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In this paper, a new technique is proposed for trajectory tracking of a flexible spacecraft subject to angular
velocity constraints. The problem is addressed using an Output to Input Saturation Transformation
(OIST) which converts the prescribed bounds into state-dependent saturations on the control input
signals. It is shown that an interval observer can be used in combination with the OIST technique to
ensure that the constraints remain satisfied despite unmeasured flexible modes and torque disturbances.
Some realistic simulations conclude the paper and validate our approach.
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time-domain constraint

1. Introduction

State constraints arise in numerous engineering applications. Among several approaches summa-
rized in G.C. Goodwin and de Dona (2004), Glattfelder and Schaufelberger (2003), a popular idea
consists of modifying a nominal controller whenever the constraints are about to be violated. Fol-
lowing this line, the Output to Input Saturation Transformation (OIST) approach was recently
proposed in Burlion (2012); Chambon, Burlion, and Apkarian (2015a) to replace the state con-
straints by some state-dependent control saturations. Such an approach is attractive because it
enables use of the vast literature on control saturation problems and may especially lead to con-
sider anti-windup loops which are now well understood (see e.g Galeani, Tarbouriech, Turner, and
Zaccarian (2009); Tarbouriech and Turner (2009)).

On the other hand, the spacecraft attitude pointing and tracking control problems have been
extensively studied in the past decades (see e.g Akella, Thakur, and Mazenc (2015); Chen and
Huang (2009); Di Gennaro (2002); Gennaro (2003); H.-H. Zhang and Trivailo. (2008); Lovera and
Astolfi (2004); Tayebi (2008); Trégouët, Arzelier, Peaucelle, Pittet, and Zaccarian (2015); Zhang
and Cheng (2012) and the references therein). Most of the papers dealing with satellite attitude
control subject to constraints use Model Predictive Control (MPC) techniques (see e.g Gupta,
Kalabic, Cairano, Bloch, and Kolmanovsky (2015); Hegrenaes, Gravdahl, and Tondel (2005)).
Although MPC provides very efficient solutions, the full state is most of the time assumed to
be available. As an alternative to MPC, only a few papers deal with state-constraints, especially
with the problem of limiting the angular velocity of a spacecraft as in Hu (2009); Luzi, Peaucelle,
Biannic, Pittet, and Mignot (2014). This is a significant problem because the limitations of the
satellite actuators require a response with a limited speed when the pointing error is too large.

In this paper, the problem of spacecraft attitude reference trajectory tracking is considered. To
cope with angular velocity limitations, a nominal controller is combined with the so-called OIST
methodology. Since in its preliminary form, this technique requires the full state to be measured, an
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interval observer is proposed developing the ideas introduced in Chambon, Burlion, and Apkarian
(2015b). This observer is used to compute upper and lower bounds of the torque induced by the
unmeasured flexible modes and external disturbances. Finally the stability of the closed-loop system
is established using an anti-windup design.

The paper is organized as follows. In Section 2, the mathematical model of the flexible spacecraft
is recalled, while in Section 3, the control problem is stated. In Section 4, a novel Output to Input
Saturation Transformation which uses a time-varying interval observer is proposed to deal with the
angular velocity constraints. The obtained closed-loop saturated system is studied in Section 5 :
it is demonstrated that asymptotic stability properties are achieved when a nonlinear anti-windup
loop is combined with a nominal control law. Finally, the effectiveness of the proposed approach is
illustrated by numerical simulations in Section 6.

2. Preliminaries

2.1 Definitions and notation

Notation 1: The classical unit quaternion representation for satellite orientation with respect to
an inertial frame is denoted q = [q0, q

T
v ]T , where q0 ∈ R is the scalar component and qv ∈ R3 is

the vector component. The quaternion is unit when q20 + qTv qv = 1. The inverse of q is denoted
q−1 = [q0,−qTv ]T and the product of two quaternions q1 and q2 is denoted q1 ∗ q2. The following
notation will be useful when developing the equations for satellite attitude dynamics:

S(v) =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 E(q) =

[
−qTv

q0I3 + S(qv)

]

R(q) = (q20 − qTv qv)I3 + 2qvq
T
v − 2q0S(qv)

(1)

where v = [v1, v2, v3]
T . Note that S(.) is the skew symmetric operator and that E(q) ∈ R4×3

is classically used in the expression of q̇. Moreover, R(q) ∈ SO(3) is the rotation matrix that
corresponds with q.

Notation 2: Given two vectors x1, x2 ∈ Rn, the relation x1 ≤ x2, is understood element-wise.

Notation 3: For any vector x ∈ Rn, and any matrix A ∈ Rm×n, |x| and |A| denote respectively
the Euclidean norm of x and the induced norm of A. The Frobenius norm of is denoted by |A|F :=√
trace(ATA). Moreover, given any positive definite matrix Q, λmin(Q) (resp. λmax(Q)) denotes

the minimal (resp. maximal) eigenvalue value of Q.

Definition 1: A square matrix M = (Mij) ∈ Rn×n is said to be Metzler if Mij ≥ 0,∀i 6= j.

Definition 2: Given two scalar functions u, u : R −→ R such that ∀t, u(t) ≤ u(t), the following
saturation operator with time-varying bounds is defined:

∀u ∈ R, Sat
u(t)
u(t)(u) = max{u(t),min{u(t), u}} (2)

When applied to a vector, this operator is understood component-wise.

