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Hydrodynamic ram (HRAM) is a phenomenon that occurs when a high-speed/high energy projectile
penetrates a liquid-filled container. The container must adapt to allow the variation of volume of the
cavity created, that generates a large loading due to the liquid momentum. This complex fluid–structure
interaction phenomenon has been identified as one of the major threat to aircraft safety. An approach
based on bubble dynamics models has been developed by the authors to take this phenomenon into ac-
countwhen designing fuel tanks. In the presentwork, the authors compare ALE finite element simulations
using EUROPLEXUS to a modification of the Keller–Miksis model to account for the confinement effect of
the container. In the studied domain, the agreement on the cases simulated is found quite acceptable: 3%
and 1% differences respectively in amplitude and period for the bubble dynamic and less than 1% for the
impulse transmitted to the structure.

1. Introduction

A large amount of research has been performed over the last
decades on the problem of cavitation and bubble dynamics. How-
ever very few studies deal with the problem of cavitation in
confined fluids. This problem has practical applications, one of
them being the Hydrodynamic Ram (HRAM) phenomenon. This
phenomenon occurs when a high-speed/high energy projectile
penetrates a liquid-filled container [1–3]. The projectile creates in
its wake a cavity and transfers its momentum to the surrounding
liquid. An important difference between HRAM and other cavita-
tion problem is that the cause of damage is not the same, it is the
bursting of the container due to the solicitation generated by the
growth of a large bubble in a closed container: the container may
also experience a large deformation in order to accommodate the
gas bubble expansion. Unlike in other cavitation applications, in
HRAM events the container is usually large enough, with enough
distance between the bubble and the walls: no hydrodynamic jet
is formed towards the walls as in most cavitation applications
[4–6]. The container must then adapt to allow the variation of
volume of this cavity, which generates a large transient load due
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to liquidmomentum. This scenario is especially dangerous for thin
walled structures that cannot be armoured due to weight penalty
reasons.

Since the complete simulation of tumbling projectile impact
that lead to almost spherical cavities is still an open research
topic, an approach has been proposed by the authors that con-
sists in studying this complex phenomenon by using analytical
models. Fourest et al. [7] proposed an approach based on the
classic Rayleigh–Plesset equation that describes the dynamics of
a single gas bubble in an infinite liquid domain. Experimental
HRAM bubble dynamics presented in [1] were described using
a modified version of the Rayleigh–Plesset equation introducing
confinement effects of a spherical container on the bubble dynam-
ics, firstly with the calibration of the structure response [7] and
secondly with the structure response being approximated using
analytical plate formulae [8]. It included the effects of most of the
factors identified by pioneer researchers on this subject [9–13].
These factors can be sorted out with respect to the three media:
the projectile (shape, size, and material), the tank wall (thick-
ness, material, pre-stress, and protective structure) and the liquid
properties.

The objective of the approach is to predict the structure dam-
age subsequent to an HRAM event. However in all the studies
performed [7,8,14] the container has been considered elastic. The
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authors believe that it has little sense to consider a more complex

material behaviour in a 1D model such as Rayleigh–Plesset. Two

solutions are considered to couple this approach with a finite

element model for the container that would enable to deal with

more complex geometries andbehaviour. The first one is to directly

apply the pressure field computed with Rayleigh–Plesset to the

finite element model of the container. The second would be to

simulate the bubble growth directly in the finite element simu-

lation. The later one is considered in the present work. It has the

advantage ofmore strongly coupling the bubble dynamicswith the

container parameters (size, geometry, . . . ), and itwould also permit

to deal with more generic cases such as non centred bubble, but it

is obviously more computationally expensive.

The first step is to validate the finite element simulations in

a simple case (i.e. spherical container). Due to the lack of exper-

imental reference the simulations are compared to an analytical

solution which is spherical. Compressible finite element simula-

tion will be compared to the Keller–Miksis equation adapted by

the authors to a confined situation. This model should consider

enough liquid compressibility for the bubbles and containers of

interest. The problem may seem to be purely academic however

spherical container exists especially in the space domain or civil

engineering.

2. Formulation of the confined Keller–Miksis model

Early studies on bubble dynamics beganwith Lord Rayleigh [15]

who examined the pressure prediction during the collapse of a

spherical bubble, assuming that the surrounding liquid is incom-

pressible. His work was extended by Plesset [16], who derived

the second-order non-linear ordinary differential equation for the

time-dependent bubble radius evolution, which became the well

known Rayleigh–Plesset equation for bubble dynamics. Improve-

ments of this equation have been proposed by numerous authors,

in particular Keller–Miksis [17] to include the effect of liquid com-

pressibility on the bubble dynamics and to study the propagation

of the wave emitted during the collapse.

A modification of the standard Rayleigh–Plesset equation has

been proposed [7] to account for confinement effects without

changing the standard Rayleigh–Plesset’s resolution method. In

the present section the authors propose an improvement of this

model by taking liquid compressibility into account in an analytical

confined bubble dynamic model.

