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Frequency decay for Navier-Stokes stationary solutions

We consider stationary Navier-Stokes equations in R 3 with a regular external force and we prove exponential frequency decay of the solutions. Moreover, if the external force is small enough, we give a pointwise exponential frequency decay for such solutions according to the K41 theory. If a damping term is added to the equation, a pointwise decay is obtained without the smallness condition over the force.

Introduction

Gevrey regularity for solutions of the Navier-Stokes equations has been studied in many different frameworks: for a periodic setting with external force see [START_REF] Foias | Temam Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF], [START_REF] Liu | A Note on Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF]; for the stationary problem in T 3 with frequency localized forces see [START_REF] Kalantarov | Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations[END_REF]. For the evolution problem in R 3 (with a null force) a pointwise analysis is obtained in [START_REF] Lemarié-Rieusset | Une remarque sur l'analycité des solutions mild des équations de Navier-Stokes dans R 3[END_REF].

In this article we generalize some of these previous results in the framework of stationary Navier-Stokes equations in R 3

-ν∆ - → U + P(div( - → U ⊗ - → U )) = - → F , div( - → U ) = 0, div( - → F ), (1) 
where ν > 0 is the fluid's viscosity parameter, -→ U : R 3 -→ R 3 is the velocity, P is the Leray's projector and -→ F : R 3 -→ R 3 is a time-independent external force.

If the external force is regular enough we prove in Theorem 1.1 an exponential frequency decay. Moreover, if the external force is small enough, we give in Theorem 1.2 a pointwise exponential frequency decay for such solutions. Finally, if a damping term is added to the equation, a pointwise decay is obtained in Theorem 1.3 without the smallness condition over the force.

Theorem 1.1 Let - → F ∈ Ḣ-1 (R 3 ) be such that for ε 0 > 0 we have R 3 e 2ε 0 |ξ| - → F (ξ) 2 |ξ| -2 dξ < +∞.
Then there exists -→ U ∈ Ḣ1 (R 3 ) a solution to the stationary Navier-Stokes equations [START_REF] Foias | Temam Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF], such that -→ U verifies the following exponential frequency decay:

R 3 e 2ε 1 |ξ| - → U (ξ) 2 |ξ| 2 dξ < +∞, where ε 1 = ε 1 (ε 0 , - → F , ν) > 0. (2) 
In the laminar setting we obtain a sharper pointwise exponential frequency decay. For 0 ≤ a < 3, we define the pseudo-measures space by

PM a = - → g ∈ S (R 3 ) : - → g ∈ L 1 loc (R 3 ) and |ξ| a - → g ∈ L ∞ (R 3 ) ,
which is a Banach space endowed with the norm -→ g PM a = |ξ| a -→ g L ∞ , for a = 0 we will simply denote the space PM 0 by PM.

Theorem 1.2 Let - → F ∈ PM.
There exists a (small) constant η > 0 such that if

sup ξ∈R 3 e |ξ| - → F (ξ) < η,
then there exists -→ U ∈ PM 2 a solution to the stationary Navier-Stokes equations (1) such that -→ U verifies the following pointwise exponential frequency decay:

- → U (ξ) ≤ ce -|ξ| |ξ| -2 , for all ξ = 0. ( 3 
)
If a damping term is added to the stationary Navier-Stokes system, we have the following result

Theorem 1.3 Let - → F ∈ H -1 (R 3
) and for α > 0 consider the damped stationary Navier-Stokes equations -ν∆

- → U + P(div( - → U ⊗ - → U )) = - → F -α - → U , div( - → U ) = 0. ( 4 
)
If the external force

- → F is such that - → F (ξ) ≤ e -ε 0 |ξ| for a fixed ε 0 > 0, then the stationary solution - → U ∈ H 1 (R 3
) satisfies the following pointwise exponential frequency decay

- → U (ξ) ≤ ce -ε 1 |ξ| |ξ| -5 2
, for all ξ = 0, where

ε 1 = ε 1 (ε 0 , - → F , ν) > 0. ( 5 
)
2 Proof of Theorem 1.

1 Lemma 2.1 If - → F ∈ Ḣ-1 (R 3
), then there exists at least one solution -→ U ∈ Ḣ1 (R 3 ) to the stationary Navier-Stokes equation (1). Lemma 2.2 Let T 0 > 0. For -→ u 0 ∈ Ḣ1 (R 3 ) a divergence-free initial data and a divergence-

free external force - → f ∈ C([0, T 0 [, Ḣ1 (R 3 
)) there exists a time 0 < T 1 < T 0 and a function -→ u ∈ C([0, T 1 [, Ḣ1 (R 3 )) which is a unique solution to the Navier-Stokes equations

∂ t - → u -ν∆ - → u + P(div( - → u ⊗ - → u )) = - → f , div( - → u ) = 0, - → u (0, •) = - → u 0 . (6) 
Existence and uniqueness issues are classical, see [START_REF] Lemarié-Rieusset | The Navier-Stokes Problem in the 21st Century[END_REF] for details.