2.2 Flexible spacecraft modeling

In this paper, we consider the flexible spacecraft model used in Di Gennaro (2002):
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q̇e =
1

2
E(qe)ωe (3a)

Jmbω̇e = −N(ω, ωe, ze, ω
b
r) + u+ d+ Czze +Dzωe − Jmbω̇br (3b)

że = Azze +B1,zωe +B2,zω̇
b
r (3c)

where:

• qe = q ∗ q−1r = [qe0 q
T
ev]

T is the error between the spacecraft quaternion q and the reference
quaternion qr
• ωe = ω−ωbr ∈ R3 is the error between the angular velocity of the spacecraft ω and ωbr which

is the reference angular velocity ωr expressed in the body fixed frame. In other words, ωbr is
defined by:

ωbr = R(qe)ωr = R(q)R(qr)
Tωr (4)

• u ∈ R3 are the control inputs produced by gas jets.
• d ∈ R3 are the torque disturbances.
• ze = z − zr where z = [η ; ψ] = [η ; η̇ + δω] (η ∈ RN being the vector of the modal

displacements) and zr := [ON,1 ; δωbr].
• Jmb = J − δT δ is the main body symmetric inertia matrix where J ∈ R3×3 is the symmetric

inertia matrix of the undeformed structure and δ ∈ RN×3 is the coupling matrix between
elastic and rigid dynamics
• (Az, B1,z, B2,z, Cz, Dz) are matrices expressed with respect to the damping (resp. stiffness)

matrix C = diag{2ξiωi, i = 1..N} (resp. K = diag{ω2
i , i = 1..N}) of the N flexible modes:

Az =

[
ON IN
−K −C

]
, B2,z = −

[
ON
IN

]
δ , B1,z = AzB2,z

Cz = δT [K C] , Dz = −δTCδ (5)

• the function N is defined by the following relation:

∀e, f, g ∈ R3, ∀z ∈ R2N , N(e, f, z, h) = S(e)(Jmbf +Gzz + Jh) (6)

where Gz = [O3,N δT ]

Remark 1: The expression retained for zr corresponds to the absence of modal displacements.
Indeed, zr can be rewritten as zr := [ηr ; η̇r + δωbr] where ηr = η̇r = ON,1. Moreover, considering
the expressions of Az, B1,z and B2,z (5), it can be easily shown that zr verifies żr = Azzr+B1,zω

b
r−

B2,zω̇
b
r.

Remark 2: Control inputs u are merely produced by gas jets in the retained model of Di Gennaro
(2002). Considering additional control inputs like reaction wheels and magnetorquers is postponed
to future studies

3. Problem formulation

3.1 Main assumptions

In the remainder of the paper, the following not so restrictive assumptions have been made:
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(A1) Although it might be poorly damped, the spacecraft structure is assumed strictly stable so
that Az is Hurwitz (all eigenvalues lie strictly inside the open left half plane),

(A2) The torque disturbance signal is bounded. More precisely, we assume that:

d ∈ L2 ∩ L∞ (7)

which implies:

∃ d̄ > 0 / d(t) ∈ [−d̄, d̄] (8)

(A3) The initial state vector z(0) ∈ R2N associated to the flexible modes is assumed to belong to a
bounded interval. Then, there exist z−0 , z

+
0 ∈ R2N such that z−0 ≤ z(0) ≤ z+0 or equivalently:

z(0) ∈ [z−0 , z
+
0 ] (9)

(A4) The reference angular velocity ωr and the acceleration ω̇r are assumed to be bounded. More
precisely, we will consider:

ωr ∈ L∞ ; ω̇r ∈ L2 ∩ L∞ (10)

3.2 Problem statement

The starting point of the paper is the following nominal control law which does not take into
account the angular velocity constraints and requires the whole state to be measured:

Lemma 1: Under assumptions (A2) and (A4) and further considering that the whole state is
measurable, let the following static state-feedback controller be applied to system (3a)-(3c)

u = unom(qe0, xe, ω
b
r, ω̇

b
r) = −kpqev − kdωe −

1

2
Jmb(qe0I3 + S(qev))ωe +N(ω, ωe, ze, ω

b
r)

−Czze −Dzωe + Jmbω̇
b
r (11)

where the controller gains kp and kd are strictly positive scalars. Then, the error state xe =
[qev ; ωe ; ze] asymptotically converges to the origin for any initial condition x(0).

Proof. The control law is similar to the one of [Theorem 1, Di Gennaro (2002)]. There are two
slight differences in the proof of the result:

(1) in our modeling, we consider a torque disturbance d which introduces an additional term in
the derivative of the Lyapunov function V . This is treated in the same manner that the ω̇r
term. Indeed, using assumption (A2), one can still conclude the proof by invoking Barbalat’s
lemma.

(2) we do not impose any lower-bound on kd since the proof is unchanged when P is replaced by
εP where the positive real ε is an extra degree of freedom which can be chosen sufficiently
small so that Q > 0 no matter the value of kd > 0.

Remark 3: Note that qev tends to 0 while qe0 is driven to ±1 which in all cases make R(qe)
converge to the same rotation I3. Akella et al. (2015) proposes to adopt the notion of ’almost’
global asymptotic stability for this problem.

4
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In this paper, the problem at hand is thus to redesign the nominal full state feedback control
law (11) in the case where

• the modal displacements η and their time derivatives η̇ are not measured, which means that
z is no longer available for feedback,
• the angular velocity vector ω must satisfy the following asymmetric constraints

∀t, ω ≤ ω(t) ≤ ω (12)

with

ω < 0 < ω (13)

4. Output to Input Saturation Transformation extended for Robustness (OISTeR)

Before stating our main results and for clarity of presentation, we first recall the OIST technique
when both the full state and the disturbance are measured. Then, we propose an extended technique
using the upper and lower bounds of the unmeasured states which are thus provided by the interval
observer. This new technique called OISTeR means OIST extended with Robustness properties
(with respect to both the uncertain initial condition z(0) ∈ [z−0 , z

+
0 ] and uncertainties on d ∈

[−d̄, d̄]).