2.1. The Keller–Miksis model

This model is based on the Keller–Miksis [18] model which is

a modification of the Keller–Kolodner [17] model to include the

effect of a convergent liquid velocity potential on the bubble dy-

namics. The Keller–Miksis model is presented hereafter. It is here

written under the assumptions of spherical deformation of the

bubble interface (no fission of the bubble), no gravity, no viscosity

and surface tension effect. The bubble is at the centre of a spherical

container of internal radius Rs.

The derivation of the Keller–Miksis model is detailed in

Appendix. The Keller–Miksis model is based on the assumption

that the velocity potential φ respects the wave equation, hence

it can be written in (1) as the sum of a converging and diverging

velocity potential. It is the fact that this model readily includes a

converging velocity potential that is of interest for this application.

φ =
f (t − r/c)

r
+

g(t + r/c)

r
(1)

where t is the time, r the spacial coordinate and c the speed of

sound. The Keller–Miksis standard equation is:

−R̈bRb(Ṙb − c) =
1

2
Ṙb

3
+ Ṙb∆(Rb) − c

(

3

2
Ṙb

2
− ∆(Rb)

)

+ RbṘb∆
′(Rb) + 2

(

1 +
Ṙb

c

)

g ′′

(

t +
Rb

c

)

= 0

(2)

where Rb is the bubble radius,∆(Rb) = (Pb−P∞)/ρl, P the pressure

and ρl the liquid density.

2.2. Determination of g

To solve this differential equation the function g(t + Rb(t)/c)

must be expressed. This function is used to account for confine-

ment effects of a container on the bubble dynamics. First we need

to calculate f and f ′ that are expressed in (3) and (4) :

f

(

t +
Rb

c

)

= −R2
bṘb +

R2
b

c

(

∆(Rb) +
Ṙb

2

2

)

− g

(

t +
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c

)

+

(

2Rb

c
g ′

(

t +
Rb

c

))

(3)

f ′

(

t +
Rb

c

)

= −Rb∆(Rb) − g ′

(

t +
Rb

c

)

−
1

2
RbṘb

2
(4)

Initially g = g ′ = 0 then for t > (Rs0 − Rb0 )/c , which is the time

needed by the initial velocity potential to reach the structure sur-

face, g ′ is expressed in (5). g is obtained by numerical integration

of g ′, and g ′′ by the numerical differentiation of g ′.

g ′

(

t +
Rs

c

)

= Rsc

(

Ṙs +
1

R2
s

(

f

(

t +
Rs

c

)

+ g

(

t +
Rs

c

))

+
1

Rsc
f ′

(

t +
Rs

c

))

(5)

The relations between f and g at the bubble and structure

surfaces are obtained using the wave equation (1) with a constant

speed of sound c , which leads to f (t1 +
Rb
c
) = f (t2 + Rs

c
) with

t2 = (Rs(t2) − Rb(t1))/c + t1 and g(t1 + Rs
c
) = g(t2 +

Rb
c
) with

t2 = (Rs(t1) − Rb(t2))/c + t1.

3. Application to a rigid wall case

In the presentwork it has beendecided to simulate an air bubble

growth that is caused by an initial gas over-pressure to validate the

proposedmodification of the Keller–Miksismodel since it is amore

classic case. The domain of liquid is at rest at the beginning of the

simulation. The initial conditions are the following: Rb0 = 40 mm,

Ṙb0 = 0 m.s−1 and Pb0 = 6 MPa to compare with previous refer-

ence cases [14]. These initial conditions produce bubble dynamics

comparable to dynamics observed during HRAM events [7]. The

first case of interest is the case of a bubble inside a spherical rigid

container. In that case the velocity of the structure wall is zero,

which leads to (6):
{

Rs = Rs0

Ṙs = 0
(6)

Firstly the self-consistency of the model is examined and the

results obtained with the Keller–Miksis model are compared with

results obtained by finite element simulations. The finite element

simulations were performed using the EUROPLEXUS explicit code,

which is jointly developed by CEA and EU CRC-Ispra to accurately

solve fast dynamic problems for coupled fluid/structure systems.
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Fig. 1. Bubble radius predicted using the confined Keller–Miksis equation in a

spherical rigid container ( ) and predicted with the confined Rayleigh–Plesset

equation in a 6 mm thick ( ) , 15 mm thick ( ) and 60 mm thick ( ) Rs

= 1 m steel container.

