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Abstract—This paper presents a deep-learning method for dis-
tinguishing computer generated graphics from real photographic
images. The proposed method uses a Convolutional Neural
Network (CNN) with a custom pooling layer to optimize current
best-performing algorithms feature extraction scheme. Local
estimates of class probabilities are computed and aggregated to
predict the label of the whole picture. We evaluate our work
on recent photo-realistic computer graphics and show that it
outperforms state of the art methods for both local and full
image classification.

I. INTRODUCTION

Digital image forensics is a research field mostly dedicated
to the detection of image falsification. A large part of the
current research focuses on the detection of image splicing,
copy-past or camera identification [1]. This paper addresses
the problem of identifying whether an image is a computer
graphics or a natural photograph.

A. Computer Graphics vs Natural Photographs

Some recent advances in image processing, like the real-
time facial reenactment face2face [2], show the importance of
having some tools to distinguish computer graphics (CG) from
natural photographic images (PG). Although the distinction
between CG and PG depends not only on image properties,
but also on cognitive characteristics of viewers [3], people
show inaccurate skills at differentiating between altered and
non-altered images [4].

B. State of the art

In 2003, Farid and Lyu [5] presented a method to detect
steganography and suggested to apply it to distinguish CG
from PG. Like the quasi-totality of the methods that followed,
the authors perform a “wavelet-like” decomposition of the
images to generate some features vectors, combined with
machine learning for classification.

Distinguishing CG from PG is by nature strongly related to
computer graphics performances in generating photo-realistic
images. Ng et al. [6] is the first paper to mention the expected
difference between CG and PG images, mainly consisting
in the image smoothness due to triangles. Dirik et al. [7]
consider that this difference better resides in the statistical

noise properties of the image. Wang et al. [8] consider that
the image edges are more relevant for this problem.

Wang and Moulin [9] introduce the use of histograms on
the wavelet filtered data, before classification. This approach
will be followed by many similar methods, like [10] and
[11]. Among these methods, Wu et al. [12] is clearly the
easiest to implement. Li et al. [13] recommend to perform
the computation in HSV color space.

Alternatives to the “wavelet-like” decomposition are to work
directly on the noise image, as proposed by Khanna et al. [14],
or to detect traces of demosaicing that should not appear in CG
images, as proposed by Gallagher and Chen [15]. Note that this
last method will handle only images at native resolution since
scaling an image will strongly alter the demosaicing artifacts.

For more detailed overviews, the reader can refer to Tokuda
et al. [16], as well as to Wang et al. [8] and Ng and Chang [17].

In the rest of the paper, we will mainly compare our method
to Wu et al. [12], i.e. an histogram based method derived
from [13], known as one of the most effective from the current
state of the art.

C. Motivations

Statistical properties of filtered images are good discrimi-
nators for distinguishing CG from PG, whether computations
involve image gradient [12] or more sophisticated wavelet
transformations [9]–[11]. For all these methods, the question
of using the best filters is central, i.e. finding the ones that will
extract the most meaningful information. Most of the previous
works used hand-crafted filtering step which is unlikely to be
optimal.

Our aim is to show that optimizing this filtering step dra-
matically improves classification results compared to current
state of the art. A promising way to do so is to use a
Convolutional Neural Network (CNN) to intelligently brute-
force the solution.

Deep-learning approaches, and in particular CNN, have
recently become very popular for many computer vision
problems: classification [18], denoising [19], steganalysis [20],
etc. CNN are not only able to learn classification boundaries
but also to find conjointly the best representation of the



data. We also remark that the overall structure is adapted to
our problem: convolution layers model filters while densely
connected layers can replace efficiently other classification
methods. Motivated by those observations, we implemented
a special pooling layer to extract statistical features within a
CNN framework and trained the network to distinguish CG
from PG.

The paper is organized as follows: Section II presents the
overall classification process while Section III to VI describe
more precisely each step. Section VII provides a listing of our
results and some comparison with Wu et al. [12].

II. ARCHITECTURE

Our approach mainly differs from the usual pipeline in
the size of the image computed. Indeed, classifying smaller
images is more challenging since the extracted statistics are
less significant but dividing a large image into smaller tiles
makes it possible to detect local splicing from a CG to a PG
(and reciprocally). Moreover, smaller images are better suited
to be used in a CNN due to hardware memory limitations.