4.1 The ’classical’ OIST methodology

For clarity of presentation, let us first recall the OIST methodology when the full state and the
disturbance d are measured.

Lemma 2: Let kO be a strictly positive real number. Let u ∈ L2. Suppose that the whole state
and the disturbance torque d are available for feedback. Suppose that ω(0) ∈ [ω, ω] and consider the
following input saturated system:

Jmbω̇ = −N(ω, ω, z, 0) +OISat(u) + d+ Czz +Dzω (14a)

ż = Azz +B1,zω (14b)

where:

OISat(u) := Jmb

(
SatkOωkOω

(α+ kOω)− kOω
)

+N(ω, ω, z, 0)− d− Czz −Dzω (15)

with:

α = J−1mb (−N(ω, ω, z, 0) + u+ d+ Czz +Dzω) (16)

Then, ∀t ≥ 0, ω(t) ∈ [ω, ω]

Proof. The proof is straightforward using the OIST technique as defined in Burlion (2012); Cham-
bon et al. (2015a) in the relative degree 1 case (i.e when u appears in the expression of the first
derivative of ω with respect to time). For clarity, we develop the basic computations. Using (14a)-
(15), it is readily seen that ω undergoes the following dynamics:

ω̇ = SatkOωkOω
(α+ kOω)− kOω (17)

5
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which implies that ∀t,

−kO(ω − ω) ≤ ω̇ ≤ −kO(ω − ω) (18)

from this, the result is easily deduced using the fact that ω(0) ∈ [ω, ω] and kO > 0.

Remark 4: ’OISat(u)’ denotes a saturation of the control input u. This notation is preferred
to ’Sat’ since it is a state dependent saturation element which comes from an Output to Input
Saturation transformation.

4.2 The OISTeR methodology

The OISTeR methodology is now developed : it extends the above result when neither z nor d
are no longer measured. Following the preliminary ideas of Chambon et al. (2015b), we first build
an interval observer in order to obtain lower and upper bounds of the missing variables. Then,
we propose a novel ’OISat’ function which exploits these bounds. Note that the use of an interval
observer is the key idea to respect the angular velocity constraints (using an estimation of z in
combination with the OIST methodology presented in Lemma 1 would not be sufficient to make
sure that these constraints are fulfilled).

4.2.1 Interval observer synthesis

Let us introduce the following quantity:

˙̂z = Az ẑ +B1,zω (19a)

ẑ(0) =
z+0 + z−0

2
(19b)

Let us denote ez = z − ẑ and consider the following system:

ėz = Azez (20a)

ey = J−1mb (−S(ω)Gzez + Czez + d) (20b)

Lemma 3: Let the damping ratios verify 0 < ξi < 1 for all i ∈ {1, N}. Then, under assumptions
(A2) and (A3), there exist a Hurwitz Metzler matrix M ∈ R2N×2N , Q0 ∈ R2N×2N and an operator
Π : R4 −→ R2N×2N such that:

∀t ≥ 0 , |ey| ≤ ey (21)

with

ey = Π(t, ω)ζ+ + |J−1mb |d̄ (22a)

ζ̇+ = Mζ+ (22b)

ζ(0) = |Q0|
z+0 − z

−
0

2
(22c)

(22d)

Proof. the proof of this result is reported in Appendix A.

6
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Remark 5: As evidenced by the proof, the result is obtained by using a time-varying interval
observer for system (20a). Such an observer is necessarily chosen here since the state matrix Az
exhibits a poor damping. Let us indeed rewrite the latter in the appropriate basis such that
Az ∼ blkdiag(Ji, i = 1..N) with

Ji =

[
0 1
−ω2

i −2ξiωi

]
(23)

Next, compute the following key mapping

F(Ji) = tr(Ji)
2 − 2det(Ji) = 4ξ2i ω

2
i − 2ω4

i (24)

As a consequence of [Thm 2,Mazenc and Bernard (2010)], when the following condition (25) holds,

F(Ji) < 0 ⇔ ξi <

√
2

2
ωi (25)

there does not exist any linear time-invariant change of coordinates transforming Ṅi = JiNi to a
system for which a ’classical’ exponentially stable framer can be used. In that case which usually
corresponds to poorly damped systems – thus involving flexible modes – Mazenc and Bernard
(2010) suggests to use a time-varying interval observer.