3.1. Verification of the consistency of analytical models for rigid con-

tainers

The confined Keller–Miksis model is solved using an Euler
method with a fixed time step ∆t = 10−5 ms. The standard
Keller–Miksis equation is equivalent to the Rayleigh–Plesset equa-
tion when the liquid speed of sound tends to infinity [18]. Un-
fortunately this verification cannot be carried out for this case
since the confined Rayleigh–Plesset equation cannot be used in
a rigid container: due to the liquid incompressibility hypothesis
an increase in the bubble radius can only occur simultaneously
with an increase in the structure radius. However Fig. 1 shows the
comparison between bubble dynamics predictedwith the confined
Keller–Miksis equation in a rigid Rs = 1 m spherical container and
predicted using the confined Rayleigh–Plesset equation for several
container rigidities. Thematerial parameters used are summarized
in Table 2. The confined Rayleigh–Plesset equation in a spherical
elastic container is given by (7). For more details on the derivation
of this model please refer to Fourest et al. [7].
⎧
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3

2
Ṙb

2
+
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− 2Ṙb

2

(

Rb

Rs

)

− R̈b

(

R2
b

Rs

)

+
1

2
Ṙb

2

(

Rb

Rs

)4

= 0

Ps − Ps0 = (Rs − Rs0 ).E.

(

(Rs0 + e)3 − R3
s0

R3
s0

)

×

(

2R2
s0

2(1 − 2ν)R3
s0

+ (1 + ν)(Rs0 + e)3

)

(7)

with E the Young Modulus, ν the Poisson ratio and e the shell
thickness.

The bubble predicted in the 6mmthick steel spherical container
using the confined Rayleigh–Plesset equation has larger oscilla-
tions than those predicted in the rigid container, however the
bubbles in the 15 mm and 60 mm thick steel spherical containers
have lower oscillations than in the rigid container. This is obviously
not possible but it was already known that for containerswith high
rigidity the confined Rayleigh–Plesset equation could lead to non-
physical results. By taking the liquid compressibility into account
the confined Keller–Miksis equation solves this problem.

Fig. 2 shows the bubble radius versus time for several inter-
nal radius Rs of the spherical rigid container. As expected larger
containers lead to larger bubble radius. For very large containers
the predicted bubble dynamics is equivalent to the one predicted
using the unconfined Keller–Miksis equation. Moreover contrary
to the unconfined Keller–Miksis, the confined equation does not
present a damping of the bubble amplitude at each rebound due

Fig. 2. Bubble radius predicted using the confined Keller–Miksis equation in several

spherical rigid containers of internal radius Rs . Rs = 0.5 m ( ), Rs = 2 m ( ) , Rs =

5 m ( ) , Rs = 50 m ( ) and Rs = ∞ ( ) .

to the liquid wave emitted outward. In this model this wave is
eventually reflected by the structure and continues to interactwith
the bubble.

The Keller–Miksis model is based on the hypothesis that the
velocity potential propagates at the speed of sound. Fig. 3 shows
an example of the behaviour of the model for a rigid wall at Rs = 2
m of the bubble centre. The bubble radius reaches amaximal value
of approximately 150 mm. Fig. 3-(a) presents the propagation of
the initial wave and its subsequent reflections on the structure and
bubblewalls. It can be noted thatwhen thiswave interactswith the
structure surface it corresponds to changes in the pressure at this
interface (see Fig. 3-(b)). As expected, the interaction between the
structure and the bubble growth is effectively caught through the
velocity potential propagation.

3.2. Finite element modelling for fluid and structure in EUROPLEXUS

Due to the geometry of the problem, uni-axial simulations
should be performed. However it is not available in the EURO-
PLEXUS code, so axi-symmetric bi-dimensional simulations are
performed. Themesh domain is reduced to a quarter with symme-
try conditions being applied in the x and y directions. To strictly
ensure the separation between the gas and liquid domains (see
Fig. 4), an Arbitrary Lagrangian Eulerian (ALE) representation is
used, where the liquid–gas interface is considered as Lagrangian.
Excessive deformations within the fluid domains are avoided
through classical grid motion techniques [19].

Among the several available discretization methods available
in EUROPLEXUS (i.e. finite element, finite volume, SPH or discrete
elements), the proposed simulations implement an hybrid formu-
lation, with a non-conservative finite element approximation for
velocities, whereas the mass conservation is achieved through a
finite volume scheme. This approach allows the kinematic quanti-
ties to be located at the nodes of the mesh and provides simplicity
and robustness for Arbitrary Lagrangian Euler representation. After
spacial discretization, the equations to solve are the momentum
conservation for the fluid (8), the dynamic equilibrium for the
structure (9), the mass conservation for the fluid (10) and the
kinematic constraints (11).

Mf U̇ +
(

Ftransport (U) + Fpressure(U)
)

+ CT
f Λ = Fextf (8)

MsẌ + Fint (X) + CT
f Λ = Fexts (9)

˙̄ρ = ΣcellfacesρupwindUface.ns (10)

Cf U̇ + CsẌ = B (11)
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Fig. 3. Propagation of the initial liquid velocity potential within the liquid (a) and correspondence with change in the pressure onto the structure (b) for a bubble in a

Rs = 2 m rigid container.

whereU is the fluid velocity and X is the structural displacement at
mesh nodes,Mf andMs are the mass matrices, both made diagonal
through lumping techniques, Ftransport accounts for the convective
term in Euler equations, Fpressure results from the integration of
the fluid pressure forces, Fint results from the integration of the
structural stress forces, ρ̄ is the average density within the fluid
cells, ρupwind and ρface are the components of the simple Finite
Volume scheme used to ensure mass conservation for the fluid,
Cf and Cs express kinematic constraints acting on both fluid and
structure.