In practice, we split the input images into Np tiles (or
patches) of resolution 100 × 100. This size was chosen as
a trade-off between execution time and statistical meaningful-
ness. An image will be classified to be CG or PG according
to a certain decision rule defined in Section VI that aggregates
the results of all the tiles composing the image, as depicted in
Fig.1.

Fig. 1: Pipeline applied to a full-size image: patch decompo-
sition, then patch classification, and finally results aggregation

As for the patch classifier, illustrated in Fig.2, our approach
reproduces the usual 3-steps procedure: filtering, statistical
feature extraction and classification. It computes Nf filtered
images from 100 × 100 input tiles. Then, it extracts Ns

statistical quantities for each filtered image and feeds the
Nf × Ns long feature vector to a usual classifier which
estimates the posterior probability of each class. Those values
are then used to decide the label of the global image.

The next sections detail each step of the overall procedure.

III. FILTERING

The filtering step consists in computing multiple convoluted
images from which will be extracted statistical features. As
filters are to be learned from the data, we use convolution
layers instead of some fixed filters.

More precisely, we consider a finite set of N convolution
kernels of size k × k . For example, with k = 3:

{
K3,n =

 wn
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wn
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 | n ∈ [0..N − 1]
}

(1)

Fig. 2: Patch classifier 3-steps procedure: filtering using CNN,
statistical feature extraction and classification

where the wn
i,j are the weights which are to be optimized.

Then, the input image is convoluted to each kernel. Biases
are added and the result is composed with a Rectified Linear
Unit (ReLU), a non-linear activation function which improves
training performances [21].

Outputted images can be filtered again by stacking other
convolution layers. This operation models simple filtering
while creating new degrees of freedom (represented by weights
and biases). Thus, not only the classifier but also the convo-
lution kernels can be optimized.

After training, we found some well-known kernels used in
previous methods but also ome which are less trivial. Those
results are shown in Fig.3. For example, kernels 24 and 25 are
very close to horizontal difference while kernel 19 looks like a
vertical difference. On the other hand, we observed filters like
3 or 11 which seem to combine different kernels (diagonal
ones in this case). Searching the space of possible kernels
permitted to obtain more complicated filters that would have
been hard to find intuitively.

Fig. 3: 32 trained kernels from the first convolution layer of
the Stats-2L model

In practice, we tried different parameters for the number of
layers NL and the number of kernels per layer N i

K , but we
fixed the kernel size to k = 3. Indeed, during preliminary
experiments we observed that increasing k to 5 did not
improve the overall results. Moreover, we only considered
small networks (NL ≤ 3) because the idea is to work only on



low-level image representations. All tested architectures are
described in section VII.

IV. STATISTICAL FEATURES EXTRACTION

This Section explains how statistical information is ex-
tracted from the convoluted images. In a deep-learning context,
this operation can be viewed as a pooling layer. Usually, after
convolution layers, a local maximum pooling is computed
to reduce the dimension of the data representation before
classification. As for image forensics, other global statistical
quantities are known to be more useful. Thus a special pooling
layer is developed for adapting neural nets to this particular
task.

We explored two different approaches: computing simple
statistics or estimating the histogram of the convoluted images.

A. Simple statistics

Previous methods (for example [5]) suggest that deriving
really simple quantities from filtered images, in general low-
order moments of the distribution, is enough to solve our
classification problem. In our implementation, for each filtered
image Fn with n ∈ [0..N − 1] of size S1 × S2 we compute
four quantities:

• The estimate mean: mn =
∑

p∈Fn

p

S1S2

• The estimate variance: s2n =
∑

p∈Fn

(p−mn)
2

S1S2

• The maximum: Fmax
n = max

p∈Fn

(p)

• The minimum: Fmin
n = min

p∈Fn

(p)

Remark that those quantities are differentiable with respect
to the pixel values which will allow gradients to be back-
propagated through this layer during training. This gives a
4×Nf long features-vector (where Nf is the number of filters
in the last convolution layer) which is fed to the classifier.

B. Histograms

The second option is to compute the normalized histogram
of the pixel distribution which may capture more information
than simple statistical quantities [12]. In order to integrate
this layer into our framework, we adapted the way bin values
are usually calculated. Their computation includes the use of
indicator functions which gradients value zero almost every-
where. This prevents the weights of the convolution layers
to be updated during back-propagation. This issue can be
avoided using Gaussian kernels instead of indicator function
to estimate the value of each histogram bin, as described by
Sedighi et al. [20].

We use a 11-bin histogram for each filtered image and the
bin values are concatenated into a 11×Nf long feature vector.