4.2.2 Design of a novel ’OISat’ function

Lemma 4: Let kO be a strictly positive real number. Let d ∈ L2. Let assumptions (A2) and (A3)
hold and suppose that ω(0) ∈ [ω, ω]. Consider the input saturated system (14a)-(14b) with:

OISat(u) := Jmb

(
Sat

k(t)ω−ey
k(t)ω+ey

(α+ k(t)ω)− k(t)ω
)

+N(ω, ω, ẑ, 0)− Cz ẑ −Dzω (26)

and:

α = J−1mb (−N(ω, ω, ẑ, 0) + u+ Cz ẑ +Dzω) (27a)

k(t) = kO +
2ey
ω − ω

(27b)

˙̂z = Az ẑ +B1,zω (27c)

ẑ(0) =
z−0 + z+0

2
(27d)

Then,

∀t ≥ 0, ω(t) ∈ [ω, ω] (28)

Proof. Using (14a)-(14b)-(20b)-(44b)-(19a), it is readily checked that ω undergoes the following
dynamics:

ω̇ = Sat
k(t)ω−ey
k(t)ω+ey

(α+ k(t)ω)− k(t)ω + ey (29)

Note that the saturation function is well defined because (27b) implies that,

∀t ≥ 0, k(t)ω − ey ≥ k(t)ω + ey (30)

7
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it follows from (29) that

∀t ≥ 0, −k(t)(ω − ω) + ey + ey ≤ ω̇ ≤ ey − ey − k(t)(ω − ω) (31)

which implies that

∀t ≥ 0, −k(t)(ω − ω) ≤ ω̇ ≤ −k(t)(ω − ω) (32)

Recalling that ω(0) ∈ [ω, ω] and noting from (13,27b) that k(t) ≥ kO > 0, the final result (28)
immediately follows from (32) which concludes the proof.

5. Main result : attitude tracking under velocity constraints

Based on the notation introduced in subsection 4.2.1 dedicated to interval observer design, and
more specifically on equations (19a)-(20b), the flexible spacecraft model (3a)-(3c) may be rewritten
as follows:

q̇e =
1

2
E(qe)ωe (33a)

Jmbω̇e = −N(ω, ωe, ẑe, ω
b
r) + u+ Cz ẑe +Dzωe + Jmb

(
ey − ω̇br

)
(33b)

˙̂ze = Az ẑe +B1,zωe +B2,zω̇
b
r (33c)

ėz = Azez (33d)

with

ẑe = ẑ − zr (34)

ez = z − ẑ (35)

ey = J−1mb (−S(ω)Gzez + Czez + d) (36)

and the main result of the paper, summarized in the following theorem, may now be stated.

Theorem 1: Let kO, ka be strictly positive real numbers. Let d ∈ L2. Let assumptions (A2) to
(A4) hold and suppose that ω(0) ∈ [ω, ω]. Consider a closed-loop system consisting of the plant
(33a)-(33d) and the dynamic control law:

u = OISat(ũn + ua) (37)

= Jmb

(
Sat

k(t)ω−ey
k(t)ω+ey

(α+ k(t)ω)− k(t)ω
)

+N(ω, ω, ẑ, 0)− Cz ẑ −Dzω

(38)

q̇a =
1

2
E(qa)ωa :=

1

2
E(qa)R(qe)R(qa)

Tωbea (39)

Jmbω̇
be
a =

(
N(ω̃ + ωbr, ω̃, ˆ̃z, ω

b
r)−N(ω, ωe, ẑe, ω

b
r)
)

+ Czza +Dzω
be
a (40)

+ OISat(ũn + ua)− ũn (41)

ża = Azza +B1,zω
be
a (42)

(43)

8
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with:

ũn = unom(q̃0, ˆ̃x, ω
b
r, ω̇

b
r) (44a)

α = J−1mb (−N(ω, ω, ẑ, 0) + ũn + ua + Cz ẑ +Dzω) (44b)

ua = Jmb(−kaqav − k(t)ωbea ) +N(ω, ωbea , za, 0)− Czza −Dzω
be
a (44c)

where

• ˆ̃z = ẑe − za, ω̃ = ωe − ωbea , q̃ = qe ∗ q−1a .
• ey (resp.k(t)) is given by (22a) (resp. (27b)).

Then, ∀t ≥ 0, ω(t) ∈ [ω , ω] and there exists kO such that the error xe = [qev ; ωe ; ze] is asymptot-
ically stabilized to the origin for kO ≥ kO.

Remark 6: Note that the dynamic part of the control law described by equations (39)-(42), is
the anti-windup loop.

Proof. The proof of the result is divided into two parts. In the first part, it is shown that the error
system whose state x̃ = [q̃v ; ω̃ ; z̃] asymptotically converges to 0. The second part of the proof
establishes that the anti-windup state denoted by xa = [qav ; ωbea ; za] asymptotically converges
to the origin as well. As a consequence, the state of the error system xe = [qev ; ωe ; ze] tends
asymptotically to 0.

Part 1. Let us consider the error system whose state is x̃. After straightforward computa-
tions, one obtains:

˙̃q = 1
2E(q̃)ω̃

Jmb ˙̃ω = −N(ω̃ + ωbr, ω̃, ˆ̃z, ω
b
r) + unom(q̃0, ˆ̃x, ω

b
r, ω̇

b
r) + Cz z̃ +Dzω̃ + Jmb(ey − ω̇br)

˙̃z = Az z̃ +B1,zω̃ +B2,zω̇
b
r

(45)

Following the ideas of the proof of [Theorem 1,Di Gennaro (2002)], we first consider the following
Lyapunov function:

V (t, x̃) = (kp + kd)[(1− q̃0)2 + |q̃v|2] +
1

2
(q̃v + ω̃)TJmb(q̃v + ω̃) +

ε

2
z̃TPz z̃ + γeTz Pzez (46)

where ε, γ > 0 and Pz = P Tz > 0 is a solution to:

PzAz +ATz Pz = −2Qz (47)

for any fixed Qz = QTz > 0. (Pz exists because Az is strictly Hurwitz stable).
Computing the derivative of V , one gets:

V̇ (t, x̃) = −x̃TQx̃− γeTz Qzez + (q̃v + ω̃)T (ey − ω̇br) (48)

with

Q =

kpI3 O O
O kdI3

ε
2B

T
1,zPz

O ε
2PzB1,z εQz

 (49)

which, for sufficiently small ε > 0, is positive definite.