The fluid is supposed to undergo adiabatic transformations,
so no conservation equation for energy is required. In the next
paragraphs of the current section, the structure is assumed to
be rigid, so the dynamic equilibrium equation is not taken into
account. It is relevant for Section 4, where the structural elasticity
is introduced in the dynamic system.

Time integration is carried out through the central differences
explicit scheme, writing from step n to step n + 1 (and involving
mid-step quantities):

Un+ 1
2 = Un +

∆t

2
U̇n (12)

Ẋn+ 1
2 = Ẋn +

∆t

2
Ẍn (13)

Xn+1 = Xn + ∆tẊn+ 1
2 (14)

The kinematic constraints are enforced exactly through La-
grange Multiplier Λ, with no additional arbitrary parameters such
as penalty coefficients. They account for all boundary conditions,
for fluid–structure interaction and for particular additional condi-
tions (see below). Fluid–structure interaction is expressed by a lin-
ear constraint along the normal direction to the structure imposing
the fluid and structural velocities to be equal in this direction (and
equal to zero in the particular case of rigid structures), with the
current hypothesis that the mesh nodes for fluid and structure are
geometrically coincident on the interface.

Moreover, the sphericity of the Lagrangian bubble interface
(free surface) is imposed in the simulations, in order to avoid un-
stable phenomena to occur during collapse due to a small deviation
in the mesh, and hence permit the study of several bubble periods.
This is achieved by imposing the velocities of all concerned fluid
nodes to be equal in the radial direction, which fits directly into the
algorithmic framework previously described. The numerical setup
is described in Fig. 4.

3.2.1. Material laws used in confined bubble simulations

It is assumed that no thermal effects affect bubble dynamics in
water at ambient temperature [20]. Hence the behaviour of the
liquid is assumed to be isotherm. The equation of state used for
the liquid is (15) with cl = 1500 m.s−1, Pl0 = 0.1 MPa and

d

Fig. 4. Sketch of the considered problem for simulations of bubble dynamics inside

a rigid container.

Fig. 5. Mesh principle for simulations of bubble dynamics inside a rigid container.

ρl0 = 1000 kg.m−3. The gas follows the ideal gas law (26) with
γ = 1.4 for air as a diatomic gas.

Pl = Pl0 + (ρl − ρl0 )c
2
l (15)

3.2.2. Convergence study for the rigid container case
The finite element models are made of 4 nodes axi-symmetric

elements. Fig. 5 shows the parameters used in the description of
the mesh. N is the number of orthoradial elements and M the
number of liquid elements in the radial direction. Fig. 6 shows the
bubble radius versus time curves for different mesh refinements.
This study is performed for Rs = 1 m.
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Fig. 6. Bubble radius vs time results obtainedwith differentmesh refinementsNxM:

10 × 159 ( ), 24 × 318 ( ) , 56 × 640 ( ) , 110 × 1280 ( ) .

Table 1

Model features and calculation performances on Intel R⃝ Ivy-Bridge E5-2667v2 pro-

cessors clocked at 3.3 GHz.

Model Elements Nodes ∆t0 CPU time

1 × 158 1665 1840 6.41·−4 ms 28 s

1 × 318 8088 8444 2.53·−4 ms 2 min 31 s

1 × 640 38024 38746 1.03·−4 ms 25 min

1 × 1280 149985 151432 5.16·−5 ms 11 h 40 min

Table 2

Material numerical values used in the simulations.

Material ρs E ν

(kg. mm−3) (MPa)

Steel 7.8 · 10−3 210000 0.3

Aluminium 2.7 · 10−3 70000 0.3

PMMA 1.18 · 10−3 2600 0.3

A satisfying convergence is obtained for the 56 × 640 mesh
refinement (<1% of relative error with the 110 × 1280). For
the following analyses N = 56 will be used. Table 1 presents
the numerical cost of each finite element simulation for 10 ms
of simulated time. The computational time for the Keller–Miksis
simulations is approximately of 5 s.

3.3. Comparison of the confined Keller–Miksis and finite element

simulations for bubbles in rigid containers

The results obtained with the confined Keller–Miksis model in
a rigid container are compared to those obtained by finite element
simulations. Fig. 7 compares the radius versus time evolution for
a bubble in three containers of internal radius Rs = 0.5 m, 1 m
and 2 m. Fig. 8 compares the pressure at the bubble and structure
surfaces calculated with the confined Keller–Miksis and finite el-
ement model for a Rs = 1 m rigid container. The results obtained
in all cases are in a fairly good agreement. The radii predicted
with the finite element models were found to be slightly inferior
in terms of amplitude and period duration to the one predicted
with the confined Keller–Miksis model. The same tendency is
observed for the predicted pressure, in particular the pressure in
the bubble obtained with the finite element model during the
first rebound is inferior to prediction of the analytical model. It is
attributed to the fact that the analytical model does not consider
hydrodynamic decay (compression and tension wave propagate at
the same velocity). Nevertheless the two models are in very good
agreementwhich validates the analyticalmodel developed and the
finite element simulations used.