In the following proposition we prove the frequency decay for the solution -→ u obtained in Lemma 2.2.

Proposition 2.1 Let α > 0 and consider the Poisson kernel e α √ t √ -∆ . Within the framework of Lemma 2.2, if the external force - → f is such that e α √ t √ -∆ - → f ∈ C(]0, T 0 [, Ḣ1 (R 3 )),
then the unique solution of equations ( 6) satisfies e α

√ t √ -∆-→ u ∈ C(]0, T 1 [, Ḣ1 (R 3 )) for all time t ∈ [0, T 1 [ where 0 < T 1 < T 0 is small enough. Proof. Consider the space E = - → u ∈ C(]0, T 1 [, Ḣ1 (R 3 )) : e α √ t √ -∆-→ u ∈ C(]0, T 1 [, Ḣ1 (R 3 )) ,
endowed with the norm

• E = e α √ t √ -∆ (•) L ∞ t Ḣ1
x . We study the quantity

- → u 1 E = h νt * - → u 0 + t 0 h ν(t-s) * - → f (s, •)ds - t 0 h ν(t-s) * P(div( - → u 1 ⊗ - → u 1 ))(s, •)ds E (7)
where h νt is the heat kernel. The two first terms of this expression are easy to estimate and we have

h νt * - → u 0 + t 0 h ν(t-s) * - → f (s, •)ds E ≤ c(ν, α, T 0 ) - → u 0 Ḣ1 x + e α √ t √ -∆ - → f L ∞ t Ḣ1 x . (8) 
For the last term of (7), by definition of the norm • E , by the Plancherel formula and by the boundedness of the Leray projector we have

(I) = t 0 h ν(t-s) * P(div( - → u 1 ⊗ - → u 1 ))ds E = sup 0<t<T 1 e α √ t √ -∆ t 0 h ν(t-s) * P(div( - → u 1 ⊗ - → u 1 ))ds Ḣ1 x ≤ sup 0<t<T 1 c |ξ| 2 t 0 e -ν(t-s)|ξ| 2 e α √ t|ξ| |(F[ - → u 1 ] * F[ - → u 1 ]) (s, •)| ds L 2
x .

Since we have the pointwise inequality

e α √ t|ξ| |(F[ - → u 1 ] * F[ - → u 1 ]) (s, ξ)| ≤ e α √ t|ξ| |F[ - → u 1 ]| * e α √ t|ξ| |F[ - → u 1 ]| (s, ξ), (9) 
due to the fact that e α √ t|ξ| ≤ e α √ t||ξ-η| e α √ t|η| for all ξ, η ∈ R 3 , then we obtain

(I) ≤ sup 0<t<T 1 c t 0 |ξ| 3 2 e -ν(t-s)|ξ| 2 |ξ| 1 2 e α √ t|ξ| |F[ - → u 1 ]| * e α √ t|ξ| |F[ - → u 1 ]| L 2 x ds.
Getting back to the spatial variable we can write

(I) ≤ sup 0<t<T 1 c t 0 (-∆) 3 4 h ν(t-s) * (-∆) 1 4 F -1 e α √ t|ξ| |F[ - → u 1 ]| ⊗ F -1 e α √ t|ξ| |F[ - → u 1 ]| L 2 x ds ≤ c T 1 0 (-∆) 3 4 h ν(t-s) L 1 ds F -1 e α √ t|ξ| |F[ - → u 1 ]| ⊗ F -1 e α √ t|ξ| |F[ - → u 1 ]| L ∞ t Ḣ 1 2 x ≤ c T 1 4 ν 3 4 F -1 e α √ t|ξ| |F[ - → u 1 ]| L ∞ t Ḣ1 x F -1 e α √ t|ξ| |F[ - → u 1 ]| L ∞ t Ḣ1 x ≤ c T 1 4 1 ν 3 4 - → u 1 E - → u 1 E . ( 10 
)
With estimates (8) and (10) at hand, we fix T 1 small enough in order to apply Picard's contraction principle and we obtain a solution -→ u 1 ∈ E of [START_REF] Liu | A Note on Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF]. Since

E ⊂ C(]0, T 1 [, Ḣ1 (R 3 )) we have - → u 1 ∈ C(]0, T 1 [, Ḣ1 (R 3 
)) and by uniqueness of the solution -→ u we have -→ u 1 = -→ u , and thus -→ u ∈ E. Now, we come back to the stationary Navier-Stokes equations (1) and we will prove that the solution -→ U ∈ Ḣ1 (R 3 ) (given by Lemma 2.1) satisfies the exponential frequency decay given in (2). In the space C(]0, 1[, Ḣ1 (R 3 )) we consider the evolution problem [START_REF] Liu | A Note on Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF] with the initial data -→ u 0 = -→ U where the external force -→ f is now given by with the expression