9
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Then, using (36) and the boundedness of ω (which follows from (38) and Lemma (3)), there exist
λ1, λ2, λ3 > 0 such that:

V̇ (t, x̃) = −λmin(Q)|x̃|2 − γeTz Qzez + λ1|x̃||ez|+ λ2|x̃||d|+ λ3|x̃||ω̇r| (50)

which, for γ > 0 chosen sufficiently large, yields:

V̇ (t, x̃) ≤ −λmin(Q)

2
|x̃|2 − γ

2
eTz Qzez + λ2|x̃||d|+ λ3|x̃||ω̇r| (51)

where d, ω̇r ∈ L2 in virtue of Assumptions (A2) and (A4). The proof of this part ends by invoking
Barbalat’s Lemma as in the proof of [Theorem 1,Di Gennaro (2002)].

Remark 7: As a result, x̃ is uniformly bounded. Furthermore, ω being bounded implies that
ωba := ω− ω̃−ωbar is bounded. From Assumption (A1) and equation (42), it readily follows that za
is bounded. Moreover, qa being a unit quaternion, qav is bounded. As a consequence, there exist
well defined positive constants c̃, ca such that :

∀t, |x̃(t)| ≤ c̃ |xa(t)| ≤ ca (52)

Part 2.
On the other hand, the nonlinear anti-windup loop (39)-(42) is now rewritten as follows:

q̇a = 1
2E(qa)(ω

be
a + ∆q)

Jmbω̇
be
a =

(
−N(ω, ωbea , za, 0) + Czza +Dzω

be
a

)
+OISat(ua) + ∆ω

ża = Azza +B1,zω
be
a

(53)

where:

∆q =
(
R(q̃)T − I3

)
ωbea (54)

∆ω = OISat(ua + ũn)−OISat(ua)− ũn +N(ω̃ + ωbr, ω̃, ˆ̃z, ω
b
r) (55)

+
(
N(ω, ωbea , za, 0)−N(ω, ωe, ẑe, ω

b
r)
)

(56)

OISat(ua) = Jmb

(
Sat

k(t)ω−ey
k(t)ω+ey

(αa + k(t)ωbea )− k(t)ωbea

)
(57)

+N(ω, ωbea , za, 0)− Czza −Dzω
be
a

(58)

αa = J−1mb

(
−N(ω, ωbea , za, 0) + ua + Czza +Dzω

be
a

)
(59)

Substituting (58) in (53) results in the following subsystem:
q̇a = 1

2E(qa)(ω
be
a + ∆q)

Jmbω̇
be
a = Jmb

(
Sat

k(t)ω−ey
k(t)ω+ey

(αa + k(t)ωbea )− k(t)ωbea

)
+ ∆ω

ża = Azza +B1,zω
be
a

(60)

10
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Let us now apply the control law ua defined by (44c). It readily follows from (59) and (60) that:
q̇a = 1

2E(qa)(ω
be
a + ∆q)

Jmbω̇
be
a = Jmb

(
Sat

k(t)ω−ey
k(t)ω+ey

(−kaqav)− k(t)ωbea

)
+ ∆ω

ża = Azza +B1,zω
be
a

(61)

Now considering the time-varying bounds of the saturation operator and substitute k(t) as in (27b),
one obtains: 

k(t)ω − ey = kOω + ω+ω
ω−ωey

k(t)ω + ey = kOω + ω+ω
ω−ωey

(62)

From (22a)-(22b), it readily follows that ˜̄y tends asymptotically to |J−1mb |d̄. Thus there exists T ≥ 0
such that :

∀t ≥ T, |J−1mb |d̄ ≤ ey ≤ 2|J−1mb |d̄ (63)

which together with (62) implies that:

∀t ≥ T,

{
k(t)ω − ey ≥ kOω + ω+ω

ω−ω |J
−1
mb |d̄

k(t)ω + ey ≤ kOω + 2ω+ωω−ω |J
−1
mb |d̄

(64)

Thus, choosing

kO > max

{
0 ,

1

ω

(
ka −

ω + ω

ω − ω
|J−1mb |d̄

)
,
−1

ω

(
ka + 2

ω + ω

ω − ω
|J−1mb |d̄

)}
(65)

one gets:

∀t ≥ T,
{
k(t)ω − ey ≥ ka
k(t)ω + ey ≤ −ka

(66)

As a consequence,

∀t ≥ T, Satk(t)ω−eyk(t)ω+ey
(−kaqav) = −kaqav (67)

Hence, the solutions being bounded for all time in virtue of (52), the asymptotic stability of xa is
now proven by studying the following system on t ∈ [T,+∞[:

q̇a = 1
2E(qa)(ω

be
a + ∆q)

ω̇bea = −kaqav − k(t)ωbea + J−1mb∆ω

ża = Azza +B1,zω
be
a

(68)

To this aim, we consider the following function:

Va(t, xa) = ka[(1− qa0)2 + |qav|2] +
1

2
|ωbea |2 +

ε

2
zTa Pzza + µqTavω

be
a (69)

11
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where ε is a small positive constant to be clarified next and µ > 0 is a tuning parameter.
From a simple completion of squares:

−µ
2
|qav|2 −

µ

2
|ωbea |2 ≤ µqTavωbea ≤

µ

2
|qav|2 +

µ

2
|ωbea |2 (70)

it is readily checked that Va is a Lyapunov candidate function since it verifies:

ka(1−qa0)2+
ka
2
|qav|2+

1

4
|ωbea |2+

ε

2
zTa Pzza ≤ Va ≤ ka(1−qa0)2+

3ka
2
|qav|2+

3

4
|ωbea |2+

ε

2
zTa Pzza (71)

when 0 < µ ≤ min
{
ka,

1
2

}
.