4. Application to an elastic wall case

Now that the case of a rigid container has been validated, the
case of bubbles in an elastic container is examined. Instead of (7)

Fig. 7. Bubble radius predicted using the confined Keller–Miksis equation in a

Rs = 0.5 m ( ) , Rs = 1 m ( ) and Rs = 2 m ( ) rigid containers and

obtained by ALE finite element simulations in Rs = 0.5 m ( ) , Rs = 1 m ( )

and Rs = 2 m ( ) spherical rigid containers.

Fig. 8. Pressure at the bubble and structure interfaces predicted using Keller–Miksis

equation ( ) and ( ) and obtained by ALE finite element bubble growth

simulation ( ) and ( ) .

that models the static response of a spherical shell submitted to

uniform internal pressure, a dynamic response model is used for

the spherical structure. This is done to ensure the continuity of the

functionRs that is obtained by numerical integration. For reasons of

simplification the internal radius of the sphere is used as the mean

surface of the shell. It is justified since the shell thickness is largely

inferior to the shell internal radius.

In the case of a spherical shell the curvature is constant and

displacement only occurs in the radial direction. The strains are

calculated using Reissner’s polynomial approximation [21] (16).

εθθ = ε1θθ
+ ε2θθ

(r − Rs) + ε3θθ
(r − Rs)

2 (16)

with εθθ themembrane coefficient, αθθ the bending coefficient and

βθθ the quadratic coefficient, given in the case of a spherical shell

in (17),

ε1θθ
=

Rs − Rs0

Rs0

; ε2θθ
= −

Rs − Rs0

Rs0
2

; ε3θθ
=

Rs − Rs0

Rs0
3

(17)

Using Hooke’s law the following stresses are found in (18),

σθθ = E
1 + ν

1 − ν2
εθθ = E

1 + ν

1 − ν2
(Rs − Rs0 )

×

(

1

Rs0

−
(r − Rs)

R2
s0

+
(r − Rs)

2

R3
s0

)

(18)

Then the membrane flux Nθθ can be calculated using (19):

Nθθ =
E(1 + ν)

1 − ν2

(

eε1θθ
+

e3

12

(

ε3θθ
+

ε2θθ

Rs0

))

(19)

Finally, using the equilibrium equation (20) it is possible to obtain

the equation of motion of a spherical shell submitted to spatially
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Fig. 9. Bubble radius vs. time in a Rs = 1 m 6 mm thick steel spherical container

predicted with the confined Keller–Miksis equation with cl = 1500 m.s−1 ( ),

cl = 2500 m.s−1 ( ) , cl = 10000 m.s−1 ( ) and the confined Rayleigh–

Plesset equation with cl = ∞ ( ) .

Fig. 10. Bubble radius vs. time predicted with the confined Keller–Miksis equation

in Rs = 1 m rigid ( ) , 6 mm thick steel ( ), aluminium ( ) , PMMA

( ) spherical containers.

uniform pressure (21) which permits to calculate Ṙs and Rs.

−2Nθθ

Rs0

+ Ps − Ps0 + ρhR̈s = 0 (20)

− ρseR̈s + Ps − Ps0 −
2E(1 + ν)

1 − ν2

(Rs − Rs0 )

R2
s0

(

e +
2e3

12Rs0

)

= 0 (21)

The fluid and structure equations are coupled using (22) to calcu-
late the term Ps in (21).

P(r, t) = P∞ − ρl

(

∂φ

∂t
+

1

2

(

∂φ

∂r

)2
)

(22)

4.1. Verification of the consistency of analytical models for elastic

containers

The classic Keller–Miksis equation is equivalent to the
Rayleigh–Plesset equation when the liquid speed of sound tends
to infinity [18]. Therefore it is first verified that when the speed of
sound in the liquid is chosenhigh, both confinedmodels predict the
same bubble radius evolution. Fig. 9 compares the bubble radius
predicted in a 6mm thick steel spherical containerwith the Keller–
Miksis for several values of the sound speed to the radius pre-
dicted in the same container using the confined Rayleigh–Plesset
equation. It can be observed that by increasing the sound speed
in the liquid the confined Keller–Miksis converges to the confined
Rayleigh–Plesset model. For a sound speed of cl = 10000 m.s−1

the results obtained using both models are virtually identical.
The development of confined bubble dynamics models is car-

ried out to take the interaction between the bubble and the struc-
ture into account. Fig. 10 compares the predicted bubble dynamics
in a rigid container and in several containers of different overall

rigidity. Themodel behaves in the expectedway, the bubble ampli-
tude and period increase while the overall rigidity of the container
decreases.