- → f = e -α √ t √ -∆ (e α √ t √ -∆ - → F ),
for the particular value α = 2 3 ε 0 > 0 where ε 0 > 0 is given in the hypothesis of the force

- → F . To obtain a unique solution - → u ∈ C(]0, 1[, Ḣ1 (R 3 
)) to the equations [START_REF] Liu | A Note on Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF] such that

e α √ t √ -∆-→ u ∈ C(]0, 1[, Ḣ1 (R 3 )),
we prove that the external force -→ f verifies the hypotheses of Lemma 2.2 and Proposition 2.1 above:

e α √ t √ -∆ - → F 2 L ∞ t Ḣ1 x = sup 0<t<1 R 3 |ξ| 2 e 2α √ t|ξ| - → F (ξ) 2 dξ ≤ 1 α 4 R 3 (α|ξ|) 4 e 2α|ξ| - → F (ξ) 2 |ξ| -2 dξ ≤ 1 α 4 R 3 e 3α|ξ| - → F (ξ) 2 |ξ| -2 dξ ≤ 1 α 4 R 3 e 2ε 0 |ξ| - → F (ξ) 2 |ξ| -2 dξ < +∞.
Thus, once we have e α

√ t √ -∆ - → F ∈ C(]0, 1[, Ḣ1 (R 3 )), since the operator e -α √ t √ -∆ is bounded in the space C(]0, 1[, Ḣ1 (R 3 )) we have - → f = e -α √ t √ -∆ (e α √ t √ -∆ - → F ) ∈ C(]0, 1[, Ḣ1 (R 3 )).
Moreover, we have

e α √ t √ -∆ - → f = e α √ t √ -∆ - → F ∈ C(]0, 1[, Ḣ1 (R 3 )).
By Lemma 2.2 there exists a time 0 < T 1 < 1 and a unique solution

- → u ∈ C(]0, T 1 [, Ḣ1 (R 3 ))
to the equation [START_REF] Liu | A Note on Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF]. Moreover, since e α 

√ t √ -∆ - → f ∈ C(]0, 1[, Ḣ1 (R 3 
- → f = e -α √ t √ -∆ (e α √ t √ -∆ - → F ) = - → F , we find that - → U ∈ C(]0, T 1 [, Ḣ1 (R 3 )
) is also a solution to the equation ( 6) and thus, by uniqueness we get

- → U = - → u . Then, since e α √ t √ -∆-→ u ∈ C(]0, T 1 [, Ḣ1 (R 3 )) we have e α √ t √ -∆ - → U ∈ C(]0, T 1 [, Ḣ1 (R 3 )), for all time t ∈ [0, T 1 [. Thus, if ε 1 = α T 1 2 > 0, we have R 3 e 2ε 1 |ξ| | - → U (ξ)| 2 |ξ| 2 dξ = e α T 1 2 √ -∆ - → U 2 Ḣ1 x ≤ sup 0<t<T 1 e α √ t √ -∆ - → U 2 Ḣ1 x < +∞,
and we obtain the frequency decay given in (2).

3 Proof of Theorem 1.2

We consider now the space

A = - → U ∈ PM 2 : e √ -∆ - → U ∈ PM 2
, endowed with the norm

• A = e √ -∆ (•) PM 2 , ( 11 
)
and in this space we study the existence of a solution of equations ( 1) under the hypotheses of Theorem 1.2. For this we study the quantity

- → U A = 1 ν P 1 ∆ div( - → U ⊗ - → U ) - 1 ν 1 ∆ - → F A ≤ 1 ν P 1 ∆ div( - → U ⊗ - → U ) A + 1 ν 1 ∆ - → F A , (12) 
where, for the first term of the inequality above we have the following estimate:

1 ν P 1 ∆ div( - → U ⊗ - → U ) A ≤ c ν - → U A - → U A . (13) 
Indeed, by the expression (11) and by the continuity of the Leray projector we have

1 ν P 1 ∆ div( - → U ⊗ - → U ) A = 1 ν |ξ| 2 e |ξ| F P 1 ∆ div( - → U ⊗ - → U ) L ∞ ≤ c ν |ξ| 2 e |ξ| 1 |ξ| F - → U * F - → U L ∞ ≤ c ν |ξ| e |ξ| F | - → U | * e |ξ| F | - → U | L ∞ , (14) 
where the last inequality can be deduced from (9). Now we remark that

e |ξ| F | - → U | * e |ξ| F | - → U | (ξ) = R 3 e |ξ-η| F | - → U | (ξ -η)e |η| F | - → U | (η)dη ≤ - → U A - → U A R 3 dη |ξ -η| 2 |η| 2 ≤ c |ξ| - → U A - → U A ,
and thus, using this inequality in (14) we easily obtain the estimate (13). For the second term in the RHS of (12) we have