Next, differentiating Va with respect to time and using (60) yields ∀t ≥ T

V̇a = kaq
T
av(ω

be
a + ∆q) + (ωbea + µqav)

T
(
−kaqav − k(t)ωbea + J−1mb∆ω

)
− εzTaQzza (72)

+εzTa PzB1,zω
be
a +

µ

2

(
(qa0I3 + S(qav))ω

be
a

)T
ωbea (73)

≤ −µka|qav|2 − k(t)|ωbea |2 − εzTaQzza − µk(t)qTavω
be
a (74)

+εzTa PzB1,zω
be
a +

µ

2
|ωbea |2 + kaq

T
av∆q + (ωbea + µqav)

TJ−1mb∆ω (75)

Considering equations (62) and (63), it is easily checked that

∀t ≥ T, kmin ≤ k(t) ≤ kmax (76)

with

kmin = kO +
2

ω − ω
|J−1mb |d̄ , kmax = kO +

4

ω − ω
|J−1mb |d̄ (77)

Combining (75) with (76) yields ∀t ≥ T :

V̇a ≤ −µka|qav|2 − kmin|ωbea |2 − εzTaQzza + µkmax|qav||ωbea | (78)

+εzTa PzB1,zω
be
a +

µ

2
|ωbea |2 + kaq

T
av∆q + (ωbea + µqav)

TJ−1mb∆ω (79)

≤ −xTaQaxa + kaq
T
av∆q + (ωbea + µqav)

TJ−1mb∆ω (80)

where:

Qa =

 µka
µkmax

2 O
µkmax

2 kmin − µ
2 − ε

2PzB1,z

O − ε
2PzB1,z εQz

 (81)

which is positive definite for small values of µ and ε > 0.

Finally, it is convenient to bound the coupling terms between the x̃ and xa subsystems, which is
the scope of the following lemma (its proof is detailed in appendix B)

Lemma 5: there exists λ > 0 such that ∀t ≥ T

kaq
T
av∆q + (ωbea + µqav)

TJ−1mb∆ω ≤ λ|xa|(|x̃|+ |ez|+ |ωr|) (82)

12
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Consequently, ∀t ≥ T

V̇a ≤ −xTaQaxa + λ|xa|(|x̃|+ |ez|+ |ωr|) (83)

ωr (resp. x̃ and ez) being in L2 from Assumption (A4) (resp. from the proof of part 1), it readily
follows from the application of Barbalat’s Lemma that xa asymptotically converges to the origin.
The proof is now completed.

6. Application to a flexible spacecraft attitude control problem

A realistic application to a flexible spacecraft attitude control problem of the proposed design
methodology is now presented.

6.1 Numerical data

In this application, the spacecraft model described in subsection 2.2 is considered with the following
numerical data (borrowed from Hu (2009)):

Jmb =

350 3 4
3 270 10
4 10 190

 kg.m2 , δ =

 6.46 1.28 2.16
−1.26 0.92 −1.67
1.12 2.49 −0.84

 kg1/2.m.s−2 (84)

The characteristics of the three flexible modes are summarized below in Table 1.

pulsation damping ratio
Flexible mode #1 ω1 = 0.77 rad/s ξ1 = 0.0056
Flexible mode #2 ω2 = 1.10 rad/s ξ2 = 0.0086
Flexible mode #3 ω3 = 1.87 rad/s ξ3 = 0.0130

Table 1.: Characteristics of the flexible modes

and the angular velocity constraints are as follows:

ω = −ω =
[
6 15 10

]T
deg/s (85)

6.2 Scenario

The simulation starts from the initial state below:{
q(0) =

[
0.173648 −0.263201 0.789603 −0.526402

]T
ω(0) = η(0) = η̇(0) =

[
0 0 0

]T
The flexible satellite attitude shall track a reference signal qr(t) defined by its initial value

qr(0) =
[
1 0 0 0

]T
and its time-domain variation ωr generated by a two-steps response of a

first order filter Fr(s) = (1 + 0.3s)−1.

Moreover, a periodic disturbance torque is applied to the satellite:

d(t) =
[
0.3 cos(0.01t) + 0.1 0.15 sin(0.02t) + 0.3 cos(0.025t) 0.3 sin(0.01t) + 0.1

]T
Nm (86)

13
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In our interval observer design, we will then use the bound d̄ =
[
0.5 0.5 0.5

]T
Nm.

6.3 Controller gains tuning

For comparison purpose, we consider the nominal (state-feedback) control law resulting from
Lemma 1 and the enhanced (output-feedback) version resulting from Theorem 1:

• the nominal control law gains are simply chosen by poles placement of the following system:

q̇ev = ωe (87a)

Jmbω̇e = −kpqev − kdωe (87b)

which simply consists of a linearization of the rigid part of the closed loop system (3a)-(3c)-
(11). Here, a satisfying pole placement was obtained for:

kp = 0.25Jmb , kd = 0.1Jmb (88)

• the enhanced control law is tuned by choosing the gains kO, ka > 0 which must satisfy
inequalities (65). Given d̄, ω, ω, we selected ka = 2 in order to obtain kO ∼= kd(1, 1).

