absolute
value) between the deformed speckle image obtained by the proposed algorithm and by interpolation,
after p × p pixel binning (middle row: linear interpolation; bottom row: cubic interpolation). For
instance, approximately 55% of the pixels have the same gray level for both methods with linear
interpolation and no pixel binning (p = 1), and approximately 20% of the pixels differ from one gray
level with cubic interpolation and p = 16.

values than linear interpolation. With 8× 8 binning and cubic interpolation, 5% of the total amount
of pixels differ between the two methods.

This numerical assessment, which needs to be completed by further studies, suggests that both
methods may be hardly distinguishable when a 8×8 pixel binning scheme and cubic interpolation are
used. Since this experiment relies on a specific prescribed displacement, it should not lead to a hasty
generalization. Of course, interpolation coupled with binning requires very high resolution images of
the initial state in order to obtain large enough low-resolution images after binning. To our knowledge,
no theoretical guaranty is available for the error of such a rendering method. On the contrary, the
proposed algorithm does not require any interpolation and comes with a handy parameter, namely α,
which controls the error.

3.4 Potential extensions of the proposed model

Although the proposed framework permits the user to render realistic speckle images, it can still be
adapted to various PSF or speckle models.
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For example, it should be noted that the same calculation holds for any PSF. Since any PSF
integrates to 1, it can be seen as the density of a random variable. In practice, we just need to
generate the random vector X following this density to mimic the effect of any PSF function.

Concerning the Boolean model, we could use other shapes than disks. Any shape S can be used,
provided that the indicator function 1S(x) can be calculated. Using a bounding disk of radius Ri
would allow defining the list L(x) discussed in Section 3.3.2.

The Boolean model implicitly assumes that the ink projected on the specimen is not transparent:
the output of the model is the same, whatever the number of overlapping disks at a given pixel. It is
interesting to note that transparent ink could be modeled with the so-called transparent dead leaves
model described in [21]. We do not elaborate further on this subject and leave it for future work.

3.5 Signal-dependent noise

Because of the quantum nature of light, any digital image sensor is affected by noise. The classical
signal-dependent noise model [1, 25] expresses the gray level intensity i at a given pixel x in a linear
camera (that is, disregarding nonlinear processing such as γ-correction) as:

i(x) = gρp(x) + τ(η, ν2) (26)

where g is the gain, ρp(x) is a Poisson random variable of intensity p(x) modeling the shot noise,
and τ is a Gaussian random variable of mean η (offset, set by the manufacturer) and variance ν2.
Intensity p(x) is the number of electrons generated at x, caused either by conversion of photons or
spontaneously generated as a dark signal, and τ models various sources of noise such as readout noise.
A simple calculation gives the following affine relation between the variance and the expected value
of i:

Var(i(x)) = gE(i) + ν2 − gη. (27)

The importance of considering such a noise model when assessing the metrological performance of DIC
in real-world experiments is discussed in [8]. Except for low-light imaging, it is common to consider
an additive Gaussian white noise of variance given by Equation (27) instead of the Poisson-Gaussian
noise of Equation (26).

To mimic the output of a real camera, the user of our rendering code should add to the noise-free
gray level I(x) given by Equation (9) a Gaussian signal-dependent noise of variance given by:

Var(I(x)) = gI(x) + ν2 − gη (28)

where g is the gain, ν2 is the readout noise level, and η is the offset value.
The Gaussian white noise model is, however, very common in papers on the assessment of DIC.

It is backed by the possibility to use the Generalized Anscombe Transform [33] to normalize noise in
Equation (26). We thus give the user the opportunity to consider such a noise model when rendering
speckle images.

4 Conclusion

The contribution of this paper is a new algorithm for rendering speckle images deformed by a dis-
placement field prescribed by the user. It is based on the analysis of the image acquisition chain, from
the infinite resolution speckle image seen as a realization of a Boolean model, to the digital image,
taking into account the point spread function of the optical device through a Monte Carlo integration.
Several parameters are carefully discussed to ensure that they are not responsible for additional biases,
which is crucial in the context of the assessment of the metrological performance of DIC-based method
in experimental mechanics. In particular, the sample size in Monte Carlo integration is set in such a
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way that the random fluctuation involved by this technique is mostly canceled out by quantization. It
should also be noticed that no interpolation is required, interpolation being likely to give spurious gray
values, as shown in Section 3.3.6. We have also discussed the effect of aliasing potentially caused by
spatial sampling and the effect of rounding errors caused by floating point arithmetic. A continuation
to this work would consist in the exploration of other speckle models than the Boolean model. An-
other potential perspective concerns the estimation of the parameters governing such models to render
synthetic speckle images which would more precisely mimic real speckle patterns used in experimental
mechanics, as mentioned in Section 3.4. Extending the proposed rendering algorithm to image pairs
useful for stereo-DIC [4] or RGB-DIC [5] would also be interesting.