Fig. 11 shows an example of the behaviour of the model for a
6 mm thick steel wall at Rs = 2 m of the centre of the bubble
for one period of the bubble. Fig. 11-(a) recalls the propagation of
the initial wave and its subsequent reflections on the structure and
bubble walls. Fig. 11-(b) is a zoom of Fig. 11-(a) at the deformable
structure surface. It can be noticed that the times at which the
wave interacts with the structure surface correspond to changes
in the pressure at this interface that can be seen in Fig. 11-(c). The
pressure observed in this case differs from the one in Fig. 3-(b):
there is a quick increase of the pressure at times when the initial
wave interacts with the structure wall. However this increase is
rapidly compensated by the structure deformation, hence smaller
discontinuities in the pressure response are observed in this case.
As expected the pressure found at the container surface in this
elastic case is less than the one obtained for the same source in
a rigid container in Fig. 3-(b). It can also be noted that at the end
of the period neither the structure wall position nor the pressure
applied to it reach the initial value.

4.2. Comparison of the confined Keller–Miksis and finite element

simulations for bubbles in elastic containers

4.2.1. Finite element modelling of the elastic case

The problem is here the same as in Section 3.2 except that an
external spherical structure has been added. The bubble interface
(between liquid and air) and the structure nodes displacements
are again defined Lagrangian and spherical. So there is no mixture
between the air and water in the simulations. Fig. 12 describes the
considered problem.

4.2.2. Material laws used in elastically confined bubble simulations

The liquid and gas are assumed to follow respective equations
of state (15) and (26). The containers are modelled using a linear
elastic law. Table 2 summarizes the different material values used
for the simulations.

4.2.3. Convergence study for bubble dynamics in an elastic container

Again, the finite element models consist of 4 nodes axi-
symmetric elements. Fig. 13 shows the parameters used in the
description of the mesh. N is the number of orthoradial elements,
M the number of liquid elements in the radial direction and L
the number of container elements in the radial direction. A con-
vergence study has been performed for a bubble in a Rs = 1 m
6 mm thick steel container. The conclusions are the same than
in Section 3.2.2, therefore the details are not presented here.
Satisfying convergence is obtained for the 56 × 640 × 4 mesh
refinement (less than 1% of relative errorwith the 110× 1280× 8).
Therefore, the 56 × 640 × 4 models will be used for the following
analyses.

4.2.4. Simulation results

The results obtained with the confined Keller–Miksis model
in elastic containers are compared to those obtained with finite
element simulations. Fig. 14-(a) compares the radius versus time
evolution for a bubble in three elastic containers of internal radius
Rs = 1 m. Fig. 14-(b) compares the predicted internal radius of
the spherical structure in the same cases. The results obtained in
all cases are in a fairly good agreement during the first period of
bubble pulsation. The maximum difference in bubble dynamics
is obtained for the bubble in the PMMA container (1% in bubble
amplitude and 3.5% in bubble period). The same order of devia-
tion is found for the structure response. Contrary to results that
are usually obtained with the confined Rayleigh–Plesset equation

6



Fig. 11. Propagation of the initial liquid velocity potential within the liquid (a) and correspondence with change in the structure internal radius (b) and in the pressure at

the structure wall (c) for a Rs = 2 m 6 mm thick steel container.

Fig. 12. Sketch of the considered problem for bubbles dynamics simulations in an

elastic containers.

the response of the structure (which has a smooth movement in

Rayleigh–Plesset simulations) found using the confined Keller–

Miksis equation oscillates in a similar manner than the one cal-

culated using finite element simulations. Figs. 14-(c) and (d) com-

pares the pressure at the structure and bubble surfaces calculated

using the confined Keller–Miksis and finite element model for Rs

= 1 m elastic containers. The pressure predicted on the structure

surface is in good agreement for both cases especially during the

first bubble period. As in Fig. 8 the bubble pressure predicted

using the Keller–Miksis model is higher during the rebound than

the one predicted using finite element simulations. This is due

to the fact that lower bubble radii are reached during collapse

in the Keller–Miksis model possibly due to small damping in

the finite element simulations. Nevertheless the two models are

in very good agreement which validates again both the analyt-

ical model and finite element simulations for bubbles in elastic

containers.

Fig. 13. Mesh principle for bubble dynamics simulations in an elastic containers.

4.3. Evaluation of the improvement in prediction by modelling the

liquid compressibility

In this section the improvement obtained when modelling the
liquid compressibility instead of the confined Rayleigh–Plesset
equation is examined. It has already been shown that for very
rigid containers the confined Rayleigh–Plesset equation can lead
to non-physical results. Therefore only one comparison on a not
too rigid case will be presented hereafter to illustrate the obtained
improvement in the bubble dynamics, structure movement and
hydrodynamic load predictions using the confined Keller–Miksis
model instead of the Rayleigh–Plesset equation. Fig. 15 compares
the bubble dynamics and pressure on the structure for a bubble
in an elastic spherical container. The confined Rayleigh–Plesset
equation predicts lower bubble radius which is logical since the
liquid compressibility is expected to allow a larger bubble radius
for the same pressure level. The finite element simulation and the
Keller–Miksis model are quite similar in terms of bubble dynamics

7



Fig. 14. Bubble radius (a), container internal radius variation (b), pressure at structure wall (c) and at the bubble interface (d) predicted using the confined Keller–Miksis

equation in Rs = 1m steel ( ), aluminium ( ) and PMMA ( ) containers and obtained by ALE finite element simulations in steel ( ) , aluminium ( ) and

PMMA ( ) containers.