6.4 Nonlinear simulations results

The spacecraft model with both nominal and enhanced control laws has been implemented in
SIMULINKTM files. Following the scenario presented in subsection 6.2, nonlinear simulations have
been performed on a time range from 0 to 120 s. The results are presented below on Figures 1, 2
and 3.

As is clarified in the paper, the use of an interval observer of the unmeasured disturbance torque
is essential in our approach to enforce the angular rates constraints thanks to the OISTeR method-
ology. The behavior of this observer is illustrated by Figure 1. The tightness of the computed
bounds as a function of time is clearly visualized.

Next, the angular velocities on the three axes are displayed in Figure 2 where a comparison
between the nominal and enhanced controllers is proposed. As expected, every time a step input
is applied, the angular velocities exceed the constraints on each axis when the nominal controller
is used. This is however no longer the case with the enhanced control system. In this case indeed,
the velocities are always kept in the prescribed limits.

The comparison of the nominal and enhanced controllers is further investigated in Figure 3.

• The first subplot (upper) illustrates the time-domain evolution of the tracking error (via
the norm of the quaternion error ‖qev(t)‖). It is easily observed that the nominal controller
outperforms the OISTeR-based solution. But this is not surprising since velocities constraints
are not respected in the first case. More precisely, when comparing both plots, the price to
pay for constraints satisfaction is clearly visualized between t ∼= 50s and t ∼= 65s. During this
time interval the reference quaternion is no longer tracked by the enhanced system. Next,
the error starts to decrease as soon as the anti-windup loop becomes active.
• The second subplot (middle) illustrates the activity of the flexible mode. Quite interestingly, it

is observed that the excitation of the flexible modes is considerably lower when the enhanced
controller is used. Here again, this is not surprising since the angular velocities are now
controlled.
• The last and third subplot (lower) illustrates the control activity which, as expected also, is

significantly lower when the OISTeR-based system is used.

14
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Figure 1.: Interval observer (bounds detection on the unmeasured disturbance torque ey)
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Figure 2.: Comparison of the angular velocities on each axis with the nominal and enhanced
(OISTeR-based) control systems
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Figure 3.: Further comparison of the nominal and enhanced controllers through the tracking error
(‖qev(t)‖) , the activity of the flexible modes (‖η(t)‖) and the control effort (‖u(t)‖).
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7. Conclusions

The problem of output-feedback trajectory tracking of flexible spacecraft attitude under angular
velocity constraints has been addressed in this paper. Given a nominal controller which solves
the tracking problem in the full state-feedback case without velocity constraints, it is proven that
the general problem can be solved by saturating the nominal controller by an Output to Input
Saturation. Such a saturated control law is then applied in combination with a nonlinear anti-
windup loop. Note that one key feature of this result is to use an interval observer not only to
estimate the flexible modes but also to provide at each instant their lower and upper bounds, which
is crucial to ultimately guarantee the satisfaction of the velocity constraints. In future research, we
plan to extend this work to handle parametric uncertainties and control torque limitations.
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Appendix A. Proof of Lemma 2

First of all, let us introduce the following notation. Note that this notation (which is very specific
and merely used in this proof) was not given before to avoid breaking the flow of the paper
derivations.

Notation 4: we introduce the following two functions (as in Mazenc and Bernard (2010)):

L(s) = max{0, s}, M(s) = min{0, s} (A1)

Then, given a time-varying matrix Π(t), we define:

Πp(t) =

(
L(Πi,j(t))

)
, Πm(t) =

(
M(Πi,j(t))

)
, (A2)

As a consequence of |s| = L(s) −M(s), one has |Π(t)| = Πp(t) − Πm(t), such an equality being
understood element-wise.
Let us now prove Lemma 2:

Proof. First, let us consider:

ėz = Azez (A3)

where |ez,0| ≤ z+0 −z
−
0

2 .

Let us note N = [NT
1 , . . . , N

T
N ]T where

Ni = [ez,i, ez,i+N ]T , ∀i ∈ [1, N ] (A4)

These relations define a change of coordinates which is now denoted as follows:

N = Pez (A5)

It is readily seen that the Ni’s verify:

Ṅi = JiNi , i ∈ [1, N ] (A6)

where

Ji =

[
0 1
−ω2

i −2ξiωi

]
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Following Mazenc and Bernard (2010), we apply the change of coordinate ζi = λi(t)Ni where

λi(t) =

[
cos(ωit)− ξi sin(ωit) − 1

ωi
sin(ωit)

ωi sin(ωit) cos(ωit) + ξi sin(ωit)

]
(A7)

which gives:

ζ̇i = −κiζi , i ∈ [1, N ] (A8)

where κi = ξiωi.
(Note that the change of coordinate is well defined ; indeed, det(λi(t)) = cos2(ωit) + (1 −
ξ2i ) sin2(ωit) 6= 0 since the damping ratios are assumed to satisfy 0 < ξi < 0)

Finally, noting M = diag({−κiI2, i = 1..N}) and λ(t) = diag({λi(t), i = 1..N}), system
(A3) is equivalent to:

ζ̇ = Mζ (A9a)

ζ = λ(t)Pez := Q(t)ez (A9b)

It follows from |ez,0| ≤ z+0 −z
−
0

2 and from (A9b) that

ζ(0) ∈ [ζ−0 , ζ
+
0 ] (A10)

where {
ζ+0 = Qp(0) z

+
0 −z

−
0

2 −Qm(0) z
+
0 −z

−
0

2 = |Q(0)| z
+
0 −z

−
0

2

ζ−0 = Qm(0) z
+
0 −z

−
0

2 −Qp(0) z
+
0 −z

−
0

2 = −|Q(0)| z
+
0 −z

−
0

2

(A11)