V. CLASSIFICATION

From the feature vectors computed previously (either simple
statistics or histograms), we train a classifier to separate the
two classes CG and PG. We tried the following popular
methods.

A. LDA

Fisher’s Linear Discriminant Analysis (LDA) [22] is one
of the most widely used tool for linear classification. It aims
to maximize the “between class variance” and minimize the
“within class variance” over a set of linear classifiers.

B. SVM

Support Vector Machines (SVM) [23] are also very popular
and present more flexibility than LDA. In its linear form, SVM
is quite similar to LDA (although it minimizes another loss
function), but it can also be applied for non-linear classification
using the kernel trick. Indeed, feature vectors can be mapped
to a higher dimensional space with a kernel function, in our
case the radial basis function (RBF).

C. Neural network

Multi-layers perceptrons (MLP) are another example of
flexible “model free” classifying method. This kind of neural
networks show very good results on various classification
problems [24]. It uses a back-propagation algorithm for train-
ing which permits to plug our feature extraction layers on top
and optimize both at the same time.

Our MLP is composed of a hidden layer with 1024 ReLU
activated neurons and a read-out layer with 2 SoftMax acti-
vated neurons (one per class). We also use dropout on the
hidden layer as described by Strivastava et al. [25] to avoid
over-fitting. The loss to minimize is the cross-entropy function
for the two-classes problem, which can be interpreted as the
minus log-likelihood of the label data under our model. Fi-
nally, we used Adam algorithm [26] to optimize synchronously
MLP’s and convolution layers’ weights.

In practice, MLP will be used as the default classifier for
training the CNN while SVM and LDA will only be tested
by plugging them instead of the MLP after the already trained
feature extraction layer.

VI. OUTPUT AGGREGATION

A regular image is usually big enough to be composed of
many tiles. The classification of a full image will be decided
according to the classification probability of each of its tiles. In
practice, we use a weighted voting scheme where each patch
contribution is the log likelihood of the label:

ypred = sgn

(
Np∑
i=1

log
P(Y = 1 | Xi = xi)

P(Y = −1 | Xi = xi)

)
(2)

with Y and Xi the random variables modeling the labels and
the patches, xi the real observations and sgn(x) a function
that returns ±1 according to the sign of x.

We used this rule because it is fairly easy to obtain posterior
probabilities (with our MLP for example, it just corresponds to
the two output values of the read-out layer) but also because it
can be interpreted as a global Maximum Likelihood Estimation
criterion for the parameter Y .



VII. TESTS AND RESULTS

A. Database

State of the art methods classically use the Columbia
dataset [27] to estimate their performances. Since this dataset
was created in 2004, it is obvious that the CG images are
completely out of comparison with current CG images and it
makes no sense to use them anymore. Thus, we collected our
own dataset as follows.

Our CG were downloaded from the Level-Design Reference
Database [28] which contains more than 60,000 good resolu-
tion (1920×1080 pixels) video-game screenshots in JPEG for-
mat. Only 5 different video-games were judged photo-realistic
enough (namely The Witcher 3, Battlefield 4, Battlefield Bad
Company 2, Grand Theft Auto 5 and Uncharted 4) which
reduces the set to 1800 images. Some examples are shown
in Fig.4. Furthermore, in-game information (dialogues, life
bar, mini-maps, ...) were removed by cropping the images.

Fig. 4: Sample CG images from our dataset.

The Photographic images are high resolution images (about
4900 × 3200 pixels) taken from the RAISE dataset [29],
directly converted from RAW format to JPEG. Some samples
are shown in Fig.5.

Fig. 5: Sample photographic images from our dataset

Images from both classes cover a wide range of outdoor and
indoor scenes: landscapes, people bodies and faces, man-made
objects (e.g architecture, cars), etc.

From those 3600 images, we constructed 3 databases on
which our tests were carried out. Firstly, we selected the
green channel of each image. Each class was then divided into
training (70%), testing (20%) and validation (10%) to form the

Full-size database. From this original database, we constructed
a lower size one by cropping each image to 650×650. Finally,
we randomly extracted 43000 patches sized at 100× 100 for
training the patch classifier.

Information about our data are gathered in TABLE I.

TABLE I: CG vs PG datasets description

Name Ntrain Ntest Nval Size
Full-size 2520 720 360 Various
Low-Size 2520 720 360 650× 650

Patch 40000 2000 1000 100× 100

B. Experimental setup

Our method was implemented using the Tensorflow frame-
work [30]. Our statistical and histogram layers were directly
integrated to the pipeline, using Tensorflow native functions.
Models are developed and trained on Tesla K80 GPU from
NVIDIA.