Fig. 15. Bubble radius (a), container internal radius variation (b) and pressure at structure wall (c) predicted in a Rs = 1m 6 mm thick steel container using the confined

Keller–Miksis equation ( ), the confined Rayleigh–Plesset equation ( ) and obtained by ALE finite element simulations ( ) .

(3% instead of 10% in amplitude and less than 1% instead of 7%

in period). Similarly the pressure and internal structure radius

curves predicted using the Keller–Miksis equation have a very

similar shape than those obtained by finite element simulations,

which is not the case for Rayleigh–Plesset. The difference in the

impulsion transmitted to the structure during the first oscillation

is lower (less than 1% instead of 3.5% with the confined Rayleigh–

Plesset equation). This difference would of course increase if more

compressible fluids (cl ≈ 1300 m.s−1 for kerosene [22]) were

examined. Therefore, modelling the bubble dynamics in the fi-

nite element simulation would improve the results with respect

to applying the Rayleigh–Plesset pressure directly to a finite el-

ement model of the structure even in the case of a spherical

container.

5. Discussion

In the present study the Keller–Miksis [18] equation has been

used to predict the dynamics of gas bubbles in elastic spherical

containers. It is a logical use for this model, even if this equation

was derived by considering an infinite domain of liquid and is

mostly used in that case: it was initially developed to predict

8



the response of a bubble submitted to an harmonic solicitation,

typically a gas bubble in a vibrating vessel. In the present study the

model is used for its initial application but instead of assuming the

form of the harmonic pressure field in the liquid and deducing the

converging velocity potential from this assumption, the converging

velocity potential is found by considering the response of the

structure. In the present study two cases have been studied: rigid

and elastic containers on which the only load applied is derived

from the bubble dynamics. However it is also possible to apply

this equation for the initial purpose by considering a structurewall

having an imposed harmonic movement. It would then require

no assumption on the liquid pressure profile, but only on the

frequency and amplitude of the structure vibrations.

In all calculations performed in the present study the liquid

has been considered inviscid due to the large dimensions of the

bubbles considered in the calculation. However the liquid viscosity

and surface tension may be added by modifying the boundary

condition at the bubble wall. Moreover the Keller–Miksis model

uses an acoustic approximation and is expected to be all the more

accurate as all liquid velocities are small compared to the velocity

of sound in the liquid. However this approximation is found to

be in good agreement with the numerical data. The predictions of

thismodelmight still be improved by changing this approximation

to an extrapolation of the acoustic theory: the Kirkwood–Bethe

hypothesis (summarized in Cole [23]). It assumes that all quantities

propagate at the speed ṙ + c instead of c. This hypothesis is used

in the Gilmore [24] model in which it is found to be accurate for

bubble wall velocities up to 2.2 times the sonic velocities for which

the acoustic approximation seems unlikely to produce accurate

results. Hence improvement in the bubble prediction for high

growing rate bubbles may be obtained by using the Kirkwood–

Bethe equation in a similar model than the one proposed in the

present study.

6. Conclusion and outlooks

In the present study the classic Keller–Miksis equation that

models the dynamics of a single gas bubble in an infinite domain

of liquid assuming a constant liquid speed of sound has been used

to take the confinement effects of a spherical container on the

bubble dynamics into account. To this end the function g that

represents the convergent part of the velocity potential in the

liquid has been used. A limit condition has been written in terms

of velocity potential to link this function to the divergent potential

that reaches the structure. This model has been developed for two

cases of containers: rigid and elastic containers. In both cases the

consistency of the analytical model has been assessed, and it has

been used to validate ALE finite element simulation.

Concerning the consistency of the analytical model it has been

verified that:

• Contrary to the confined Rayleigh–Plesset model it does

not predict non-physical results for high rigidity (or rigid)

containers;

• The predicted bubble radius and period increase with the

container size until it reaches the unconfined Keller–Miksis

results for large containers;

• In an elastic container the confined Keller–Miksis model is

equivalent to the confined Rayleigh–Plesset one for high

sound speed (10000 m.s−1);

• The predicted bubble radius and period increase while the

overall rigidity of the container decreases.

In all studied cases a very good agreement has been found

between the results obtained using the confined Keller–Miksis

model and finite element simulations. The maximum difference in

bubble dynamics is obtained for the bubble in the PMMA container

(5% in bubble amplitude and 3.5% in bubble period). A good agree-

ment in the pressure prediction is found, curves predicted with

both methods have the same shape and variations on the pressure

have very little effect on the impulse transmitted to the structure

(less than 1%). These good agreements validate the use of finite

element simulation to predict the bubble and structure dynamics.