Acknowledgments: F.S. is grateful to Antoine Fond (Magrit team, Loria) for his help with the
NVidia Titan X GPU.

A Quantization error for a compound probability distribution

We assume that each real value inside a quantization box [a, b] (with a < b) is assigned to a quantized
value. In Monte Carlo estimation, sample means are distributed according to a normal distribution of
mean m and standard deviation s. A quantization error occurs when the sample mean is not assigned
to the same quantized value as m. If s is small with respect to b − a and m is in the middle of the
interval [a, b], the probability of an error is small, while it is larger if m is close to a or b.

In order to estimate an overall error, we assume that the mean m is uniformly distributed over [a, b].
In other words, we assume that the sample mean X is a compound random variable distributed ac-
cording to a Gaussian distribution of standard deviation s and mean m distributed according to a
uniform distribution on interval [a, b]. We estimate the probability that X is not correctly quantized,
i.e., that it falls outside the interval [a, b]. In other words, we would like to estimate the probabil-
ity E(s, b− a) = 1− Pr(a ≤ X ≤ b).

We denote by g the standard normal probability distribution function (that is, g(x) = e−x
2/2/
√

2π)
and by G the associated cumulative distribution function. Marginalizing out m in X gives:

Pr(a ≤ X ≤ b) =
1

b− a

∫ b

a
Pr(a ≤ X ≤ b |µ) dµ (29)

=
1

b− a

∫ b

a

(
G

(
b− µ
s

)
−G

(
a− µ
s

))
dµ. (30)

Now, for any two real values α and β 6= 0, an antiderivative of G(α+ βx) is given by:∫
G(α+ βx) =

1

β
((α+ βx)G(α+ βx) + g(α+ βx)) . (31)

We calculate:

1

b− a

∫ b

a
G

(
b− µ
s

)
dµ = G

(
b− a
s

)
+

s

b− a
g

(
b− a
s

)
− s√

2π(b− a)
(32)

and
1

b− a

∫ b

a
G

(
a− µ
s

)
dµ = G

(
a− b
s

)
− s

b− a
g

(
a− b
s

)
+

s√
2π(b− a)

(33)

We eventually obtain, since G(−x) = 1−G(x) and g(−x) = g(x):

Pr(a ≤ X ≤ b) = 2G

(
b− a
s

)
− 1 +

2s

b− a

(
g

(
b− a
s

)
− 1√

2π

)
(34)
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We are interested in the quantization error when the random fluctuation of the Monte Carlo
estimation is small, that is, when s/(b− a) tends to 0.

Since G(x) = 1 − g(x)/x + O(g(x)/x) when x → +∞ (where O is Landau’s “big-O”; this is a
property of Mill’s ratio [46, chapter 2]), we have proved the following proposition.

Proposition 1. If a and b are two real numbers such that a < b, and X is a random variable distributed
according to a compound Gaussian distribution of variance s2 such that its mean is a random variable
distributed according to a uniform distribution on [a, b], the following asymptotic expansion holds:

Pr(a ≤ X ≤ b) =s→0 1−
√

2s√
π(b− a)

+O
(
se−(b−a)/(2s

2)
)

(35)

If s/(b− a) << 1, the latter expression gives an accurate estimate of the probability E of quanti-
zation error as:

E(s, b− a) =

√
2s√

π(b− a)
(36)
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L., Rotinat, R., Toussaint, E., Wattrisse, B., Wienin, J.: Assessment of digital image correlation
measurement accuracy in the ultimate error regime: Main results of a collaborative benchmark.
Strain 49(6), 483–496 (2013)

[3] Baddeley, A.: Spatial point processes and their applications. In: W. Weil (ed.) Stochastic Geom-
etry: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September
13–18, 2004, pp. 1–75 (2007)

[4] Balcaen, R., Wittevrongel, L., Reu, P.L., Lava, P., Debruyne, D.: Stereo-DIC calibration and
speckle image generator based on FE formulations. Experimental Mechanics 57(5), 703–718
(2017)

[5] Baldi, A.: Digital image correlation and color cameras. Experimental Mechanics (2017). Online
first
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