How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H 2 Production and CO 2 Reduction - Archive ouverte HAL
Article Dans Une Revue Journal of the American Chemical Society Année : 2013

How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H 2 Production and CO 2 Reduction

Vincent C C Wang
  • Fonction : Auteur
Thomas W Woolerton
  • Fonction : Auteur
Sophie Bell
  • Fonction : Auteur
Mehmet Can
  • Fonction : Auteur
Stephen W Ragsdale
  • Fonction : Auteur
Yatendra S Chaudhary
  • Fonction : Auteur
Fraser A. Armstrong
  • Fonction : Auteur
  • PersonId : 946101

Résumé

The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H(+)/H2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H(+) reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.

Dates et versions

hal-01664648 , version 1 (15-12-2017)

Identifiants

Citer

Andreas Bachmeier, Vincent C C Wang, Thomas W Woolerton, Sophie Bell, Juan-Carlos Fontecilla-Camps, et al.. How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H 2 Production and CO 2 Reduction. Journal of the American Chemical Society, 2013, 135 (40), pp.15026 - 15032. ⟨10.1021/ja4042675⟩. ⟨hal-01664648⟩
394 Consultations
0 Téléchargements

Altmetric

Partager

More