The Keller–Miksis model is largely less computationally expensive

(5 s against 25 min with finite element simulation) however it is

limited to spherical containers.

Finally the improvement in bubble dynamics and hydrody-

namic load predictions achieved bymodelling liquid compressibil-

ity has been examined by comparing the confined Keller–Miksis

to the confined Rayleigh–Plesset equation and to results obtained

by finite element simulations. The Keller–Miksis model predicts a

bubble radius closer to the results obtained with finite element

simulations that the Rayleigh–Plesset one (3% instead of 10% in

amplitude and less than 1% instead of 7% in period). Moreover the

difference in the impulsion given to the structure during the first

oscillationhas been found to be lower (less than1% instead of 3.5%).

However the obtained predictions with the confined Rayleigh–

Plesset stay reasonably accurate in this case. Moreover in terms

of structure sizing the Rayleigh–Plesset is conservative since its

predicts a slightly higher pressure and structure movement. Since

the agreement between the finite element simulations and the

analytical model is found very acceptable, further studies will be

carried out to simulate more complex container geometries and

behaviours in finite element simulations.
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Appendix. Formulation of the Keller–Miksis model

A.1. Basic fluid mechanics equations

The velocity of the bubble interface must be equal to the veloc-

ity of the fluid at the bubble surface, which gives (23),

Ṙb =
∂φ(Rb, t)

∂r
(23)

The velocity potentialφ, the pressure P, and the liquid densityρl

must satisfy the equations of conservation of mass (24), the Euler

equation (25) and the equations of states (26) (here the perfect gas

law),

∂ρl

∂t
+

∂φ

∂r

∂ρl

∂r
+ ρl

(

∂2φ

∂r2
+

2

r

∂φ

∂r

)

= 0 (24)

ρ

(

∂

∂t

∂φ

∂r
+

∂φ

∂r

∂2φ

∂r2

)

+
∂P

∂r
= 0 (25)
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Pb = Pb0

(

Rb0

Rb

)3γ

(26)

A.2. Simplifications introduced in the Keller–Miksis model

The Navier–Stokes equation (25) is integrated with respect to r

from r to infinity, which gives (27),

−
∂φ

∂t
−

1

2

(

∂φ

∂r

)2

+

∫ ∞

r

dP

ρl

= 0 (27)

Next (27) is differentiated with respect to t with ∂P
∂t

= dP
∂ρl

∂ρl
∂t

=

c2
∂ρl
∂t

where c2 = ∂P
∂ρl

and c is the speed of sound.

∂2φ

∂t2
+

∂φ

∂r

∂2φ

∂t∂r
+

c2

ρl

∂ρl

∂t
= 0 (28)

Then (24) is used in (28) to eliminate ∂ρl/∂t , and divided by c2 to
obtain (29),

1

c2

∂2φ

∂t2
−

∂2φ

∂r2
−

2

r

∂φ

∂r
=

1

ρ

∂ρl

∂r

∂φ

∂r
−

1

c2

∂φ

∂r

∂2φ

∂t2
(29)

The Keller–Miksis equation is written under the assumption
that for a nearly incompressible fluid c2 is large and ∂ρ/∂r is small
and that ∂φ ∂r and ∂2φ ∂t2 have finite values. It leads to the
classic wave propagation equation (30). The Keller–Miksis equa-
tion therefore consider liquid compressibility assuming a constant
sound speed.

1

c2

∂2φ

∂t2
−

∂2φ

∂r2
−

2

r

∂φ

∂r
= 0 (30)

For simplification ρl is set constant in (27) which gives the classic
unsteady Bernoulli equation (31) for the expression of pressure in
the liquid:

P(r, t) = P∞ − ρl

(

∂φ

∂t
+

1

2

(

∂φ

∂r

)2
)

(31)

A.3. Derivation of the Keller–Miksis differential equation

∆(Rb) is defined in (32) as the pressure difference divided
by ρl.

∆(Rb) =
Pb − P∞

ρl

= −
∂φ

∂t
−

1

2

(

∂φ

∂r

)2

(32)

In the Keller–Miksis model φ respects the wave equation (30),
hence it can be written in (33) as the sum of a converging and
diverging velocity potential.

φ =
f (t − r/c)

r
+

g(t + r/c)

r
(33)

Subsequently equation (33) is used in (32) and in (23) to elimi-
nate the convergent part f, it gives (34) for Rb where f does not
appears [18],

Rb∆(Rb) − cRbṘb = cφ(Rb, t) −
1

2
RbṘb

2
− 2ġ(t +

Rb

c
) (34)

Finally (34) is differentiated with respect to time and (32) is used
to eliminate ∂φ/∂t , which leads to the Keller–Miksis standard

equation (35).

−R̈bRb(Ṙb − c) =
1

2
Ṙb

3
+ Ṙb∆(Rb) − c

(

3

2
Ṙb

2
− ∆(Rb)

)

+RbṘb∆
′(Rb) + 2

(

1 +
Ṙb

c

)

g ′′

(

t +
Rb

c

)

= 0

(35)
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