1 ν 1 ∆ - → F A = 1 ν e √ -∆ 1 ∆ - → F PM 2 = c 1 ν sup ξ∈R 3 |ξ| 2 e |ξ| 1 |ξ| 2 | - → F (ξ)| = c 1 ν sup ξ∈R 3 e |ξ| | - → F (ξ)|.
Thus, if the external force -→ F satisfies sup For α > 0 and under the hypotheses of Theorem 1.3, the existence of solutions of equation ( 4) is given by applying the Scheafer fixed point theorem. Now, for -→ u 0 ∈ PM 5 2 we consider the non-stationary damped Navier-Stokes equations

∂ t - → u + P(div( - → u ⊗ - → u )) -ν∆ - → u = - → f -α - → u , div( - → u ) = 0, - → u (0, •) = - → u 0 , (15) 
where the divergence-free external force -→ f belongs to the space C([0, T 0 [, PM 2 ). For this problem there exists a unique solution -

→ u ∈ C([0, T 1 [, PM 5 
2 ) with 0 < T 1 < T 0 . For existence issues for equations ( 4) and (15) see the details in [START_REF] Lemarié-Rieusset | The Navier-Stokes Problem in the 21st Century[END_REF].

Following essentially the same lines of Proposition 2.1 above, we prove that if the external force is such that e β

√ t √ -∆ - → f ∈ C([0, T 0 [, PM 5 
2 ) then the unique solution of ( 15) is such that e 2 ). As in the proof of Theorem 1.2, we consider

β √ t √ -∆-→ u ∈ C([0, T 1 [, PM 5 
- → f = e -β √ t √ -∆ e β √ t √ -∆ - → F = - → F ,
and for a suitable value of the parameter β > 0 we can prove that 2 ) and

- → f ∈ C([0, 1[, PM 5 
e β √ t √ -∆ - → f ∈ C([0, 1[, PM 5 2 ). 
In order to link the stationary solution to the non-stationary problem, we must prove that the solution

- → U ∈ H 1 (R 3 ) of (4) is such that - → U ∈ PM 5 2
, and in this step we use the extra damping term. Indeed, rewriting (4) we consider the equation

- → U = -ν∆ αId -ν∆ P 1 ν∆ div( - → U ⊗ - → U ) + 1 αId -ν∆ - → F , (16) 
and we obtain

- → U Ḣ 3 2 ≤ -ν∆ αI d -ν∆ P 1 ν∆ div( - → U ⊗ - → U ) Ḣ 3 2 + 1 αI d -ν∆ - → F Ḣ 3 2 .
Since the operator -ν∆ αI d -ν∆ is bounded in Ḣ 3 2 (R 3 ) and by the properties of

- → F we can write - → U Ḣ 3 2 ≤ 1 ν∆ div( - → U ⊗ - → U ) Ḣ 3 2 + 1 αI d -ν∆ - → F H 2 ≤ c - → U ⊗ - → U Ḣ 1 2 + c(α) - → F L 2 ≤ c - → U H 1 - → U H 1 + c(α) - → F L 2 .
We thus have -→ U ∈ Ḣ 3 2 (R 3 ) and we prove now 

- → U ∈ PM
2 ) for 0 < t < T 1 and if ε 1 = β T 1 2 we can write

e ε 1 √ -∆ - → U PM 5 2 ≤ e β √ t √ -∆ - → U L ∞ ([0,T 1 [,PM 5 
2 ) < +∞, and we obtain the frequency decay stated in the formula (5).

  → u ∈ C(]0, T 1 [, Ḣ1 (R 3 )). Since the solution -→ U ∈ Ḣ1 (R 3 ) of the stationary Navier-Stokes equations (1) is a constant in time, we have -→ U ∈ C(]0, T 1 [, Ḣ1 (R 3 )) and since ∂ t -→ U ≡ 0 and

  )| < η, for η small enough, we obtain -→ U ∈ A a solution to the stationary Navier-Stokes equations (1) for which we have the pointwise estimate (3).

5 2

 5 . Then, we study (15) with -→ u 0 = -→ U and we have-→ U ∈ C([0, T 1 [, PM52 ), but since -→ U verifies the equations (4), ∂ t also a solution of (15) and by uniqueness we have-→ U = -→ u . Finally, we have e β √ t √ -∆ -→ U ∈ C([0, T 1 [, PM