Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion - Archive ouverte HAL
Article Dans Une Revue ACS Applied Materials & Interfaces Année : 2017

Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion

Résumé

Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while the tortuosity effect, as usually expected, was not really observed. This work brings new insights in the field of physicochemical behaviors of new multilayer films made of biodegradable polyesters but also in interfacial processes due to the confinement effect induced in these multinanolayer structures obtained by the forced assembly coextrusion. This original coextrusion process was a very advantageous technique to produce eco-friendly materials with functional properties without the help of tie layer, additives, solvents, surface treatments, or inorganic fillers.
Fichier principal
Vignette du fichier
PIMM - AMI - MESSIN - 2017.pdf (1.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01664644 , version 1 (15-12-2017)

Identifiants

Citer

Tiphaine Messin, Nadège Follain, Alain Guinault, Cyrille Sollogoub, Valérie Gaucher, et al.. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion. ACS Applied Materials & Interfaces, 2017, 9 (34), pp.29101-29112. ⟨10.1021/acsami.7b08404⟩. ⟨hal-01664644⟩
220 Consultations
1090 Téléchargements

Altmetric

Partager

More