M being Hurwitz Metzler, the following system defines an interval observer for system (A9a){
ζ̇+ = Mζ+

ζ̇− = Mζ−
(A12)

where ζ+(0) = ζ+0 (resp. ζ−(0) = ζ−0 ).
Finally, such an interval observer can be used to bound the output ey since:

ey = J−1mb (−S(ω)Gzez + Czez + d) (A13)

= J−1mb
(
(−S(ω)Gz + Cz)Q(t)−1ζ + d

)
(A14)

:= Π(t, ω)ζ + J−1mbd (A15)

Indeed, it is readily seen that ey ∈ [e−y , e
+
y ] where:{

e+y := Πp(t, ω)ζ+ + Πm(t, ω)ζ− + |J−1mb |d̄
e−y := Πm(t, ω)ζ+ + Πp(t, ω)ζ− − |J−1mb |d̄

(A16)

which simplifies as follows: {
e+y := |Π(t, ω)|ζ+ + |J−1mb |d̄
e−y := −e+y

(A17)
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Indeed, it readily follows from (A11)-(A12) that ∀t, ζ+(t) = −ζ−(t). The proof of the Lemma is
then completed.

Appendix B. Proof of Lemma 5

The proof of the Lemma readily follows from the proofs of the two following inequalities:

(1) there exists λ4, λ5, λ6 > 0 such that ∀t ≥ T :

(ωba + µqav)
T∆ω ≤ λ4|xa||x̃|+ λ5|xa||ez|+ λ6|xa||ωr| (B1)

(2) there exists λ7 > 0 such that

qTav∆q ≤ λ7|xa||x̃| (B2)

B.1 Part 1

Starting from equation (56), we obtain (B4) by using (11)-(44a)-(44c)-(58) :

(ωba + µqav)
T∆ω = (ωba + µqav)

T

(
OISat(ua + ũn)−OISat(ua)− ũn +N(ω̃ + ωbr, ω̃, ˆ̃z, ω

b
r)

+
(
N(ω, ωbea , za, 0)−N(ω, ωe, ẑe, ω

b
r)
))

(B3)

≤ 3(1 + µ)|xa|(λmax(Jmb)|∆S |+ |∆̃|) (B4)

where

∆S := Sat
k(t)ω−ey
k(t)ω+ey

(α+ k(t)ω)− Satk(t)ω−eyk(t)ω+ey
(αa + k(t)ωbea ) (B5)

∆̃ := Jmb(−k(t)ω̃)− Cz z̃ −Dzω̃ − ũn −N(ω, ω̃, ˆ̃z, ωbr)

−Cz(zr − ez)− (Jmbk(t) +Dz)ω
b
r (B6)

Looking at (44b)-(59), we observe that

α+ k(t)ω = αa + k(t)ωbea + k(t)(ω̃ + ωbr) + J−1mb

(
N(ω, ωbea , za, 0)−N(ω, ω, ẑ, 0)

+ũn + Cz(z̃ − ez + zr) +Dz(ω̃ + ωr)
)

(B7)

Substituting (B7) in (B5) and using the fact that Sat is 1-Lipschitz yields

|∆S | ≤
∣∣∣k(t)(ω̃ + ωbr) + J−1mb

(
N(ω, ωbea , za, 0)−N(ω, ω, ẑ, 0)

+ũn + Cz(z̃ − ez + zr) +Dz(ω̃ + ωr)
)∣∣∣ (B8)

≤
∣∣∣k(t)(ω̃ + ωbr) + J−1mb

(
−N(ω, ω̃ + ωbr, ˆ̃z + zr, 0)

+ũn + Cz(z̃ − ez + zr) +Dz(ω̃ + ωr)
)∣∣∣ (B9)
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Looking at the expressions (6)(resp. (11)-(44a)) of N (resp. ũ) and bearing in mind the fact that
ω is bounded and k(t) is dominated by a constant kmax > 0 for t ≥ T , it is not difficult to see that
|∆S | (resp. |∆̃|) given by (B9)(resp. (B6) ) is Lipschitz with respect to the variables x̃,ez and ωr
for all t ≥ T . The proof of (B1) readily follows from this fact plus the use of (B4).

B.2 Part 2

Starting from equation (54), one can successively prove that:

qTav∆q = qTav
(
R(q̃)T − I3

)
ωbea

= qTav
(
(q̃20 − q̃Tv q̃v − 1)I3 + 2q̃v q̃

T
v − 2q̃0S(q̃v)

)
ωbea

= qTav
(
−2q̃Tv q̃vI3 + 2q̃v q̃

T
v − 2q̃0S(q̃v)

)
ωbea

= qTav
(
2S(q̃v)

2 − 2q̃0S(q̃v)
)
ωbea (B10)

= 2qTav (S(q̃v)− q̃0I3))S(q̃v)ω
be
a

≤ 2|qav|(
√

2|q̃v|+ 1)
√

2|q̃v||ωbea | (B11)

≤ 2(2 +
√

2)|q̃v||ωbea |
≤ 8|x̃||xa| (B12)

where (B10) is obtained by using the relation S(x)2 = −(xTx)I3 + xxT

where (B11) is obtained by using the relation |S(qv)| ≤
√

2|qv|2 =
√

2|qv| which readily follows

from the well known relation |A| ≤ |A|F =
√
trace(ATA) (substituting A for S(qv)).

The proof is thus completed for any λ7 ≥ 8.

22