During training, we set batch size to 50 images and dropout
probability to 0.25 for the MLP hidden layer. Adam algorithm
parameters are set as follows: learning rate is l = 10−4 and the
momentum exponential decay rates are respectively β1 = 0.9
and β2 = 0.999.

TABLE II: Tested architectures for patch classifier

Name NL N1
f N2

f N3
f Features Ne CLF

Stats-1 1 32 NA NA Simple stats 128 MLP
Stats-2L 2 32 64 NA Simple stats 256 MLP
Stats-2S 2 16 32 NA Simple stats 128 MLP
Stats-3 3 32 64 64 Simple stats 256 MLP
Hist-2 2 32 64 NA Histogram 704 MLP
SVM 2 32 64 NA Simple stats 256 SVM
LDA 2 32 64 NA Simple stats 256 LDA

Evaluated architectures are described in TABLE II, with
the corresponding number of layers NL, the number of output
filtered images of each layer N1

f , N2
f and N3

f (NA if the layer
does not exist), the feature extraction method (simple statistics
or 11-bin histogram), the length of the extracted feature vector
Ne and the final classifying method CLF. We recall that all
convolution kernels have a fixed size k = 3.

To set up optimal hyper-parameters for the filtering step, we
evaluated the first 4 models by plotting the validation accuracy,
i.e. the proportion of true classification among the images in
the validation set, along training.

Fig.6 shows that the best performing model after training
(when the validation curve flattens), has two layers. For this
number of layer, using a larger number of kernels is a better
choice.

C. Benchmark

For next tests, we have chosen the parameters that gave
the best results during validation: NL = 2, N1

f = 32 and
N2

f = 64.
Our method is then evaluated by computing the detection

accuracy and the area under ROC curve (AUC). The closer
accuracy/AUC are to 100%/1.0, the more efficient is the
classification.
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Fig. 6: Smoothed validation accuracy during training for
different models

We compared those results with our implementation of Wu
et al. method [12] (the number of histogram features was set
to k = 7 as suggested by the authors). Final classification
was done with LDA and the training/testing procedure was
performed on the corresponding part of our datasets. TABLE
III shows accuracy for different methods and datasets.

TABLE III: Accuracy results comparison for each dataset
(An asterisk ∗ indicates that patch aggregation is used)

Method Patch Low-size Full-size
Wu et al. [12] 75.0% 89.0% 88.5%

Proposed method - SVM 79, 7% 91.4%∗ 91.8%∗

Proposed method - LDA 79.2% 91.1%∗ 93.1%∗

Proposed method - Hist-2 82.7% 92.4%∗ 93.1%∗

Proposed method - Stats-2L 84.8% 94.4%∗ 93.2%∗

We can see that optimizing the filtering step improves
significantly the accuracy for patch by patch classification
compared to one of the most effective state of the art method
(accuracy rises by 9.8%).

For low-size and full-size datasets, we used the aggregation
scheme described in Section VI for all four of the proposed
algorithm, with the patch classifier trained on the Patch
database. For a fair comparison, Wu et al. baseline was trained
on whole images which makes classification straight-forward.
In this configuration, our method shows better accuracy results
on both datasets. Furthermore, ROC curves and AUC scores
concord with this observation on full-size images as depicted
in Fig.7.

The best performance is obtained using the Stats-2L model,
showing that plugging a SVM or a LDA on top of our feature
extractor instead of a MLP leads to less accurate classification.

We also see that training the network with the histogram
layer does not improve the results. This can be explained by
the lack of training samples which prevents efficient training
for more complex models (256 features for simple statistics
against 704 for histograms).
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Fig. 7: ROC curve comparison on the full-size testing data

Finally, Fig. 8 exhibits some examples of local CG detec-
tion using our method. Sample PG have been corrupted by
copy/pasting computer graphics and we show that our method
permits to visualize which area have been modified.

VIII. CONCLUSION

In this study, we described a novel method for classifying
computer graphics and real photographic images that inte-
grates a statistical feature extraction to a CNN frameworks
and finds the best features for efficient boundary . A boosting
method is used to aggregate local estimations of the label. To
confront our algorithm with nowadays computer graphics, we
collected a photo-realistic video-game screenshots database.
Compared to state of the art methods, this work is superior in
terms of detection accuracy.
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